
A Proofs644

A.1 Proof of Proposition 1645

Optimal α. Let µ ∈ P2(S
1), ν = Unif(S1). Since ν is the uniform distribution on S1, its cdf is646

the identity on [0, 1] (where we identified S1 and [0, 1]). We can extend the cdf F on the real line as647

in [89] with the convention F (y + 1) = F (y) + 1. Therefore, Fν = Id on R. Moreover, we know648

that for all x ∈ S1, (Fν − α)−1(x) = F−1
ν (x+ α) = x+ α and649

W 2
2 (µ, ν) = inf

α∈R

∫ 1

0

|F−1
µ (t)− (Fν − α)−1(t)|2 dt. (25)

For all α ∈ R, let f(α) =
∫ 1

0

(
F−1
µ (t)− (Fν − α)−1(t)

)2
dt. Then, we have:650

∀α ∈ R, f(α) =
∫ 1

0

(
F−1
µ (t)− t− α

)2
dt

=

∫ 1

0

(
F−1
µ (t)− t

)2
dt+ α2 − 2α

∫ 1

0

(F−1
µ (t)− t) dt

=

∫ 1

0

(
F−1
µ (t)− t

)2
dt+ α2 − 2α

(∫ 1

0

x dµ(x)− 1

2

)
,

(26)

where we used that (F−1
µ )#Unif([0, 1]) = µ.651

Hence, f ′(α) = 0 ⇐⇒ α =
∫ 1

0
x dµ(x)− 1

2 .652

Closed-form for empirical distributions. Let (xi)
n
i=1 ∈ [0, 1[n such that x1 < · · · < xn and let653

µn = 1
n

∑n
i=1 δxi

a discrete distribution.654

To compute the closed-form of W2 between µn and ν = Unif(S1), we first have that the optimal α655

is αn = 1
n

∑n
i=1 xi − 1

2 . Moreover, we also have:656

W 2
2 (µn, ν) =

∫ 1

0

(
F−1
µn

(t)− (t+ α̂n)
)2

dt

=

∫ 1

0

F−1
µn

(t)2 dt− 2

∫ 1

0

tF−1
µn

(t)dt− 2α̂n

∫ 1

0

F−1
µn

(t)dt+
1

3
+ α̂n + α̂2

n.

(27)

Then, by noticing that F−1
µn

(t) = xi for all t ∈ [F (xi), F (xi+1)[, we have657 ∫ 1

0

tF−1
µn

(t)dt =

n∑
i=1

∫ i
n

i−1
n

txidt =
1

2n2

n∑
i=1

xi(2i− 1), (28)

658 ∫ 1

0

F−1
µ (t)2dt =

1

n

n∑
i=1

x2
i ,

∫ 1

0

F−1
µ (t)dt =

1

n

n∑
i=1

xi, (29)

and we also have:659

α̂n + α̂2
n =

1

n

n∑
i=1

xi −
1

2
+

( 1

n

n∑
i=1

xi

)2

+
1

4
− 1

n

n∑
i=1

xi =
( 1

n

n∑
i=1

xi

)2

− 1

4
. (30)

Then, by plugging these results into (27), we obtain660

W 2
2 (µn, ν) =

1

n

n∑
i=1

x2
i −

1

n2

n∑
i=1

(2i− 1)xi − 2
( 1

n

n∑
i=1

xi

)2

+
1

n

n∑
i=1

xi +
1

3
+

( 1

n

n∑
i=1

xi

)2

− 1

4

=
1

n

n∑
i=1

x2
i −

( 1

n

n∑
i=1

xi

)2

+
1

n2

n∑
i=1

(n+ 1− 2i)xi +
1

12
.

(31)
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A.2 Proof of Equation (17)661

Let U ∈ Vd,2. Then the great circle generated by U ∈ Vd,2 is defined as the intersection between662

span(UUT ) and Sd−1. And we have the following characterization:663

x ∈ span(UUT ) ∩ Sd−1 ⇐⇒ ∃y ∈ Rd, x = UUT y and ∥x∥22 = 1

⇐⇒ ∃y ∈ Rd, x = UUT y and ∥UUT y∥22 = yTUUT y = ∥UT y∥22 = 1

⇐⇒ ∃z ∈ S1, x = Uz.

And we deduce that664

∀U ∈ Vd,2, x ∈ Sd−1, PU (x) = argmin
z∈S1

dSd−1(x, Uz). (32)

A.3 Proof of Lemma 1665

Let U ∈ Vd,2 and x ∈ Sd−1 such that UTx ̸= 0. Denote U = (u1 u2), i.e. the 2-plane E666

is E = span(UUT ) = span(u1, u2) and (u1, u2) is an orthonormal basis of E. Then, for all667

x ∈ Sd−1, the projection on E is pE(x) = ⟨u1, x⟩u1 + ⟨u2, x⟩u2 = UUTx.668

Now, let us compute the geodesic distance between x ∈ Sd−1 and pE(x)
∥pE(x)∥2

∈ E ∩ Sd−1:669

dSd−1

(
x,

pE(x)

∥pE(x)∥2

)
= arccos

(
⟨x, pE(x)

∥pE(x)∥2
⟩
)

= arccos(∥pE(x)∥2), (33)

using that x = pE(x) + pE
⊥
(x).670

Let y ∈ E ∩ Sd−1 another point on the great circle. By the Cauchy-Schwarz inequality, we have671

⟨x, y⟩ = ⟨pE(x), y⟩ ≤ ∥pE(x)∥2∥y∥2 = ∥pE(x)∥2. (34)

Therefore, using that arccos is decreasing on (−1, 1),672

dSd−1(x, y) = arccos(⟨x, y⟩) ≥ arccos(∥pE(x)∥2) = dSd−1

(
x,

pE(x)

∥pE(x)∥2

)
. (35)

Moreover, we have equality if and only if y = λpE(x). And since y ∈ Sd−1, |λ| = 1
∥pE(x)∥2

. Using673

again that arccos is decreasing, we deduce that the minimum is well attained in y = pE(x)
∥pE(x)∥2

=674

UUT x
∥UUT x∥2

.675

Finally, using that ∥UUTx∥2 = xTUUTUUTx = xTUUTx = ∥UTx∥2, we deduce that676

PU (x) =
UTx

∥UTx∥2
. (36)

Finally, by noticing that the projection is unique if and only if UTx = 0, and using [9, Proposition677

4.2] which states that there is a unique projection for a.e. x, we deduce that {x ∈ Sd−1, UTx = 0}678

is of measure null and hence, for a.e. x ∈ Sd−1, we have the result.679

18



A.4 Proof of Proposition 2680

Let f ∈ L1(Sd−1), g ∈ C0(S
1 × Vd,2), then by Fubini’s theorem,681

⟨R̃f, g⟩S1×Vd,2
=

∫
Vd,2

∫
S1

R̃f(z, U)g(z, U) dzdσ(U)

=

∫
Vd,2

∫
S1

∫
Sd−1

f(x)1{z=PU (x)}g(z, U) dxdzdσ(U)

=

∫
Sd−1

f(x)

∫
Vd,2

∫
S1

g(z, U)1{z=PU (x)} dzdσ(U)dx

=

∫
Sd−1

f(x)

∫
Vd,2

g
(
PU (x), U

)
dσ(U)dx

=

∫
Sd−1

f(x)R̃∗g(x) dx

= ⟨f, R̃∗g⟩Sd−1 .

(37)

A.5 Proof of Proposition 3682

Let g ∈ C0(S
1 × Vd,2),683

∫
Vd,2

∫
S1

g(z, U) (R̃µ)U (dz) dσ(U) =

∫
S1×Vd,2

g(z, U) d(R̃µ)(z, U)

=

∫
Sd−1

R̃∗g(x) dµ(x)

=

∫
Sd−1

∫
Vd,2

g(PU (x), U) dσ(U)dµ(x)

=

∫
Vd,2

∫
Sd−1

g(PU (x), U) dµ(x)dσ(U)

=

∫
Vd,2

∫
S1

g(z, U) d(PU
#µ)(z)dσ(U).

(38)

Hence, for σ-almost every U ∈ Vd,2, (R̃µ)U = PU
#µ.684

A.6 Study of the Spherical Radon transform R̃685

In this Section, we first discuss the set of integration of the spherical Radon transform R̃ (19). We686

further show that it is related to the hemispherical Radon transform and we derive its kernel.687

Set of integration. While the classical Radon transform integrates over hyperplanes of Rd and the688

generalized Radon transform integrates over hypersurfaces [60], the set of integration of the spherical689

Radon transform (19) is a half of a “big circle”, i.e. half of the intersection between a hyperplane and690

Sd−1 [96]. We illustrate this on S2 in Figure 7. On S2, the intersection between a hyperplane and S2691

is a great circle.692
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Figure 7: Set of integration of the spherical Radon transform (19). The great circle is in black and the
set of integration in blue. The point Uz ∈ span(UUT ) ∩ Sd−1 is in blue.

Proposition 6. Let U ∈ Vd,2, z ∈ S1. The set of integration of (19) is693

{x ∈ Sd−1, PU (x) = z} = {x ∈ F ∩ Sd−1, ⟨x, Uz⟩ > 0}, (39)

where F = span(UUT )⊥ ⊕ span(Uz).694

Proof. Let U ∈ Vd,2, z ∈ S1. Denote E = span(UUT ) the 2-plane generating the great circle,695

and E⊥ its orthogonal complementary. Hence, E ⊕ E⊥ = Rd and dim(E⊥) = d − 2. Now, let696

F = E⊥ ⊕ span(Uz). Since Uz = UUTUz ∈ E, we have that dim(F ) = d − 1. Hence, F is a697

hyperplane and F ∩ Sd−1 is a “big circle” [96], i.e. a (d− 2)-dimensional subsphere of Sd−1.698

Now, for the first inclusion, let x ∈ {x ∈ Sd−1, PU (x) = z}. First, we show that x ∈ F ∩Sd−1. By699

Lemma 1 and hypothesis, we know that PU (x) = UT x
∥UT x∥2

= z. By denoting by pE the projection on700

E, we have:701

pE(x) = UUTx = U(∥UTx∥2z) = ∥UTx∥2Uz ∈ span(Uz). (40)

Hence, x = pE(x) + xE⊥ = ∥UTx∥2Uz + xE⊥ ∈ F . Moreover, as702

⟨x, Uz⟩ = ∥UTx∥2⟨Uz, Uz⟩ = ∥UTx∥2 > 0, (41)

we deduce that x ∈ {F ∩ Sd−1, ⟨x, Uz⟩ > 0}.703

For the other inclusion, let x ∈ {F ∩ Sd−1, ⟨x, Uz⟩ > 0}. Since x ∈ F , we have x = xE⊥ + λUz,704

λ ∈ R. Hence, using Lemma 1,705

PU (x) =
UTx

∥UTx∥2
=

λ

|λ|
z

∥z∥2
= sign(λ)z. (42)

But, we also have ⟨x, Uz⟩ = λ∥Uz∥22 = λ > 0. Therefore, sign(λ) = 1 and PU (x) = z.706

Finally, we conclude that {x ∈ Sd−1, PU (x) = z⟩} = {x ∈ F ∩ Sd−1, ⟨x, Uz⟩ > 0}.707

Link with Hemispherical transform. Since the intersection between a hyperplane and Sd−1 is708

isometric to Sd−2 [56], we can relate R̃ to the hemispherical transform H [96] on Sd−2. First, the709

hemispherical transform of a function f ∈ L1(Sd−1) is defined as710

∀x ∈ Sd−1, Hf(x) =

∫
Sd−1

f(y)1{⟨x,y⟩>0}dy. (43)

From Proposition 6, we can write the spherical Radon transform (19) as a hemispherical transform711

on Sd−2.712
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Proposition 7. Let f ∈ L1(Sd−1), U ∈ Vd,2 and z ∈ S1, then713

R̃f(z, U) =

∫
Sd−2

f̃(x)1{⟨x,Ũz⟩>0}dx = Hf̃(Ũz), (44)

where for all x ∈ Sd−2, f̃(x) = f(OTJx) with O the rotation matrix such that for all x ∈ F ,714

Ox ∈ span(e1, . . . , ed−1) where (e1, . . . , ed) denotes the canonical basis, and J =

(
Id−1

01,d−1

)
, and715

Ũ = JTOU ∈ R(d−1)×2.716

Proof. Let f ∈ L1(Sd−1), z ∈ S1, U ∈ Vd,2, then by Proposition 6,717

R̃f(z, U) =

∫
Sd−1∩F

f(x)1{⟨x,Uz⟩>0}dx. (45)

F is a hyperplane. Let O ∈ Rd×d be the rotation such that for all x ∈ F , Ox ∈ span(e1, . . . , ed−1) =718

F̃ where (e1, . . . , ed) is the canonical basis. By applying the change of variable Ox = y, and since719

O−1 = OT , detO = 1, we obtain720

R̃f(z, U) =

∫
O(F∩Sd−1)

f(OT y)1{⟨OT y,Uz⟩>0}dy =

∫
F̃∩Sd−1

f(OT y)1{⟨y,OUz⟩>0}dy. (46)

Now, we have that OU ∈ Vd,2 since (OU)T (OU) = I2, and since Uz ∈ F , OUz ∈ F̃ . For all721

y ∈ F̃ , we have ⟨y, ed⟩ = yd = 0. Let J =

(
Id−1

01,d−1

)
∈ Rd×(d−1), then for all y ∈ F̃ ∩ Sd−1,722

y = Jỹ where ỹ ∈ Sd−2 is composed of the d− 1 first coordinates of y.723

Let’s define, for all ỹ ∈ Sd−2, f̃(ỹ) = f(OTJỹ), Ũ = JTOU .724

Then, since F̃ ∩ Sd−1 ∼= Sd−2, we can write:725

R̃f(z, U) =

∫
Sd−2

f̃(ỹ)1{⟨ỹ,Ũz⟩>0}dỹ = Hf̃(Ũz). (47)

726

Kernel of R̃. By exploiting the expression using the hemispherical transform in Proposition 7, we727

can derive its kernel in Appendix A.7.728

A.7 Proof of Proposition 4729

First, we recall Lemma 2.3 of [94] on Sd−2.730

Lemma 2 (Lemma 2.3 [94]). ker(H) = {µ ∈ Meven(S
d−2), µ(Sd−2) = 0} where Meven is731

the set of even measures, i.e. measures such that for all f ∈ C(Sd−2), ⟨µ, f⟩ = ⟨µ, f−⟩ where732

f−(x) = f(−x) for all x ∈ Sd−2.733

Let µ ∈ Mac(S
d−1). First, we notice that the density of R̃µ w.r.t. λ⊗ σ is, for all z ∈ S1, U ∈ Vd,2,734

735

(R̃µ)(z, U) =

∫
Sd−1

1{PU (x)=z}dµ(x) =

∫
F∩Sd−1

1{⟨x,Uz⟩>0}dµ(x). (48)

Indeed, using Proposition 2, and Proposition 6, we have for all g ∈ C0(S
1 × Vd,2),736

⟨R̃µ, g⟩S1×Vd,2
= ⟨µ, R̃∗g⟩Sd−1 =

∫
Sd−1

R∗g(x)dµ(x)

=

∫
Sd−1

∫
Vd,2

∫
S1

g(z, U)1{z=PU (x)}dzdσ(U)dµ(x)

=

∫
Vd,2×S1

g(z, U)

∫
Sd−1

1{z=PU (x)}dµ(x) dzdσ(U)

=

∫
Vd,2×S1

g(z, U)

∫
F∩Sd−1

1{⟨x,Uz⟩>0}dµ(x) dzdσ(U).

(49)
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Hence, using Proposition 7, we can write (R̃µ)(z, U) = (Hµ̃)(Ũz) where µ̃ = JT
#O#µ.737

Now, let µ ∈ ker(R̃), then for all z ∈ S1, U ∈ Vd,2, R̃µ(z, U) = Hµ̃(Ũz) = 0 and hence738

µ̃ ∈ ker(H) = {µ̃ ∈ Meven(S
d−2), µ̃(Sd−2) = 0}.739

First, let’s show that µ ∈ Meven(S
d−1). Let f ∈ C(Sd−1) and U ∈ Vd,2, then, by using the same740

notation as in Propositions 6 and 7, we have741

⟨µ, f⟩Sd−1 =

∫
Sd−1

f(x)dµ(x) =

∫
Sd−1

∫
S1

f(x)1{z=PU (x)} dz dµ(x)

=

∫
S1

∫
Sd−1

f(x)1{z=PU (x)}dµ(x)dz

=

∫
S1

∫
F∩Sd−1

f(x)1{⟨x,Uz⟩>0}dµ(x)dz by Prop. 6

=

∫
S1

∫
Sd−2

f̃(y)1{⟨y,Ũz⟩>0}dµ̃(y)dz

=

∫
S1

⟨Hµ̃, f̃⟩Sd−2 dz

=

∫
S1

⟨µ̃,Hf̃⟩Sd−2 dz

=

∫
S1

⟨µ̃, (Hf̃)−⟩Sd−2 dz since µ̃ ∈ Meven

=

∫
Sd−1

f−(x)dµ(x) = ⟨µ, f−⟩Sd−1 ,

(50)

using for the last line all the opposite transformations. Therefore, µ ∈ Meven(S
d−1).742

Now, we need to find on which set the measure is null. We have743

∀z ∈ S1, U ∈ Vd,2, µ̃(S
d−2) = 0

⇐⇒ ∀z ∈ S1, U ∈ Vd,2, µ(O
−1((JT )−1(Sd−2))) = µ(F ∩ Sd−1) = 0.

(51)

Hence, we deduce that744

ker(R̃) = {µ ∈ Meven(S
d−1), ∀U ∈ Vd,2,∀z ∈ S1, F = span(UUT )⊥ ∩ span(Uz),

µ(F ∩ Sd−1) = 0}.
(52)

Moreover, we have that ∪U,zFU,z ∩ Sd−1 = {H ∩ Sd−1 ⊂ Rd, dim(H) = d− 1}.745

Indeed, on the one hand, let H an hyperplane, x ∈ H ∩ Sd−1, U ∈ Vd,2, and note z = PU (x). Then,746

x ∈ F ∩ Sd−1 by Proposition 6 and H ∩ Sd−1 ⊂ ∪U,zFU,z .747

On the other hand, let U ∈ Vd,2, z ∈ S1, F is a hyperplane since dim(F ) = d − 1 and therefore748

F ∩ Sd−1 ⊂ {H, dim(H) = d− 1}.749

Finally, we deduce that750

ker(R̃) =
{
µ ∈ Meven(S

d−1), ∀H ∈ Gd,d−1, µ(H ∩ Sd−1)
}
. (53)

A.8 Proof of Proposition 5751

Let p ≥ 1. First, it is straightforward to see that for all µ, ν ∈ Pp(S
d−1), SSWp(µ, ν) ≥ 0,752

SSWp(µ, ν) = SSWp(ν, µ), µ = ν =⇒ SSWp(µ, ν) = 0 and that we have the triangular753
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inequality since754

∀µ, ν, α ∈ Pp(S
d−1), SSWp(µ, ν) =

(∫
Vd,2

W p
p (P

U
#µ, PU

# ν) dσ(U)
) 1

p

≤
(∫

Vd,2

(
Wp(P

U
#µ, PU

#α) +Wp(P
U
#α, PU

# ν)
)p

dσ(U)
) 1

p

≤
(∫

Vd,2

W p
p (P

U
#µ, PU

#α) dσ(U)
) 1

p

+
(∫

Vd,2

W p
p (P

U
#α, PU

# ν) dσ(U)
) 1

p

= SSWp(µ, α) + SSWp(α, ν),
(54)

using the triangular inequality for Wp and the Minkowski inequality. Therefore, it is at least a755

pseudo-distance.756

To be a distance, we also need SSWp(µ, ν) = 0 =⇒ µ = ν. Suppose that SSWp(µ, ν) = 0.757

Since, for all U ∈ Vd,2, W p
p (P

U
#µ, PU

# ν) ≥ 0, SSW p
p (µ, ν) = 0 implies that for σ-ae U ∈ Vd,2,758

W p
p (P

U
#µ, PU

# ν) = 0 and hence PU
#µ = PU

# ν or (R̃µ)U = (R̃ν)U for σ-ae U ∈ Vd,2 since Wp is a759

distance on the circle. Therefore, it is a distance on the sets of injectivity of R̃.760

A.9 Convergence Properties761

Proposition 8. Let (µk), µ ∈ Pp(S
d−1) such that µk −−−−→

k→∞
µ, then762

SSWp(µk, µ) −−−−→
k→∞

0. (55)

Proof. Since the Wasserstein distance metrizes the weak convergence (Corollary 6.11 [101]), we have763

PU
#µk −−−−→

k→∞
PU
#µ (by continuity) ⇐⇒ W p

p (P
U
#µk, P

U
#µ) −−−−→

k→∞
0 and hence by the dominated764

convergence theorem, SSW p
p (µk, µ) −−−−→

k→∞
0.765

B Background on the Sphere766

B.1 Uniqueness of the Projection767

Here, we discuss the uniqueness of the projection PU for almost every x. For that, we recall some768

results of [9].769

Let M be a closed subset of a complete finite-dimensional Riemannian manifold N . Let d be the770

Riemannian distance on N . Then, the distance from the set M is defined as771

dM (x) = inf
y∈M

d(x, y). (56)

The infimum is a minimum since M is closed and N locally compact, but the minimum might772

not be unique. When it is unique, let’s denote the point which attains the minimum as π(x), i.e.773

d(x, π(x)) = dM (x).774

Proposition 9 (Proposition 4.2 in [9]). Let M be a closed set in a complete m-dimensional Rieman-775

nian manifold N . Then, for almost every x, there exists a unique point π(x) ∈ M that realizes the776

minimum of the distance from x.777

From this Proposition, they further deduce that the measure π#γ is well defined on M with γ a778

locally absolutely continuous measure w.r.t. the Lebesgue measure.779

In our setting, for all U ∈ Vd,2, we want to project a measure µ ∈ P(Sd−1) on the great circle780

span(UUT ) ∩ S−1. Hence, we have N = Sd−1 which is a complete finite-dimensional Riemannian781

manifold and M = span(UUT ) ∩ Sd−1 a closed set in N . Therefore, we can apply Proposition 9782

and the push-forward measures are well defined for absolutely continuous measures.783
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B.2 Optimization on the Sphere784

Let F : Sd−1 → R be some functional on the sphere. Then, we can perform a gradient descent on a785

Riemannian manifold by following the geodesics, which are the counterpart of straight lines in Rd.786

Hence, the gradient descent algorithm [3, 14] reads as787

∀k ≥ 0, xk+1 = expxk

(
− γgradf(x)

)
, (57)

where for all x ∈ Sd−1, expx : TxS
d−1 → Sd−1 is a map from the tangent space TxS

d−1 = {v ∈788

Rd, ⟨x, v⟩ = 0} to Sd−1 such that for all v ∈ TxS
d−1, expx(v) = γv(1) with γv the unique geodesic789

starting from x with speed v, i.e. γ(0) = x and γ′(0) = v.790

For Sd−1, the exponential map is known and is791

∀x ∈ Sd−1,∀v ∈ TxS
d−1, expx(v) = cos(∥v∥2)x+ sin(∥v∥2)

v

∥v∥2
. (58)

Moreover, the Riemannian gradient on Sd−1 is known as [3, Eq. 3.37]792

gradf(x) = Projx(∇f(x)) = ∇f(x)− ⟨∇f(x), x⟩x, (59)
Projx denoting the orthogonal projection on TxS

d−1.793

For more details, we refer to [3, 17].794

B.3 Von Mises-Fisher Distribution795

The von Mises-Fisher (vMF) distribution is a distribution on Sd−1 characterized by a concentration796

parameter κ > 0 and a location parameter µ ∈ Sd−1 through the density797

∀θ ∈ Sd−1, fvMF(θ;µ, κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
exp(κµT θ), (60)

where Iν(κ) =
1
2π

∫ π

0
exp(κ cos(θ)) cos(νθ)dθ is the modified Bessel function of the first kind.798

Several algorithms allow to sample from it, see e.g. [100, 107] for algorithms using rejection sampling799

or [62] without rejection sampling.800

For d = 1, the vMF coincides with the von Mises (vM) distribution, which has for density801

∀θ ∈ [−π, π[, fvM(θ;µ, κ) =
1

I0(κ)
exp(κ cos(θ − µ)), (61)

with µ ∈ [0, 2π[ the mean direction and κ > 0 its concentration parameter. We refer to [71, Section802

3.5 and Chapter 9] for more details on these distributions.803

In particular, for κ = 0, the vMF (resp. vM) distribution coincides with the uniform distribution on804

the sphere (resp. the circle).805

Jung [55] studied the law of the projection of a vMF on a great circle. In particular, they showed that,806

while the vMF plays the role of the normal distributions for directional data, the projection actually807

does not follow a von Mises distribution. More precisely, they showed the following theorem:808

Theorem 1 (Theorem 3.1 in [55]). Let d ≥ 3, X ∼ vMF(µ, κ) ∈ Sd−1, U ∈ Vd,2 and T = PU (X)809

the projection on the great circle generated by U . Then, the density function of T is810

∀t ∈ [−π, π[, f(t) =

∫ 1

0

fR(r)fvM(t; 0, κ cos(δ)r) dr, (62)

where δ is the deviation of the great circle (geodesic) from µ and the mixing density is811

∀r ∈]0, 1[, fR(r) =
2

I∗ν (κ)
I0(κ cos(δ)r)r(1− r2)ν−1I∗ν−1(κ sin(δ)

√
1− r2), (63)

with ν = (d− 2)/2 and I∗ν (z) = ( z2 )
−νIν(z) for z > 0, I∗ν (0) = 1/Γ(ν + 1).812

Hence, as noticed by Jung [55], in the particular case κ = 0, i.e. X ∼ Unif(Sd−1), then813

f(t) =

∫ 1

0

fR(r)fvM(t; 0, 0) dr = fvM(t;0,0)

∫ 1

0

fR(r)dr = fvM(t; 0, 0), (64)

and hence T ∼ Unif(S1).814
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B.4 Normalizing Flows on the Sphere815

Normalizing flows [82] are invertible transformations. There has been a recent interest in defining816

such transformations on manifolds, and in particular on the sphere [23, 91, 92].817

Here, we implemented the Exponential map normalizing flows introduced in [92]. The transformation818

T is819

∀x ∈ Sd−1, z = T (x) = expx
(
Projx(∇ϕ(x))

)
, (65)

where ϕ(x) =
∑K

i=1
αi

βi
eβi(x

Tµi−1), αi ≥ 0,
∑

i αi ≤ 1, µi ∈ Sd−1 and βi > 0 for all i. (αi)i,820

(βi)i and (µi)i are the learnable parameters.821

The density of z can be obtained as822

pZ(z) = pX(x) det
(
E(x)TJT (x)

TJT (x)E(x)
)− 1

2 , (66)

where Jf is the Jacobian in the embedded space and E(x) it the matrix whose columns form an823

orthonormal basis of TxS
d−1.824

The common way of training normalizing flows is to use either the reverse or forward KL divergence.825

Here, we use them with a different loss, namely SSW.826

C Additional Experiments827

C.1 Evolution of SSW between von Mises-Fisher distributions828

The KL divergence between the von Mises-Fisher distribution and the uniform distribution has been829

derived analytically in [28, 110] as830

KL
(
vMF(µ, κ)||vMF(·, 0)

)
= κ

Id/2(κ)

Id/2−1(κ)
+

(
d

2
− 1

)
log κ− d

2
log(2π)− log Id/2−1(κ)

+
d

2
log π + log 2− log Γ

(
d

2

)
.

(67)

We plot on Figure 8 the evolution of KL and SSW w.r.t. κ for different dimensions. We observe a831

different trend. SSW seems to get lower with the dimension contrary to KL.832
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Figure 8: Evolution w.r.t κ between vMK(µ, κ) and vMF(·, 0). For SW, we used
100 projections (for memory reasons for d = 100), and computed it for κ ∈
{1, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250}, 10 times by dimension and κ, and with 500 samples
of both distributions.

As a sanity check, we compare on Figure 9 the evolution of SSW between vMF distributions833

where we fix vMF(µ0, 10) and we rotate the first vMF along a great circle. More precisely, we834

plot SW 2
2

(
vMF((1, 0, 0, ...), 10), vMF((cos(θ), sin(θ), 0, ...), 10)

)
for θ ∈ {kπ

6 }k∈{0,...,12}. As835

expected, we obtain a bell shape which is maximal when the second vMF distribution has for location836
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parameter −µ0. We observe a similar behavior between SSW2, SSW1 and SW2 with different837

scales.838
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Figure 9: Evolution of SW between vMF samples in Sd−1 (mean over 100 batch).

On Figure 10, we plot the evolution of SSW w.r.t. the number of projections for different dimensions.839

We observe that for around 100 projections, the variance seems to be low enough.840
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Figure 10: Influence of the number of projections. We compute SW 2
2

(
vMF(µ, κ)||vMF(·, 0)

)
20

times, for n = 500 samples in dimension d = 3.

Nadjahi et al. [76] proved that, contrary to the Wasserstein distance, the classical sliced-Wasserstein841

distance has a sample complexity independent of the dimension d. We show empirically on Figure 11842

that we expect to have similar results for SSW by plotting SSW and the Wasserstein distance (with843

geodesic distance) between samples of the uniform distribution on the sphere w.r.t. the number of844

samples. We observe indeed that the convergence rate of SSW is independent of the dimension.845
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Figure 11: Spherical Sliced-Wasserstein and Wasserstein distance (with geodesic distance) between
samples of the uniform distribution on the sphere. Results are averaged over 20 runs and the shaded
are correponds to the standard deviation.

C.2 Runtime Comparisons846

We study here the evolution of the runtime w.r.t. different parameters. On Figure 12, we plot for847

several dimensions the runtime to compute SSW2 w.r.t. the number of projections and the number of848

samples. We observe the linearity w.r.t. the number of projections and the quasi-linearity w.r.t. the849

number of samples.850
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Figure 12: Computation time w.r.t. the number of projections or samples, taken for κ = 10 and
n = 500 samples for the left figure, and κ = 10 and 200 projections for the right figure, and for 20
times.

C.3 Gradient Flows851

Mixture of vMF distributions. For the experiment in Section 5.1, we use as target distribution of852

mixture of 6 vMF distributions from which we have access to samples. We refer to Appendix B.3 for853

background on vMF distributions.854

The 6 vMF distributions have weights 1/6, concentration parameter κ = 10 and location parameters855

µ1 = (1, 0, 0), µ2 = (0, 1, 0), µ3 = (0, 0, 1), µ4 = (−1, 0, 0), µ5 = (0,−1, 0) and µ6 = (0, 0,−1).856

We use two different approximation of the distribution. First, we approximate it using the empirical857

distribution, i.e. µ̂ = 1
n

∑n
i=1 δxi and we optimize over the particles (xi)

n
i=1. To optimize over858

particles, we can either use a projected gradient descent:859 {
x(k+1) = x(k) − γ∇x(k)SSW 2

2 (µ̂k, ν)

x(k+1) = x(k+1)

∥x(k+1)∥2
,

(68)

or a Riemannian gradient descent on the sphere [3] (see Appendix B.2 for more details). Note that860

the projected gradient descent is a Riemannian gradient descent with retraction [17].861

We can also use neural networks such as a multilayer perceptron (MLP). We used a MLP composed862

of 5 layers of 100 units with leaky relu activation functions. The output of the MLP is normalized on863

the sphere using a ℓ2 normalization. We perform a gradient descent using Adam [57] as the optimizer864
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with a learning rate of 10−4 for 2000 epochs. We approximate SSW with L = 1000 projections and865

a batch size of 500. The base distribution is choose as the uniform distribution on the sphere.866

We report on Figure 13 a comparison of the 2 approximations where the density is estimated with a867

Gaussian kernel density estimator.868

(a) Target: Mixture of vMF (b) KDE estimate of the MLP (c) KDE estimate of 500 particles

Figure 13: Minimization of SSW with respect to a mixture of vMF.

vMF distribution. A a simpler experiment, we choose a simple vMF distribution with κ = 10. We869

report on Figure 14 the evolution of the density approximated using a KDE, and on Figure 15 the870

evolution of particles.871

(a) Target distribution (b) Initial samples (c) Approximated dis-
tribution at the epoch
100

(d) Approximated dis-
tribution at the epoch
1000

Figure 14: Gradient Flows on SW with a vMF target and Mollweide projections. The distributions
are approximated using KDE.

(a) Initial samples (b) Approximated distribution at
the epoch 100

(c) Approximated distribution at
the epoch 1000

Figure 15: Gradient Flows on SW with a vMF target and Mollweide projections.

C.4 Sliced-Wasserstein Variational Inference872

C.4.1 Variational Inference873

In variational inference (VI) [12, 54], we have some observed data (xi)
n
i=1 and some latent data874

(zi)
n
i=1. The goal of variational inference is to approximate the posterior distribution p(·|x) by some875

distribution q ∈ Q where Q is a family of probabilities. The usual way of doing that is to minimize876
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Algorithm 2 SWVI [111]

Input: V a potential, K the number of iterations of SWVI, N the batch size, ℓ the number of
MCMC steps
Initialization: Choose qθ a sampler
for k = 1 to K do

Sample (z0i )
N
i=1 ∼ qθ

Run ℓ MCMC steps starting from (z0i )
N
i=1 to get (zℓj)

N
j=1

// Denote µ̂0 = 1
N

∑N
j=1 δz0

j
and µ̂ℓ =

1
N

∑N
j=1 δzℓ

j

Compute J = SW 2
2 (µ̂0, µ̂ℓ)

Backpropagate through J w.r.t. θ
Perform a gradient step

end for

the Kullback-Leibler divergence among this family, i.e.877

min
q∈Q

KL(q||p(·|x)) = Eq[log

(
q(Z)

p(Z|x)

)
]. (69)

But the KL divergence suffers from some drawbacks, as it is only a divergence (i.e. it does not satisfy878

the triangular inequality, and it is non symmetric), but it also suffers from under estimating the target879

distribution (or over estimating it for the reverse KL).880

Yi and Liu [111] propose to use an optimal transport distance instead, namely the SW distance881

which gives the sliced-Wasserstein variational inference method. Basically, given some unnormalized882

probability p(·|x) that we want to approximate with some variational distribution qϕ, we can first883

apply a MCMC algorithm and then learn qϕ using a gradient descent on SW with the target being884

the empirical distributions of the samples given by the MCMC. But running long MCMC chain is885

time consuming and it might be difficult to diagnose burn-in period. Therefore, they propose to only886

run at each iteration some number of steps t of MCMC chain, and then learn by gradient descent the887

variational distribution. Therefore, the variational distribution is guided at each step by the MCMC888

samples toward the stationary distribution which is the target. This is called an amortized sampler889

(see Problem 1 in [103]). We sum up the procedure in Algorithm 2.890

We propose here to substitute SW by SSW in order to perform SSWVI on the sphere. To do that,891

we first need a MCMC method on the sphere.892

C.4.2 MCMC on the Sphere893

Several MCMC methods on the sphere have been proposed. For example, Hamiltonian Monte-Carlo894

(HMC) methods were proposed in [18, 63, 68], and Riemannian Langevin algorithms were proposed895

in [65, 105].896

In our experiments, we use the Geodesic Langevin algorithm (GLA) introduced by Wang et al.897

[105]. This algorithm is a natural generalization of the Unadjusted Langevin Algorithm (ULA) and it898

consists at simply following the geodesics of the regular ULA step, i.e.899

∀k > 0, xk+1 = expxk

(
Projxk

(−γ∇V (xk) +
√

2γZ)
)
, Z ∼ N (0, I), (70)

where for the sphere,900

∀x ∈ Sd−1,∀v ∈ TxS
d−1, expx(v) = x cos(∥v∥) + v

∥v∥
sin(∥v∥), (71)

Projx is the projection on the tangent space TxS
d−1 = {v ∈ Rd, ⟨x, v⟩ = 0} (which is the901

orthogonal space) and is defined as902

Projx(v) = v − ⟨x, v⟩x. (72)

For more details, we refer to [3].903
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We use GLA here for simplicity and as a proof of concept. But note that GLA, as ULA, is biased904

and therefore the distribution learned will not be the exact true stationary distribution. However, a905

Metropolis-Hastings step at each iteration could be used to enforce the reversibility w.r.t. the target906

distribution or we could use other MCMC with more appealing convergence properties (see e.g. [68]).907

C.4.3 Applications908

Target: Power spherical distribution. First, as a simple example on S2, we use the power spherical909

distribution introduced by De Cao and Aziz [29]. This distribution has the advantage over the vMF910

distribution to allow for the direct use of the reparameterization trick since it does not require rejection911

sampling. The pdf is obtained as,912

∀x ∈ Sd−1, pX(x;µ, κ) ∝ (1 + µTx)κ (73)

with µ ∈ Sd−1 and κ > 0. We can sample from drawing first Z ∼ Beta(d−1
2 + κ, d−1

2 ),913

v ∼ Unif(Sd−2), then constructing T = 2Z − 1 and Y = [T, vT
√
1− T 2]T . Finally, apply a914

Householder reflection about µ to Y . All the operations are well differentiable and allow to apply the915

reparametrization trick. For the algorithm, see Algorithm 1 in [29]. Hence, in this case, if we denote916

gθ the map which takes samples from a uniform distribution on Sd−2 and from a Beta distribution as917

input and outputs samples of power spherical distribution with parameters θ = (κ, µ), we can use it918

as the sampler. We test the algorithm with a target being a power spherical distribution of parameter919

µ = (0, 1, 0) and κ = 10, starting from µ = (1, 1, 1) and κ = 0.1. Performing 2000 optimization920

steps with a gradient descent (Riemannian gradient descent on µ to stay on the sphere), and 20 steps921

of the GLA algorithm, we are getting close enough to the true distribution as we can see on Figure 16.922

For the hyperparameters, we used a step size of 10−3 for GLA, 1000 projections to approximate SSW,923

a Riemannian gradient descent on the sphere [3] to learn the location parameter µ with a learning rate924

of 2, and a learning of 200 for κ. We performed K = 2000 steps and used N = 500 particles.925

(a) Target distribution (b) Initial sampler (c) Approximated dis-
tribution at the epoch
1000

(d) Approximated dis-
tribution at the epoch
2000

Figure 16: SWVI on Power Spherical Distributions with Mollweide projections.

Target: mixture of vMFs. In Section 5.1, we perform amortized variational inference with a926

mixture of vMF distributions as target. For this, we train exponential map normalizing flows (see927

[92] and Appendix B.4). Moreover, we use the same target as Rezende et al. [92], i.e. the target928

ν has a density p(x) ∝
∑4

k=1 e
10xTTs→e(µk) with µ1 = (0.7, 1.5), µ2 = (−1, 1), µ3 = (0.6, 0.5)929

and µ4 = (−0.7, 4). These are spherical coordinates which are be converted to euclidean using930

Ts→e(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ).931

The exponential map normalizing flow is composed of N = 6 blocks with K = 5 components. We932

run the algorithm for 10000 iterations, with at each iteration 20 steps of GLA with γ = 10−1 as933

learning rate, and one step of backpropagation through SSW using the Adam [57] optimizer with a934

learning rate of 10−3.935

We report on Figure 4 the Mollweide projection of the learned density. Since we learn to samples from936

a noise distribution, here the uniform distribution on the sphere, we do not have directly access to the937

density and we report a kernel density estimate with a Gaussian kernel using the implementation of938

Scipy [102].939
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We also report in Figure 5 the effective sample size (ESS) [33, 69] over the iterations. The ESS is940

estimated by [92]941

ESS =
VarUnif (e

−βu(X))

Varq

(
e−βu(X)

qη(X)

) ≈

(∑S
s=1 ws

)2

∑S
s=1 w

2
s

, (74)

where ws = e−βu(xs)/qη(xs). The ESS is reported as a percentage of the sample size. Higher ESS942

indicates that the flow matches the target better [92].943

C.5 Sliced-Wasserstein Autoencoder944

We recall that in the WAE framework, we want to minimize945

L(f, g) =
∫

c
(
x, g(f(x))

)
dµ(x) + λD(f#µ, pZ), (75)

where f is an encoder, g a decoder, pZ a prior distribution, c some cost function and D is a divergence946

in the latent space. Several D were proposed. For example, Tolstikhin et al. [99] proposed to use947

the MMD, Kolouri et al. [59] used the SW distance, Patrini et al. [84] used the Sinkhorn divergence,948

Kolouri et al. [60] used the generalized SW distance. Here, we use D = SSW 2
2 .949

Architecture and procedure. For the encoder f and the decoder g, we use the same architecture950

as Kolouri et al. [59].951

For both the encoder and the decoder architecture, we use fully convolutional architectures with 3x3952

convolutional filters. More precisely, the architecture of the encoder is953

x ∈ R28×28 → Conv2d16 → LeakyReLU0.2

→ Conv2d16 → LeakyReLU0.2 → AvgPool2

→ Conv2d32 → LeakyReLU0.2

→ Conv2d32 → LeakyReLU0.2 → AvgPool2

→ Conv2d64 → LeakyReLU0.2

→ Conv2d64 → LeakyReLU0.2 → AvgPool2

→ Flatten → FC128 → ReLU

→ FCdZ
→ ℓ2 normalization

where dZ is the dimension of the latent space (either 11 for S10 or 3 for S2).954

The architecture of the decoder is955

z ∈ RdZ → FC128 → FC1024 → ReLU

→ Reshape(64x4x4) → Upsample2 → Conv64 → LeakyReLU0.2

→ Conv64 → LeakyReLU0.2

→ Upsample2 → Conv64 → LeakyReLU0.2

→ Conv32 → LeakyReLU0.2

→ Upsample2 → Conv32 → LeakyReLU0.2

→ Conv1 → Sigmoid

To compare the different autoencoders, we used as the reconstruction loss the binary cross entropy,956

λ = 10, Adam [57] as optimizer with a learning rate of 10−3 and Pytorch’s default momentum957

parameters for 800 epochs with batch of size n = 500. Moreover, when using SW type of distance,958

we approximated it with L = 1000 projections.959

We report in Table 1 the FID obtained using 10000 samples and we report the mean over 5 trainings.960

For SSW, we used the formulation using the uniform distribution (12). To compute SW, we used the961

POT library [39]. To compute the Sinkhorn divergence, we used the GeomLoss package [37].962
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Additional experiments. We report on Figure 17 samples obtained with SSW for a uniform prior963

on S10.964

(a) SSWAE (b) SWAE (c) SAE

Figure 17: Samples generated with Sliced-Wasserstein Autoencoders with a uniform prior on S10.

On Figure 18, we add the evolution over epochs of the Wasserstein distance between generated965

images and samples from the test set.966
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(a) With uniform prior on S2.
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Figure 18: Comparison of the evolution of the Wasserstein distance over epochs between SWAE and
SSWAE on MNIST (averaged over 5 trainings).

C.6 Self-supervised learning967

Table 2: Linear evaluation on CIFAR10. The features
are taken either on the encoder output or directly on the
sphere S2.

Method Encoder output S2

Supervised 82.26 81.43

Chen et al. [21] 66.55 59.09
Wang and Isola [104] 60.53 55.86

SW-SSL, λ = 1, L = 10 62.65 57.77
SW-SSL, λ = 1, L = 3 62.46 57.64

SSW-SSL, λ = 20, L = 10 64.89 58.91
SSW-SSL, λ = 20, L = 3 63.75 59.75

We conduct experiments using SSW to968

prevent collapsing representations in con-969

trastive self-supervised learning (SSL)970

models. Such contrastive losses on the hy-971

persphere have exhibited great representa-972

tive capacity [20, 21, 108] on unlabelled973

datasets by learning robust image represen-974

tations invariantly to augmentations. As975

proposed in [104], the contrastive objec-976

tive can be decomposed into an alignment977

loss which forces positive representations978

coming from the same image to be similar979

and a uniformity loss which preserves maximal information of the feature distribution and hence980

avoids collapsing representations. Without the uniformity loss, the representations tend to converge981

32



towards a constant representation which yields the best alignment loss possible but also contains982

no information about original images. Wang and Isola [104] propose to enforce uniformicity by983

leveraging the Gaussian potential kernel which is bound to the uniform distribution on the sphere.984

This formulation is also related to the denominator of the contrastive loss as specified in Chen et al.985

[21]. We propose to replace the Gaussian kernel uniformity loss with SSW for which the complexity986

is more linear w.r.t. the number of batch samples. A simple choice of the alignment loss is to987

minimize the mean squared euclidean distance between pairs of different augmented versions of the988

same image. A self-supervised learning network is pre-trained using this alignment loss added with989

an uniformity term. Our overall self-supervised loss can be defined as:990

LSSW-SSL =
1

n

n∑
i=1

∥zAi − zBi ∥22︸ ︷︷ ︸
Alignment loss

+
λ

2

(
SSW 2

2 (z
A, ν) + SSW 2

2 (z
B , ν)︸ ︷︷ ︸

Uniformity loss

)
, (76)

where zA, zB ∈ Rn×d are the representations from the network projected on the hypersphere of991

two augmented versions of the same images, ν = Unif(Sd−1) is the uniform distribution on the992

hypersphere and λ > 0 is used to balance the two terms.993

We pretrain a ResNet18 [47] model on the CIFAR10 [61] data with projections projected onto the994

sphere S2. This feature dimension allow us to visualize the entire validation set of CIFAR10 and995

its distribution on the sphere. The visualization of the projections on S2 are visible on Figure 19.996

We then evaluate the performance of each contrastive objective by fitting a linear classifier on top997

of the output of the layer before the projection on the sphere on the training dataset as is common998

for SSL methods. For comparison, we also report the results when the features are taken directly on999

the sphere. As a baseline, we also train a predictive supervised encoder by training jointly the linear1000

classifier and the image encoder in a supervised manner using cross entropy.1001

We use a ResNet18 [47] encoder which outputs 1024 features that are then projected onto the sphere1002

S2 using a last fully connected layer followed by a ℓ2 normalization. We pretrain the model for 2001003

epochs using minibatch stochastic gradient descent (SGD) with a momentum of 0.9, a weight decay1004

of 0.001 and an initial learning rate of 0.05. We use a batch size of 512 samples. The images are1005

augmented using a standard set of random augmentations for SSL: random crops, horizontal flipping,1006

color jittering and gray scale transformation as done in Wang and Isola [104]. For the trade-off1007

parameter λ, we λ = 20 for SSW and λ = 1 for SW.1008

To evaluate the performance of representations, we use the common linear evaluation protocol where1009

a linear classifier is fitted on top of the pre-trained representations and the best validation accuracy1010

is reported. The linear classifiers are trained for 100 epochs using the Adam [57] optimizer with a1011

learning rate of 0.001 with a decay of 0.2 at epoch 60 and 80. We compare our methods with two1012

other contrastive objectives, Chen et al. [21] with the normalized temperature-scaled cross-entropy1013

(NT-Xent) loss and Wang and Isola [104] which proposes to decompose the objective in two distinct1014

terms Lalign and Luniform. We recall the respective uniformity loss of each method in Table 3. As1015

one can see in Table 2, our method achieves here comparable performances to two state-of-the-art1016

approaches, yet slightly under-performing compared to [21]. We suspect that a finer validation of1017

the balancing parameter λ is needed. Especially since the representations on Figure 19b are not1018

completely uniformly distributed around the sphere after pre-training compared to other contrastive1019

methods. Nevertheless, these preliminary results show that SSW-SSL is a promising contrastive1020

learning approach without explicit distances between negative samples, especially compared to SW1021

on the sphere. To this end, further works should be devoted to finding a good balance between the1022

alignment and uniformity objectives.1023
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(a) Wang and Isola [104] (b) SSW-SSL, λ = 6, L = 200

(c) Chen et al. [21] (d) Random initialization

(e) Supervised prediction

Figure 19: The CIFAR10 validation set on S2 after pre-training.

Table 3: Comparison of contrastive methods and their respective uniformity objective where zA, zB ∈
Rn×d are representations from two augmented versions of the same set of images and ν = Unif(Sd−1)
is the uniform distribution on the hypersphere.

Method Luniform(z
A) + Luniform(z

B) Complexity
Chen et al. [21] 1

2n

∑n
i=1 log

∑
j ̸=i exp(

⟨ẑi,ẑj⟩
τ ), ẑ = cat(zA, zB) O(n2d)

Wang and Isola [104]
∑

z∈{zA,zB} log
2

n(n−1)

∑
i>j exp(−t∥zi − zj∥22) O(n2d)

SSW-SSL (Ours) 1
2 (SSW

2
2 (z

A, ν) + SSW 2
2 (z

B , ν)) O(Ln(d+ log n))
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