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A Appendix: OODEEL’s Visualization and Benchmarking Features

Visualization OODEEL also comes with quality-of-life features. The first feature includes three
useful visualizations that are often used in OOD detection research: Histogram plots for ID and
OOD scores, ROC curve, and t-SNE plot of the model’s penultimate layer. The first two are used
to assess the performance of a detector, and the last is often used to qualitatively evaluate the
discriminating capabilities of a given neural network, which often prefigures its Post-hoc OOD
detection performances. Examples of these visualizations are found in Figure 9
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Figure 9: Visualization tools provided by Oodeel. From left to right: Histograms and KDE plots for
ID vs OOD scores, ROC curve, and t-SNE visualization of a model’s feature space.

Benchmarking The last feature is a benchmarking utility that allows for easy testing of the per-
formance of OODEEL’s detectors on OpenOOD benchmark. This feature comes with a clean
configuration logic, checkpointing, and sharding capabilities, reducing the benchmarking hassle. It
also records computational performance metrics, such as VRAM utilisation and execution time. The
experiments can be tracked from the terminal through a rich interface, and logged to WeightsAndBi-
ases (illustration of the interface in Figure 10). The benchmarking utility is part of another repository
called oodeel-banchmark* hosted on GitHub.

Running [uid= dfl6d2cc] =
[mem] Fit

[mem] ID score

[mem] OOD cifarl@@

[mem] OOD tin

[mem] OOD mnist
[mem] 00D svhn
[mem] OOD texture
[mem] 00D places365

Figure 10: Caption

B Appendix: Details on the Benchmark Setting

In this appendix, we provide a complete description of the hardware, software, datasets, models, and
orchestration logic used in our out-of-distribution (OOD) detection benchmark. Our goal is to enable
exact reproduction of all experiments.

B.1 Compute Environment
We ran all experiments on a single machine equipped with:

Hardware

* 2 x NVIDIA RTX 4090 GPUs (24 GB VRAM each)
* CPU RAM: 128 GB

Software

*https://github.com/deel-ai/oodeel-benchmark
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* Python 3.10, PyTorch 2.7.0, torchvision 0.22.0

* OODeel library (dev branch, commit £f4fa17, will soon be merged)
Runtime & Logging

* Wall-clock time: ~1 week on 2 x RTX 4090

* Batch size: 64 per GPU; peak VRAM < 20 GB

* Metrics streamed to Weights & Biases (and available in “All runs” leaderboard from
https://oodeel-benchmark.streamlit.app/)

B.2 Repository & Benchmark Orchestration
All code is available at https://github.com/deel-ai/oodeel-benchmark. We drive the full
sweep with:

python -m src.run --num-shards 2 --shard-index O

This script:

1. Loads every YAML in configs/datasets/, configs/models/, configs/methods/.
Forms the Cartesian product of (dataset, model, method, hyperparameters) configurations.
Shards the list via -num-shards/-shard-index.

Skips runs with existing . parquet outputs in results/.

Streams raw scores, AUROC, and TPR@5% FPR to W&B.

wok v

B.3 Sweep Construction & Config Logic

Each YAML file defines a flat key—value mapping:

* configs/datasets/*.yaml: list of near- and far-ood datasets for a given id dataset, model
names.

* configs/models/*.yaml: architecture name, checkpoint source, feature-extraction lay-
ers.

* configs/methods/*.yaml: detector type and hyperparameter grid.

The driver merges one file from each folder into a single run configuration. Sharding evenly slices
this list across processes, and checkpointing ensures idempotent restarts.

B.4 Datasets & Models Tested

We follow the OpenOOD benchmark in pairing each in-distribution (ID) dataset with semantically
near and far OOD test sets.

CIFAR-10:

* Near-OOD: CIFAR-100, Tiny ImageNet

¢ Far-OOD: MNIST, SVHN, Textures, Places365
CIFAR-100:

* Near-OOD: CIFAR-10, Tiny ImageNet

e Far-OOD: MNIST, SVHN, Textures, Places365
ImageNet-1k:

¢ Near-OOD: SSB-hard, NINCO

e Far-OOD: iNaturalist, Textures, Openlmage-O

Model Architectures We evaluate 11 models on CIFAR and 7 on ImageNet, including:

¢ ResNets: ResNet-18, ResNet-32, ResNet-50
* VGG: VGG11, VGG16, RepVGG-AO0, RepVGG-A2
* MobileNets: MobileNet v2, MobileNet v3-Large
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» ShuffleNets: ShuffleNet v2
* Transformers: ViT-B/16, Swin-Tiny
* RegNet: RegNetY-16GF

B.5 OOD Detectors & Hyperparameter Sweeps

We evaluate 12 base OOD detection methods (e.g. MSP, Energy, Mahalanobis, ODIN, DKNN, SHE,
VIM, ...) and for each base method construct variants as follows:

* Logits-based variants: with and without ReAct clipping, ASH, and SCALE transforma-
tions.
* Feature-based variants: with and without score aggregation over different feature layers.

This yields a total of 42 distinct method configurations. All hyperparameter search grids are specified
in the configs/methods/ folder of the oodeel-benchmark repository.

B.6 Logging, Results & Reproducibility

Each run writes a Parquet file in results/ containing raw scores, AUROC, and TPR@5% FPR.
Visualizations are provided via console bars (Rich) and W&B dashboards. All code, exact commit
hashes, and example launch commands (including seed settings in src/utils.py) are publicly
available, ensuring full reproducibility.
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C Appendix: Complementary benchmark results

In this section, we include complementary plots to the main document for CIFAR-100 and Far-OOD
experiments. This section is structured as the experiments section.

C.1 Impact of the Model

15 —
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Figure 11: Box plots of the rank for each detector on CIFAR-100. Methods are sorted according
to their mean rank on near-OOD. For CIFAR-100, the rank is very different for Near-OOD and
Far-OOD, which corroborates the observation of the main paper that performances on Near and Far
OOD do not always correlate.

We also report the Spearman rank correlation heatmap between the detectors’ rank per model in
Figure 12 for CIFAR-10, CIFAR-100, and ImageNet. We can see that there is some correlation in
the rank of the detectors for CIFAR-10 and CIFAR-100, even if it is not high enough to alleviate the
need to test every detector on various models. For ImageNet, the correlation is significantly lower,
emphasizing this need even strongly.

Figure 12: Spearman rank correlation between the AUROC of the detectors for each model. From
left to right: CIFAR-10, CIFAR-100, ImageNet.
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C.2 Impact of Layer-wise Score Aggregation
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Figure 13: Box plot of the A in AUROC between feature-based detector applied on the penultimate
layer and either a subset of the internal layers (partial) or all internal layers (full) for ImageNet
Far-OOD.
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Figure 14: Box plot of the A in AUROC between feature-based detector applied on the penultimate
layer and either a subset of the internal layers (partial) or all internal layers (full) for CIFAR-10
Far-OOD.
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Figure 15: Box plot of the A in AUROC between feature-based detector applied on the penultimate
layer and either a subset of the internal layers (partial) or all internal layers (full) for top: CIFAR-100
Near-OOD, bottom: CIFAR-100 Far-OOD

444 C.3 Impact of Activation Shaping
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Figure 16: Box plot of the A in AUROC between logit-based detectors and their augmentation with
activation-shaping techniques (ReAct, SCALE, and ASH) for ImageNet Far-OOD.
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Figure 17: Box plot of the A in AUROC between logit-based detectors and their augmentation with
activation-shaping techniques (ReAct, SCALE, and ASH) for CIFAR-10 Far-OOD.
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Figure 18: Box plot of the A in AUROC between logit-based detectors and their augmentation with
activation-shaping techniques (ReAct, SCALE, and ASH) for top: CIFAR-100 Near-OOD, bottom:
CIFAR-100 Far-OOD. Interestingly, the effect of activation shaping on Far-OOD is quite beneficial
for CIFAR-100 Far-OOD, whereas it is not for CIFAR-100 Near-OOD or CIFAR-10 Far-OOD.

D Appendix: Sanity check of OODEEL detectors implementation by
performance comparison with OpenOOD detectors

To ensure the reliability of our OOD detection results using OODEEL, we conducted a sanity check
by comparing our outcomes with those reported on the OpenOOD leaderboard. This validation step
focused on both near-OOD detection tasks presented in Table 1.

Note that we obtain a significant improvement for the Gram method from OODEEL with respect
to OpenOOD. It stems from a key implementation detail: in OODEEL, the Gram score relies on
computing deviations based on quantiles (e.g., the 1st and 99th percentiles) of the features, whereas
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OpenOOD uses the absolute minimum and maximum feature values. The use of quantiles in OODEEL
leads to a more robust formulation for outliers.

Globally, the obtained AUROC aligns with OpenOOD. The differences are mainly slight, with
OODEEL doing better than the OpenOOD implementation for 22 cases, equal for 4, and worse for
16 baselines. For a few exceptions, the difference is significant:

* OODEEL performs significantly better for Gram (three datasets), ODIN (CIFAR-10), and
SHE (CIFAR-10)

* OpenOOD performs significantly better for RMDS (CIFAR-10)

Except for Gram, when there is such a large discrepancy, it is only for one dataset. It provides
confidence in the correctness and robustness of our implementation.

Table 1: Comparison of near-OOD detection AUROC between OpenOOD and OODEEL. We used
pretrained ResNet-18 for CIFAR-10 and CIFAR-100, and ResNet-50 for ImageNet.

Method CIFAR-10 CIFAR-100 ImageNet
OpenOOD OODEEL | OpenOOD OODEEL | OpenOOD OODEEL

MLS 87.52 87.89 81.05 79.89 76.46 76.46
MSP 88.03 88.30 80.27 79.05 76.02 76.02
ODIN 82.87 87.72 79.90 79.72 74.75 75.73
GEN 88.20 89.15 81.31 80.13 76.85 77.71
SHE 81.54 83.16 78.95 77.86 73.78 72.61
Energy 87.58 87.98 80.91 79.80 75.89 75.89
ReAct 87.11 87.93 80.77 79.75 77.38 77.39
SCALE 82.55 82.48 80.99 79.78 81.36 81.36
ASH 75.27 79.99 78.20 79.61 78.17 79.63
DKNN 90.64 91.02 80.18 79.92 71.10 72.24
Mabhalanobis 84.20 84.91 58.69 59.43 55.44 55.83
RMDS 89.80 86.82 80.15 79.22 76.99 76.32
VIM 88.68 87.34 74.98 74.30 72.08 72.64
Gram 58.66 88.73 51.66 70.50 61.70 70.72
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