1

local solution local solution

saddle point

Figure 2: Landscape of object function (2.8) over S°.

A Landscape Visualization

Figure 2 visualize the landscape of our object function (2.8) on S? with region defined as
in (2.3). Here the ground truth A is set to [e;1, e2] while sparsity § and constant C, are set
to 0.5, 0.65 respectively. As we can see in the figure, Region R; contains saddle points and
local solutions that recover ground truth up to sign ambiguity which is line with lemma
3.2.

B Techinical comparison with [35]

[35] studies the unique recovery of Y = AX under the setting of over-complete dictionary
learning, that is, A has full row rank with p < r. Although our objective in (2.3) is similar to
that used in [35], the low-rank structure of Y in our setting leads to fundamental differences
in both the rationale of using (2.3) and the subsequent analysis. To be specific, under the
setting in [35], the matrix A = (aq,...,a,) € RP*", with r > p, is assumed to be unit norm
tight frame (UNTF), in the sense that

AAT="1
P

p llaille=1, p=max|{a;, a;)|< 1.

i#]
Under this condition and Assumption 2.1, the objective F'(q) in (2.3) satisfies (see, display
(2.4) in [35])

E[F(q)] = (1 - 6)|ATqll{-C (B.1)

where C' is some numerical value that does not depend on g. Therefore, solving (2.3), for
large n, approximately maximizes | A7 g|| over the unit sphere in the context of [35].

There are at least three major differences to be noted. First, as A is UNTF in the setting
of [35], columns of A are not orthonormal, or equivalently, x > 0. As a result, Lemma
2.4 does not hold for their setting. In another word, even one can directly solve (2.2), the
solution does not exactly recover one column of A. Indeed, Proposition B.1 in [35] shows
that the difference between the solution to (2.2) and one column of A is small when 1 < 1
but does to not exactly equal to zero unless ;o = 0. By contrast, when A satisfies AT A = I,
in our setting, the exact recovery of columns of A is achievable via solving (2.2) as shown
in Lemma 2.4.

Second, due to rank(A) = r, solving (2.3) in our setting approximates maximizes (2.5),
the objective of which is a convex combination of ||ATq||} and || AT q||3 with coefficients
depending on the sparsity parameter 6. Thus, the expected objective in our setting no longer
coincides with that in [35] and in fact is more complicated due to the extra term ||AT q||3.
Basically, this paper provide an answer to the composition of two nonconvex optimization
problems: a sparisity problem and an eigenvalue problem. This additional term brings
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more complications in our analysis of the geometry landscape of (2.3) and requires more
delicate arguments.

Third, the low-rank structure of Y leads to a null region of solving (2.3), that is, the region
of g such that ¢7Y = g7 AX = 0 (see, (3.1) for the population-level analysis and (3.6)
- (8.12) for the finite sample results). This null region does not appear when the matrix
A is UNTF. In presence of such a region, to provide recovery guarantees for the desired
solution, we need a proper initialization outside of this region and to further demonstrate
that every iterate does not fall back into the null region. Such analysis brings more technical
challenges, for instance, Lemmas 4.1 and 4.2, to our analysis than [35].

C Technical Details of Theorem 3.4

The proof of Theorem 3.4 can be found in Appendix F4. The geometric analysis of the
landscape of the optimization problem (2.3) is in spirit similar to that of Theorem 3.1, but
has additional technical difficulty of taking into account the deviations between the finite
sample objective F'(q) in (2.3) and the population objective f(q) in (2.5), as well as the
deviations of both their gradients and hessian matrices. Such deviations also affect both
the size of R(c,) in (3.6), a enlarged region of Ry in (3.1), via condition (3.7), and the
estimation error of the local solution q.

In Lemmas F.13, F.14 and F.15 of Appendix F.9, we provide finite sample deviation inequal-
ities of various quantities between F(q) and f(g). Our analysis characterizes the explicit
dependency on dimensions n, p and r, as well as on the sparsity parameter 6. In particular,
our analysis is valid for fixed p, 7 and 6, as well as growing p = p(n), r = r(n) and 0 = 6(n).

The estimation error of our estimator in (3.8) depends on both the rank r and the sparsity
parameter 6, but is independent of the higher dimension p. The smaller § is, the larger esti-
mation error (or the stronger requirement on the sample size n) we have. This is as expected
since one needs to observe enough information to accurately estimate the population-level
objective in (2.5) by using (2.3). On the other hand, recalling from Remark 2.6 that a larger
6 could lead to worse geometry landscape. Therefore, we observe an interesting trade-off
of the magnitude of § between the optimization landscape and the statistical error.

D Recovering the Full Matrix A

Theorem 4.3 provides the guarantees for recovering one column of A. In this section, we
discuss how to recover the remaining columns of A by using the deflation method.

Suppose solving (2.8) recovers aq, the first column of A. For 2 < k < r, write A, =
span(as, ..., ai—1), the space spanned by all previously recovered columns of A at step k.
Further define P4, as the projection matrix onto Ay, and write Py, = I;,— P4,. We propose
to solve the following problem to recover a new column of A,

. on =14
min -5 HqTijY| 40 (D.1)

st llall,=1.

To facilitate the understanding, consider k = 2 and Pz, = P4;. Then (D.1) becomes

la"PLY ;. (D.2)

. n
min - —
q 12
st lglly = 1.
From Proposition 3.5, we observe that
PaLlY ~ P(—ILIAX = A(,I)X(,l),

where we write A(_;) € RP*(""1 and X(_;) € R"~Y*" for A and X with the 1th column
and the 1th row removed, respectively. Then it is easy to see that recovering one column
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of A(_yy from Pz Y is the same problem as recovering one column of A from Y with r
replaced by r — 1, hence can be done via solving (D.2). Similar reasoning holds for any
2< k<.

For the reader’s convenience, we summarize our whole procedure of recovering A in Algo-
rithm 1. The original A is recovered by D~' A in the end.

Algorithm 1: Sparse Low Rank Decomposition

Data: a low rank matrix Y € RP*" with rank r

Result: matrix A

Set A; = () and initialize ¢¥) as (4.1);

forj={1,2,...,r} do
Solve a} from (D.1) by using q'? and any second order descent algorithm;
Update A ; = a;
Set A; = span(A.i,..., A.;);

end

E Additional Experiment

In this section, we provide additional experiments to corroborate the main paper. In Sec-
tion E.1 we demonstrate that the algorithm introduced in section D could be extended to
recover general full dictionary A under assumption 2.2; in Section E.2, we compare our
methods with algorithms for solving sparse principal component analysis (SPCA) under
assumptions 2.1 and 2.3. Here the recovery error is defined as normalized Frobenius norm
of difference between ground-truth A, and our estimated A. Please refer to (5.2) for de-
tailed definition of recovery error in equation 5.2, section 5.

E.1 Extension to general full column rank A

This section we demonstrate our algorithm proposed in section D can be applied to recover

a general full column rank matrix A(Theorem 3.6). Here A is generated as A;; N 0,1)
and X follows the same setting as in section 5. Figure 3 shows the performance of our
method under different § and r. The error for estimating A gets smaller when 6 and r
decrease. When r is small enough, our method successfully recover whole general full
column rank matrix A.

—+—r=10
1=20
0.7 r=30
——r=40

1=50

06

°
&

\
X

Recovery Error

0.3\

Figure 3: Recovery of full general Dictionary A: for different  and r» withn = 1.2 x
10* and p = 100 fixed.

3pl s - :
Py, is the projection matrix onto the orthogonal space of A;.
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E.2 Comparison with the SPCA

In this section we compare the performance of our method with two SPCA procedures.
Among the various algorithms for solving the SPCA problem, we compare with the LARS
algorithm [49, 48] and the alternating direction method (ADM) [6,40]. The LARS solves

min - ||Z; = Yoill, + Afvill, + N [lvilly

for each 1 < i < r, to recover rows of X. Here, Z; is the ith principle component of Y. De-
note X by the estimated X from LARS. The matrix A is then recovered by Y X7 (X X7)~!
with its operator norm re-scaled to 1. On the other hand, the ADM algorithm solves

. 2
min Y —wo’||, + Alv[li st Jull=1,
u,v
to recover one column of A (from the optimal u) by alternating minimization between

u and v. The above procedure is successively used to recover the rest columns of A by
projecting Y onto the complement space spanned by the recovered columns of A [36].

Since both SPCA procedures aim to recover A with orthonormal columns, to make a fair
comparison, we generate A by the normalized left singular vectors of R € RP*" where

R;; ESAY (0,1). Figure 4a and 4b depict the estimation error of three methods in terms
of (5.2) for varying r and 0, respectively. The estimation errors get larger when either r
and @ increases for all three methods. LARS has the worse performance in all scenarios.
Compared to ADM method, our method has the similar performance for relatively small
6 (6 < 0.4) but has significantly better performance for moderate 6 (¢ > 0.4). It is also
worth mentioning that, in contrast to the established guarantees of our method, there is no
theoretical guarantee that the ADM method recovers the ground truth.

0.6 T T T T T T T 0.6 T T T T T
—+— Our Method ‘ —+—Our Method
<— ADM ADM
051 LARS N 051 LARS 4

04r q 0.4r

Recovery Error
o
©
Recovery Error
)
@

-
7 ——————t—
. e i —— S

0 i . . . . . . . .
10 15 20 25 30 35 40 45 50 0 0.1 0.2 0.3 0.4 0.5 0.6
r 0

(a) Recovery probability verse r (b) Recovery probability verse 6

Figure 4: Experiment result for two different methods comparing and full general
dictionary recovery: Figure 4a and 4b shows the relation of recovery error between
different § and atoms number r for two methods with p = 100 and n = 1.2 x 10%. In
Figure 4a, 0 is fixed to 0.1 and in Figure 4b r = 30 for all data points.

F Main Proofs

F.1 Proof of Lemma 2.4

Proof. First, note that, for any g € SP~1,

T T

4 2 2

l4%ali =2 (a)a)" < wax (a7a)")_(a]a)" < waxlla;lE m(aAT) =1 (F1)
= =

Here \1(AAT) denotes the largest eigenvalue of AA” and is equal to A\; (AT A) = 1. Also

note that the maximal value one is achieved by ¢ = +a; forall 1 < <ras

A a,} = 1.
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To prove there is no other maximizer than columns of A, we observe that the first inequality
of (F.1) holds with equality if and only if

1 )
(a]Tq)Z = ;7 VJ S

where

and s = |S|. We thus have

1
q= Z a;
ngES

This choice of g leads to || AT q||1= 1/s which is equal to one if and only if s = 1. [ |
F.2 Proof of Lemma 2.5

Proof. Pick any g and C. One has

1 1
E[F(q)] = ———FE[ld"AX|}] = ——E[ld" AX.;|* F.2

by the i.i.d. assumption of columns of X. Write { = A” g and use Assumption 2.1 to obtain

4
E[F(q)] = ~ 05, E (Z chﬁzji)
=1

Since Bj; is independent of Z;; and

ZCijiZji
=1

2 22
B,~N (o,a > B3
j=1

from Assumption 2.1, we obtain

4 2
E (chBﬁZﬁ) =30'E (ZC?B;) (E3)
j=1 j=1

=30"E | > C;-‘B;ﬂ;] + 30*E [Z CfC(?BJQ-iBZ] (F.4)
_j:1

J#L
=30"0) ¢ +30%0°> 3¢ (F5)
j=1 e
) 2
=300 | (1-0)> ¢ +0(> ¢ (E.6)
j=1 j=1
=300 [(1 - 0)lICI3+0l<l2] - (E7)
The result then follows. [ |

F.3 Proof of Theorem 3.1

We prove Theorem 3.1 by proving Lemmas 3.2 and 3.3 in Sections F.3.2 and F.3.1, respec-
tively.
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To analyze the solution to (2.5), we need the following Riemannian gradient and Hessian
matrix of f(q) constrained on the sphere ||g||, =1

grad f(q) = — Pyu {(1 —9) Z a;j(q"a;)’ + GIIqTAH%AATq] (E8)
j=1
Hess f(q) = Hessy, f(q) + Hesse, f(q) (F9)
where
Hessy, f(q) = [3 > aja](q"a;)? ||qTA||iI] Pys, (F.10)
Hesse, f(q) = —0P,. [|lq" A|2AAT +24ATqq" AAT — ||q" A|31] P,.. (F.11)

Recall that, for any C, € (0,1), we partition SP~! into
Ry (C,) = {q est:||ATq|’ > c*} . Ro(C) =S\ (Rl(C*) U RO).

F.3.1 Geometric Analysis for g € R,

We prove the following lemma which shows the existence of negative curvature for any
q € R,.

Lemma F.1 Assume 6 < 1/3. For any point q € R2(C,) with

0. < 1-— 39’
there exists v such that
v? Hess f (q)v < 0. (F12)
In particular, if § < 1/6, for any point g € Ro(C,) with
1
C* < P
T 32
there exists v such that
5xf
v" Hess f (q) v < —————||¢|1%.. (F.13)

Proof. Fix C,. Pick any g € Rg( ) and write ¢ = AT q for simplicity. Assume |(;|= ||¢]|o
for some i € [r]. Recall that Dg* = diag (¢°?) with ¢°* = {(}};¢[,)- From (E.10), we have

aiT Hessy, f(q)a;

= (1-0) [-3aT ADE2 A a; + 6¢,¢T D AT a; — 362 €111 = €114 (¢ — llas]3)

= (1-0) [-3¢7 +6¢! = 3¢ I¢I1E  IiCIf (¢Z — 1)]

— (1= 0) [ -3ICIZ+6l¢ & ~4lCIZICI + I

< (1= 0) [2lI¢ 3 +6lI¢ 1A —4lI¢ 1] (F.14)

where in the last line we used [[¢]|1< [ICII3IICIIA. < [[€]12, and [[€][3> [[€]|%,- On the other
hand, we obtain

ol Hess, f(q)ai = 0 |=2¢7 +6[1¢l.. ICI3 ¢ = 41CI% ¢ll3 = 1< [|aT All; + 1i¢1l3]
<0 [=2¢II%, +6 ISl — 4 1¢H% + 1¢I5 (Icl3 1)
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<04l - 41| (F.15)
where in the second and third lines we used ||¢ ||§ < 1. Combine (F.14) and (F.15) to obtain

a¥ Hess f(q)a; < —4¢)|% +6 (1 —0) [IC]IZ —2(1 — 36) [I¢]I°,

-0 — 30
el fiei - 22 e+ 52 (e

Define

M, w1230 (E.17)
2 2

g(z) = 2% — ¢z + w, with ¢ =
It remains to prove a! Hess f(g)a; < —4||¢|% ¢ (¢]|%) < 0. To this end, note that w > 0

under 6 < 1/3. Since

1-0)? 0+1)2
¢2—4w:9(4)—2+60:<3;> >0, (E.18)

we know that, for all

2
€15 <

N

6 —&7 —dw _ 3. (F19
2 2

g(llKl%) > 0 and ¢(||¢]|%,) increases as ||¢||%, gets smaller. Recall that g € R>(C,) implies

[¢]|2,< Cy. Thus, as long as

. < 1- 397
we conclude ¢(||¢||%,) > g(Cx) > 0 hence
ai Hess f(g)a: < —4¢|% 9 (I¢]1%) <. (F.20)
This completes the proof of the first statement. The second one follows by taking C, <
1/(3v/2). "

F.3.2 Geometric analysis for ¢ € R;

In this section we prove that any local solution to (2.5) in R; recovers one column of A, as
stated in the following lemma.

Lemma F.2 Assume 6 < 1. Any local solution g € R1(C\) to (2.5) with
0

1
C>35\1 3

recovers one column of A, that is,
(j = :I:Aez
for some standard basis vector e;.
Proof. We prove the result by showing that any critical point of (2.5) in R, (C,) is either a

saddle point, or it satisfies the second order optimality condition and is equal to one column
of A.

Our proof starts by characterizing all critical points of (2.5). For any critical point q of (2.5),
by writing { = A7 g, letting the gradient (F.8) equal to zero gives

(1-0)AC® — (1-0)q ¢l +01<l5 AC — 0g]i¢ll; = O (E21)
Pick any 1 < ¢ < r. Multiply both sides by a] to obtain
(1—0)al AC® — (1= 0)¢ ¢l + 0 1Cl5 al AC— 0[5 ¢ = 0 (F22)
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with ¢°® means {¢?}c[,). By using

al AC™ = |laill3 ¢ + D (@i a5) ¢ = ¢ (F23)
J#
al AC = lail3 G+ (aia;) G =G, (F.24)
JFi

under Assumption 2.3, after a bit algebra and rearrangement, we obtain

¢ —aG=0 (F25)
where
4 0 2 2

o = (¢l + 7= (II¢llz 1) ¢l (F.26)

We then have that, for any critical point g € Ry, { = AT q satisfies (F.25) forall 1 < i < r.
Furthermore, since Lemma E.5, stated and proved in Section F.3.3, shows that o > 0, we
conclude that ¢ belongs to one of the following three cases:

1. Case 1: |[€]lcoc=0;
2. Case 2: There exists ¢ € [r] such that
Gl=Va, ¢ =0, Vje[]\{ik
3. Case 3: There exists at least 7, j € [r] with i # j such that
IGil=1G51= Ve

Note that the definition of R; excludes Ry defined in (3.3), hence rules out Case 1. We then
provide analysis for the other two cases separately. Specifically, for any ¢ belonging to Case
2, Lemma F.3 below proves that ¢ satisfies the second order optimality condition, hence is
a local solution. Furthermore, ¢ is equal to one column of A up to the sign.

Lemma F.3 Let q be any critical point in Ry(C,) and let { = AT q. If there exists i € [r] such that
Gl=Va,  I¢Gl=0, Vje[r]\{i},

with « defined in (F.26), then there exists some signed permutation P such that

qg=AP; (F27)

Furthermore,
vT Hess f(q)v > (1 — 9)||P;‘v||§, Yo such that P;‘v # 0. (F.28)
Proof. Lemma F.3 is proved in Section F.3.4. [ |

Finally, we show in Lemma F.4 below that any ¢ belonging to Case 3 is a saddle point, hence
is not a local solution.

Lemma F.4 For any critical point q € R1(C,) with { = ATq and « as defined in (F.26), if there
exists k (k > 2) non-zero elements such that

ey = 1Cri|= -+ = |Gy |= Ve
for some permutation 7 : [r] — [r], then there exists v with Pj-v # 0 such that
2(1—0)
v! Hess f(qv < — THP;vH% < 0. (E.29)
Proof. Lemma F.4 is proved in Section F.3.5. u

Summarizing the above two lemmas conclude that all local solutions in R; lie in Case 2,
hence completes the proof of Lemma 3.2. [ |
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F.3.3 Additional lemmas used in Section F.3.2

The following lemma gives the upper and low bounds for o defined in equation (F.26).

Lemma F.5 Forany q € R,(C,), let { = AT q and o be defined in (F.26). We have
Y

0
611~ e | < @ < el

As a result, when )

4(1-6)’

c? >
we have o > 0.

Proof. The upper bound of « follows from

a =<l [1 + (1_;)ch (Nl - ||c||§)] < II¢ll
by using [|¢[|2 < 1 and [[¢[|3 < [[¢][3. To prove the lower bound, we have
a =il 1+ (1_;)”4” et (Il - 1)]
— 161 |1 =g 1415 (1 1¢13) | by [13< 1
> 161 |1 - sr—grrere | by ICI3(1 — ICI3) < 1/4
> K11 - s |

The last inequality uses ||¢||2,> C, from the definition of R;(C,).

To prove the lower bound, we have

_ 4 1_’_# 4 2 ]
@ = I3 |1+ g (icls = 11¢1z)

i o (el ||¢|2>]
= I¢Il; |1+ < P
[ H47 a=o \ et el
_ 0 1
> ¢l 1t <1 - c)]

Illy o gl _ Mgl +
T .

The last inequality uses

and
2
Gl 11
IS, ~ ¢S, — CF

by the definition of R;(C,).

F.3.4 Proof of LemmaF.3

(F.30)

(F31)

(F.32)
(F.33)

(F.34)

(F.35)

(F.36)

(F.37)

(F.38)

(F.39)

Proof. Let g be any critical point in R, (C,) with C, > 0. Write { = ATqand suppose

|Gel= Ve, [G1=0, Vi€ [P\ {6},

with « defined in (F.26). Our proof contains two parts. We first show that g = a; (we as-
sume P is identity for simplicity) and then show that g satisfies the second order optimality

condition.
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Recovery of a,: First notice that

I 6 TR
G =a=|¢lly |1+ 1€y = 1<l (F40)
l A RIHOT G
Since ||CH§ = (? and ||(f,’|\j11 = (}}, we immediately have
a=a? _1 + _v (a2 —a)|. (F.41)
I

Solving it gives o = 1, which implies (7 = |(a;, q) |*= 1, as desired.

Second order optimality: We prove

v” Hess f(q)v = v” [Hessy, f(g) + Hess,, f(q)]v >0

for all v such that Pf-v # 0.
Recall from (F.10) that
j=1

Hess, f(q) = — (1 —0)P,e [3ZajajT(qTaj)2 _ ||qTA||3I] Py

Without loss of generality, let v € SP~! be any vector such that v L g. Recall that { = A”q.
Then

o Hessy, f(a)w = (1-0) {—32 (alv) 2 + ||C||i] (F42)
- (1-6) [—3 (alv)” + 1] . (FA3)

where we used (7 = 1 and ¢; = 0 for all j # ¢ together with ||¢||i= 1 in the second line. In
addition, we find

(afv)” = @i, v)* = [(@.v)f =0 (Fa4)
so that
v! Hessy, f(q)v =1—6. (F.45)
On the other hand,

>

-2 (67 4¢)" ~ 1¢I2 4wl + 1]
0 [—2 (alTvCl)Q — | Av] + 1]

= 01— 4v]3]
0

vT Hessy, (q)v =

v

(F.46)

where we used A\;(AAT) < 1 in the last line. Combine equation (F.45) and inequality
(F.124) to obtain

v Hess f(@)v > 1—60 >0, (F47)

completing the proof. [ |
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F.3.5 Proof of Lemma F.4

Proof. Let g be any critical point g € R1(C,) with C, > 0 and ¢ = ATq having at least k&
non-zero entries for 2 < k < r. Without loss of generality, we assume
Gl=va  Vi<k, =0 Vi>k (F.48)
We show there exists v such that
2(1—-0
v! Hess fl@v = vl (Hessy, f(q) + Hessy, f(q))v = —(T)
Without loss of generality, pick any vector v € SP~* satisfying v L g and v lies in the span

of {ai,as, --,a;}. Writev = E?Zl c¢;ja;. From (F.9), we have

|1 P;-v]|3< 0.

k
v” Hessy, f(q)v = (1-19) [—3UTADZ2AU + HCHi] = (1-0) {—32 (aij)QCJ2 + ¢l
j=1

(F.49)
Recall from the definition of « in (F.26) that
0 4 2
a= ¢y |1+ g (¢l = Cl5) | » (E.50)
NSHEED (et = 1ctz)
using HCH: = 25:1 C;l = 25:1 C;L = ko? and ||C||§ = 22:1 CJQ = Z?:l C72 = ka yields
0
_ 2 2 _
a = ka [1 + ko2 (1-0) (ko koz)] . (E51)
Solve the equation above to obtain oo = 1/k, hence
1 1 .
Plugging this into (F.49) gives
| 3 < 2 1
T Hoc _ T
v' Hessy, f(@)v = (1 -10) —%; (ajv)” + e
: k
3., 1
= (1—9) —kZCj+k:|
L J=l1
2(1-0)
_ F52
. (F52)
where the second equality used Z;‘f;l (alv)? = Zle =
On the other hand, we have
I 2 2
ol Hessy, f(q)v = 0[-2 (7 A¢)" — |¢I3]|ATw 5 + 3]
r 2
< o[- ICI3 (| A5 + i3]
[ k
=0 [ =<l >_ 5 + 1<l
L j=1
= 0. (F.53)
The second equation follows from HATsz = Z?zl(vTaj)2 = Z§=1 ¢3 = 1 and the last
step uses [|¢|3= 1. Combining equation (F.52) and (F.94) gives
v Hess f(q)v < —@ (E54)
and completes the proof. [
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F.4 Proof of Theorem 3.4

To prove Theorem 3.4, analogous to (3.3), we give a new partition of SP~! as
Ry = Rye.) = {a e s i ||a%q||, <.}, (F55)
By= R0 = {ges ' |aTq|2 > 0.},
Ry, =SP'\ (R, UR,).

Here ¢, and C, are positive constants satisfying 0 < ¢, < C, < 1.

Let §; and d2 be some positive sequences to be determined later. Define the random event

£ = { sup ||grad f (q) — grad F'(q)||, < 61, sup |[|Hess f(q) — Hess F (q) [|op< 52} .
qgesp—1 qesSr—1

(F.56)

Here grad f(q) and grad F'(q) are the gradients of (2.5) and (2.3), respectively, at any point
q € SP~L. Similarly, Hess f(q) and Hess F(q) are the corresponding Hessian matrices.

On the event &, the results of Theorem 3.4 immediately follow from the two lemmas below.
Lemma F.6 shows that the objective F'(q) in (2.3) exhibits negative curvature at any point

q € R,. Meanwhile, Lemma F.7 proves that any critical point in region R} is either a solution
that is close to the ground-truth, or a saddle point with negative curvature that is easy to
escape by any second-order descent algorithm. Lemmas F.6 and F.7 are proved in Section
F.4.1 and F.4.2, respectively.

Lemma F.6 (Optimization landscape for R,) Assume § < 6/25. For any point q¢ € Ry(C,)
with

12
C, < ——20,
— 25
if 82 < ¢, /25 for some constant ¢, € (0,C,), then there exists v such that
v Hess F (q) v < 0. (E57)
In particular, if 6 < 1/9, for any point q € Ro(C,) with C, < 1/4, there exists v such that
21 1
v Hess F (q) v < ~100 I¢I%, < G (F.58)

Lemma F.7 (Optimization landscape for R)) Assume

0<1/9, 6 <5x107°, 6, <1073, (F.59)
Any local solution q € R} (C.) with C, > 1/5 satisfies
lg— AP4|; < C6, (F.60)

for some signed permutation matrix P and some constant C' > 0.

Finally, the proof of Theorem 3.4 is completed by invoking Lemmas F.14 and F.15 and using
condition (3.7) to establish that d, < ¢, /25, d, < 1073 and §; < 5 x 107°. Indeed, we have

2log(M, M, rlog(M,
5y = o) 108(Mn) | My 7log(My) (E61)
on n n
[13
5y = r#log(Ms,) + %TIOg(Mn) (F.62)
on n n

where M,, = C(n + r) (0r> +log>n/6). Under (3.7), we have log(M,) < logn whence
82 < min{c, /25,1073 } requires

0> Cmax 7’310gn7 9r2+log2n rlogn
903 0 Cy

for sufficiently large C' > 0, which holds under (3.7).
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F.4.1 Proof of Lemma F.6

Proof. Fix C,. Pick any g € R} (C,) and write { = AT q for simplicity. Assume |(;|= ||¢]|oo
for some i € [r]. Note that, on the event &,

a! Hess F(q)a; < a! Hess f (q) a; + a! [Hess F (q) — Hess f (q)] a; (F.63)
< a Hess f (q) a; + 6 (F.64)

1
< af Hess f (q) ai + 5 < (E65)

where in the last inequality we used d2 < ¢, /25 < ||¢||%,/25 as ¢ € R, (C,). By inequality
(E.16), we obtain

3(1—-46 1—-36
a tess f (@) a < <4l {1 - 202t + 250 o)
hence
3(1-0) 1-30 1
T < 2 4 A S 2 .
af ttess F(@as < 41612 {16 - 202 e+ 257 - (b men)
Define
1-— 1-— 1

It remains to prove a! Hess F(g)a; < —4|/¢||%, g (/[¢||%) < 0. To this end, note that w > 0
under 6 < 1/4. Since

1-6) 1 6+1\> 1
we know that, for all
3-30 (39+1) 14 1
. 2_ 4 2 2 25(%)
eI, < SV TR : N )

g(|I¢][2) > 0and g(||¢||%,) increases as ||¢||%, gets smaller. Recall that ¢ € Ry(C,) implies
<%, < C,. We then have

g(lI€lIZ) > 9(C.).
We proceed to show C, < r_ by noticing that

3—360 30+1 1
=50 - (%59) [1 + 50(3“1)2]

2

2
—30 _ (36
([ )
- 2
1-30— {50 — 5
B 2
12
— —20. F71
7% (E71)
Thus, provided that
12
< ——20
O = g5~ 2

we conclude g(|[¢]|%,) > g(C,) > 0 hence
a] Hess F(q)a; < —4[¢]% ¢ (I¢]1%) < 0. (E72)

In particular, taking § < 1/9 and C, < 1/4 yields
21
T Hess F(q)a; < ——— |||~ E7
af Hess F(g)ai < —-o5 [, (E73)

This completes the proof. [ |
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F.4.2 Proof of Lemma F.7

Proof. The proof of this lemma is similar in spirit to that of Lemma F.3.2. Follows the
notations there, any critical point g € R} (C,) satisfies

grad f(q) + grad F'(q) — grad f(q) = 0. (E74)
Following the same procedure of proving Lemma F.3.2, analogous to (F.25), we obtain
G-ali+B=0 (F.75)

forany i € [r], where ¢ = ATq,

0
o= [¢It+ 15 (ICI3 = ICI3) . 8= 5 = (grad f (a) ~ grad F (q) @) (F76)

To further characterize ¢ satisfying (F.75), note that & > 0 from Lemma F.5 and we also

prove in Lemma F.11, stated and proved in Section F.4.3, that 4|3|< /2. In conjunction
with Lemma F.12 in Section F.4.3, we conclude that ¢ belongs to one of the following three
cases:

e Casel:

1228
‘Cz| < 77

e Case 2: There exists i € [r] such that

V1 <i<r,

2 2 . )
iz va -2 e va - 20 v e
o Case 3: There exists at least ¢, j € [r] with ¢ # j such that

iz va-2 g va- 280

(&% «

We provide analysis case by case. Case 1 is ruled out by Lemma F.8 below. For any ¢
belonging to Case 2, Lemma F.9 below proves that ¢ satisfies the second order optimality
condition, hence is a local solution. Furthermore, q is close to one column of A. Finally,
Lemma F.10 shows that any ¢ belonging to Case 3 is a saddle point, hence is not a local
solution. Summarizing the Lemmas F.8 — F.10 concludes that all local solutions in R; lie in
Case 2, hence concludes the proof of lemma F.7. Lemmas F.8 — F.10 are proved in Sections
F.4.4, F4.6 and F4.5, respectively. [ |

Lemma F.8 Assume
6<1/9, 5 <107

For any critical point q € Ry (C.) with C, > 1/5, there exists at least one i € [r] such that

2|
|Gil > o

where { = AT q and o and j are defined in (F.76).
Lemma F.9 Assume

0<1/9, 6 <5x107°, &, <1072, (E77)
Let q be any critical point in R, (C,) with C, > 1/5. If there exists i € [r] such that

2|8 2|8 , ,
iz va- 20 g 20 v e,
with { = ATq and o and B defined in (F.76), then
lg— AP,|; < Cd& (E.78)
for some signed permutation matrix P and some constant C' > 0. Furthermore,

vT Hess f(q)v > 0, Vv such that P;‘v #0. (E.79)
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Lemma F.10 Assume
0<1/9, 61 <1074 5y < 1073, (F.80)
For any critical point q € R\ (C.) with C, > 1/5, if there exists i, j € [r] with i # j such that

2|8 B
Gz va- 22 e va - 20
where { = AT q and o and j3 are defined in (F.76), then there exzsts v with Pqu = 0 such that
v’ Hess f(q)v < —0.00315||P;‘v|\§ < 0. (E.81)

F.4.3 Lemmas used in Section F.4.2

Lemma F.11 Assume 6 < 1/9. For any critical point ¢ € R} (C,) with C, > 1/5, on the event £
in (F.56), we have

48] < o®?
where 3 and o are defined in (F.76).

Proof. By definition and the event £,
B]= l(grad f (q) — grad F' () , i) [< 1| @sl|o= 01 (F.82)
Then by Lemma F.5,
|ﬁ| < 61 51

<
||C|\4[ W]

B2 = B2
Since g € R1(C,) implies ||¢||%,> C.,, using [|<[|$> [I€]|%,> C2 together with C, > 1/5 and
6 < 1/9 gives

'”q“%ufmarzbf‘uimrz<éﬂw (F83)

The result follows from §; < 2 x 104, ]

(M)

Lemma F.12 (Lemma B.3, [35]) Considering the cubic function
flx)=2®—az+p (F.84)
When o > 0 and 4|8|< o/2, the roots of the function f(-) are contained in the following union of

the intervals.
et 223U {1e - vals 223 {1o+ val< 22, (E85)

F.4.4 Proof of Lemma F.8

Proof. We prove that for any critical point g € R}, there exists at least one i € [r] such that
IGi|> 2|8|/a with a and S being defined in (F.76). Suppose

i< 22 vy

Assume |(;|= ||¢||oo for some k € [r]. We obtain

il < 22

hence, by also using ||¢]|2< 1,
452

1€ [ - e

This is a contradiction whenever

—3/2
< L()
2 \ 800

which is the case if 6; < 10~4. []

(F.83) 800
I<IE < eI el < 257 < 1t 2wt () 1t s
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F.4.5 Proof of Lemma F.10

Proof. Let g be any critical point ¢ € R, (C,) with C, > 1/5 and write ¢ = A”q. Suppose
there exists I, m € [r] with [ # m such that

2 2
al>va- 22 s va - 29
We prove there exist v such that.
v” Hess F(q)v < v” Hess f(q)v + v” [Hess F(q) — Hess f(q)] v < 0. (F.87)

Pick any vector v € SP~! such that v | q and v lies in the span of {a;, a,}, that is, v =
cla; + ¢pmam, for some ¢? + ¢, = 1. Recall from (F.9) that

vT Hess f(q)v = vT Hessy, f(q)v +vT Hessy, f(q)v.
By (F.10), we first have

v” Hessy, f(q)v
—(1-90) [_3(a?u)2<f—3(a v)’2 -3 > (ATw), ¢+l
k#lk#m
< (1-0){-3[(af'v)* + (al0)* | min{c?. 2} + 1}
<=0 {-3[¢+&+ (A +3) (aFan)’ +acn (af ap) | min{c, 2} + €)1}
= (1= o) {-3min {¢2, 2} + I} (F88)

Here Hv||§ =c} +¢2, =1and af a,, = 0 are used in last step derivation. Note that

216\ 4
= (ﬁf') za\I/Q (F.89)
Lemma E.5 gives

0
a > (¢l = 7= [ I615 = I¢li3]
Also by (E.82), we obtain

4 46 800\ /2 48, /800\"/?
P e () <2 (%) w1 o
111 [1 - W] i

where the second inequality is due to (F.83) and the last one uses ||¢ ||i > [[<]|&> C2. By

writing »
46, (800
= 021 () : (F.91)

2

it follows that

@ 2 el (1= m) = g [ eIz = el (F92)

a9
This lower bound also holds for min{¢?, (2, }. Plugging itin (F.88) yields

uTHessﬁf(q)vs(1—9){—3{||c|i<1—> (H,) [t - et } + tei}
= - {2 et + 225 (11 - 1¢ie] | (93)
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On the other hand, from (F.10), we have
ol Hessy, f(a)v = 02 (7 AC)" — ¢ [|ATw |, + I¢]13]
< 0]~ ¢l | AT v + 11l
0= ICli3 + ¢ - (F94)

Third inequality uses HATsz =X (wa)? =+, = |v||2 = 1. Combine (F.94) and
(F.93) to obtain

0
o’ Hess f(q)v < (1-6) {(—2 e el + o [l - ||<||§]} +0[- g3 + ¢l ]

(F.95)
< (1= 0)(=2+3m) <I1§ + 20 [ <13 — ¢l (F.96)
< (1= 0) (24 30) [CI3+ o (E97)
Here ||¢ ||§ — I Hg < 1/4is used in last step. We thus conclude that
v" Hess F(q)v < v” Hessf(q)v + [[Hess F(q) — Hess f(q) |, (F.98)
< (1) (<24 3m) K[+ 5+ (F99)

on the event £. Note that —2 + 31 < 0 from C, > 1/5 and §; < 10~%. By using ”C”i >
¢]|4.> C?, we obtain

0
v ' Hess F(q)v < (1—0)(—2+3n)C? + 5+ 0 (F.100)

= (1-0)—-207+125 800 v +Q+§ by (F.91 F.101
- * 1 7 2 2 y( N )' (‘ )

Recalling that
6<1/9, C,>1/5, 6 <107 6, <1073,
we further have

v" Hess F(q)v < —0.00315| Py v||3= —0.00315 < 0. (F.102)

This completes the proof. [ |

F.4.6 Proof of Lemma F.9

Proof. This proof contains two parts: the first part shows that any critical g € R is close
to the ground truth vector a; for some ! € [m], and the second part proves the second order
optimality for this q.

Closeness to the target ground-truth vector: Pick any critical point ¢ € R; and suppose
that, for some [ € [m],

2 2 _
azva- 2 <M yiue
a a
On the one hand, we bound ;' from below as
4 ,h 4 4 2 2
G =16l = DG = Kl = > G max G
k#L k#L

4 2
> el - g2 22
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800
> el — 452 ( ) el by (ES6).

(F.103)

The last inequality also uses >, , G <K ||§ < 1. On the other hand, the upper bound of

¢ follows that

2 2
C?S(\/EJer') —at & +Ai|/%|

800
< |<||4+452< ) IS+ lie

where we also use Lemma F.5, (F.86) and (F.90). Write

o as ()

45, 800 1/2
"7 = 02 e '

Combine (F.103) and (F.104) to obtain

and also recall that

oGy 16 | %4
R e L+&+7
which implies
28+
1-— < —.
|GI< T+ét0n
Consequently, assuming (; = aqu > 0 without loss of generality,
2(26 +n)
la: — qlls = llaill5 + llall; — 26 =2(1 — [¢) < Tretn

Second order optimality: We show that
v Hess F (q) v > 0.
for any v € SP~! that P;-v # 0. Pick any v € SP~! such that v L q. We have

v  Hess F (q) v = v” Hess f (q) v + v” [Hess F (q) — Hess f (q)] v
> v" Hess f (q) v — ||Hess F (q) — Hess f (@)llop

= v” [Hessy, f (q) + Hessy, f (q)] v — ||[Hess F (q) — Hess f (q

We bound from below vT Hess, f (q) v and vT Hess,, f (q) v respectively.
Recall from (F.10) that

Hess, f(q) = —(1 — 0) Pys lszajaf(q%j)? - |qTA|3I] P,..
j=1

Also recall that ||€||co= |(;|- We have

vT Hessy, f(q)v = (1 —0) [—3UTADZ2AU + HC”j]
_0) [_32 (ATv): ¢+ |¢||i}
k=1
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(F.106)
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=(1-9) {—3 [(AT’U)?Cf +y (AT'v)iCi] + |C||3}~ (F112)

k£l
Note from (F.107) that
(AT0)} = [(a,0)]* = (@ —q,v)|* < [l —gll; =201 = [G]) <2(1=¢7) . (R113)
Also note that

T 7 o, 482 (F.
S (AT)l 2 < ||A vll3< 5 ¢ el
k£l
with ¢ defined in (F.105). We thus have
v” Hesse, (@)v > (1-0) [6 (1= ¢2) ¢ = 3¢ ¢4 + <113 (F114)

Since (F.104) ensures

G<A+E+n)Cl, (E.115)
we further obtain
(1= 0) [I¢ll3 [-6(1+&+m) (1-¢) =36 +1]
(1= ) [I¢ll3 [~6(2 +n) — 3¢ +1]
— (1 6) (1~ 15¢ — 6) ¢l (F116)
The last step uses (F.106) again.
To bound from below v’ Hessy, f (q) v, by (F.10), we have

vT Hessy, (q)v >
>

2
ol Hessy, ()0 = 0]—2 (07 AQ)" — 1¢I5 | Aw]3 + ]3] (F117)
To upper bound (v’ A¢ )2, observe that

2 i 2
(’UTAC)Q _ [alTvQ + Za{v(k] <2 'v al (Z ay, ’ka)

k£l k£l
<2[21- )+ (afv)’ Zcﬁ]

| k#l k#l
<2[200- )i + <3 - ¢ (F118)

where we used (F.113) and Cauchy-Schwarz inequality in the second line, and the fact that
Y pe(ATv); < |ATw[3< 1 in the third line. By observing that

2 4
o2 = 16lz oo o 08y oy Dl (F119)
il g
and
< '2”4@ ,
we have
el - _fl”‘*u—cf)
which further yields
4
(" AC) < 2|21 — D)2 + ”gl"*ucf) (F.120)
l
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226+ ) [ 50, <0
< 202 + by (F.106
Tl e y (F.106)
(F.121)
2(2£ +n) 1 4
<S5 T o 4 eyn)+ by (E106) and (E.115
ey 20 T Il by (F106) and (F115)
| 14+€+n
(F.122)
1 4
<2(2 24+ —— . E12
<2026+ 0) |24 g el (F123)
On the other hand, we have
1
Illz vl < figllz < —————5 Il
]
(1 o 1+§+n)
by (F.119) and (F.106), and ||¢||3> [|<||3. It then follows that
v Hessy, (q)v > 0||C||5 | —4(2¢ +1) [2—1— ! ]— ! +1
Lo = 4 17357,’7 <1_ 241 )2
1+&6+n
> 1650 ¢4 (26 + ) (F124)

where the last line follows from §; < 5 x 107° and C, > 1/5 together with some simple
algebra. Combine (F.116) and (F.124) to obtain

v" Hessy, f(g)v > [|¢]l [(1—6) (1 —15¢ — 6n) — 16.50 (2¢ + )] (F.125)
whence, on the event &,
vT Hess F(q)v > ||C||i [(1—-0)(1—15¢ —6n) — 16.50 (26 +n)] — 02 (E.126)
> C?[(1—0) (1 — 156 — 61) — 16.50 (26 4+ )] — 62 (F.127)
>0 (F.128)
by using §; <5 x 1075 and d> < 1073. The proof is complete. ]

F.5 Proof of Proposition 3.5

Proof. Write the eigenvalue decomposition of YYT = UAUT with U = [uy,...,u,]
and A contains the first  eigenvalues (in non-increasing order). By the definition of the
Moore-Penrose inverse, we have

D=UAY?U"
such that ~
Y = DY =UA'?UTAX.
Here A~'/2 is the diagonal matrix with diagonal elements equal to the reciprocals of the
square root of those of A. Further write the SVD of Aas A = U D AVAT with UZUA =1,

and D4 being diagonal and containing non-increasing singular values. Since Uy = UQ
for some orthogonal matrix Q € R™*", we obtain

D—l D—l
D=U.Q"A QU ,=U,—2A_UY+U, (QTA—U?Q S — | > Ut  (F129)

no26 no26
It then follows that
> D,Zl T T A—1/2 D,Zl T
Y =U U, AX +U ( A~ — ) U, AX F.130
A TU? 0 A AlQ Q /77102 i A ( )
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_ D!
=U,VIX +U, <QTA1/2Q - A> D,VIX (F.131)

vVno20
—UsVIX +ULVEIV, (vn(f?aQTA—l/?QDA - Ir) VIxX (E.132)
= AX + AV, (anZQQTA*/?QDA - Ir> vIx (F.133)
= AX + AAX (F.134)

where we used X = X /v/no20 and A = U,V and write
A =V, [Vono?QTAT12QD — I | Vi
and it remains to bound from above ||A||,p. Note that
UAUT =YY" = A (no?0I, + XX — no®01,) A" (F.135)
=UaD4V] (no®0I, + XX — no®01,) VaDAU}. (F.136)
It then follows by using U4 = UQ that
Q"AQ —n0*9D% = DAV} (XX —no®0I,) VaDy,
hence

Ono Ono?

Let A\; denote the largest kth eigenvalue of the left hand side of the above equation, for
1 < k < r. Then Weyl's inequality guarantees

1
sD'QTAQD, -1, =V < xxt - I,.) Va.

max|\, — 1] < ! xxT —1I,
k Ono? o
p
Clearly,
| Al = | Vono?QTA2QD, ~ 1, (R137)
op
1
= max Vvl 1 (F.138)
1= A
= max ————— F.139
kM1 + V) (F139)
11— Al
max . F.140

It remains to bound from above the operator norm of (fno?)~" X X7T — I,.. It is easy to see
that

1
E XXT|=1,.
[97102 ]

Since X;; for1 < ¢ <rand1 <t < n areiid. sub-Gaussian random variables with sub-
Gaussian constant no greater than 1, classical deviation inequality of the operator norm of
the sample covariance matrices for i.i.d. sub-Gaussian entries [41, Remark 5.40] gives

<c (\/: + 2) (F.141)
op

with probability 1 — 2¢=¢" for some constants ¢, ¢’ > 0. Using

1 /r

2L <

0 \/; =
for some small constant ¢”” > 0 concludes

H\/ 0no2QTA"2QD4 — I,

1
—XX" —0I,
no

e c’”;\/z (F.142)

with probability 1 — 2e~¢". This completes the proof. |
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F.6 Proof of Theorem 3.6

In this section we provide the proof of Theorem 3.6. Our proof is similar to Section F.4.
Recall that A = U, V. We define a new partition of SP~! as

1"

Ry = Ry(c) = {ae s |ATq| < e, (E.143)
B = Ri(C.) = {qes ¢ | ATq| 2 C.],
Ry =sP~1\ (Rg U R’l’) .

Here ¢, and C, are positive constants satisfying 0 < ¢, < C, < 1. Further define

fg (@) :=E

quAXHj] — a0 |argli o aTqll].  (F1a)

1
120040 ‘

The equality uses Lemma 2.5. Let §; and J; be some positive sequences and define the
random event

&= { sup ngad fy (@) —grad F, (q)H2 <61, sup |[Hess f,(q) — Hess Fy (q)|lop< 02 ¢ -
gesp—1 qesp—1
(F.145)

Here grad f,(q) and grad F;(q) are the gradients of (F.144) and (2.8), respectively, at any
point g € SP~!. Similarly, Hess f,(q) and Hess F,(q) are the corresponding Hessian matri-
ces.

We observe that Lemmas F.6 and F.7 continue to hold by replacing F'(q), f(q) and A by
Fy(q), f4(q) and A, respectively, and by using R{ and RY in lieu of R} and R5. The proof
is then completed by verifying that 52 < ¢,/25, 2 < 1073 and 6; < 5 x 1075, These are
guaranteed by invoking Lemmas F.18 and F.19 and using condition (3.13).

F.7 Proof of Lemma 4.1

Proof. It suffices to prove
R

for some ¢, such that (3.13) holds. To this end, we work on the event where Proposition 3.5
holds such that - -

Y=A(I +A)X.
It then follows that

2 2

_ 2 1 - 2
[47a®] = 747, =

o] T

ATy,
1Y 12

(I, +A)X1,
AL + A)X1,]2
by using ATA = I,, provided that |[Y'1,2# 0 which holds only one a set with zero

measure. The proof is completed by invoking condition (4.2) to ensure (3.13) holds for
¢ = 1/(2r). [ |

1
=—- (F14
~ (R146)

2

1 1
r _T

2

F.8 Proof of Lemma 4.2

Proof. Recall that F,(q) and f,(q) are defined in (2.8) and (F.144), respectively. We work
on the event

&g = { sup |Fy(q) — fy(q)| < 6n}7 (F.147)

gesr—1

_ r 9 log?n\ rlogn
6n—(\/@+\/10gn>,/02\/§n+(9r + 7 > -
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According to Lemma F.16, £, holds with probability at least 1 — cn~¢ — 2¢=¢"". We aim to

prove
1

2r’

_ 2
HATq(k)H > ¢y Vk > 1.

Pick any k£ > 1. On the event £,, we have

F, (q(’“>) > fy (q(’“)) — 0.

For any q € SP~1, we write { = ATq. Since

fut@) =~ [ -o)licli+elicls]
> -3 [a-0) e +or I
i(l_awr VIl
where we used (€]} < [1€]2. (1€ < [1¢]I%. Sruéum

that
_ 2
Fy (a®) > _i (1 —o+or)|aTq®|” s, (F.149)
on the event £,. On the other hand, any gradient descent algorithm ensures
Fy(q™) < Fy(q").
We thus have
1 _ 2 _
7 (1—0+0r) ‘ATq(k)HOO > _F, (q<0>) o> —f, (q<0>) — 20,
by using &, again in the last inequality. To bound from below — fy(@®), recalling the defi-
nition of f; from (F.144), we have
F (g = 1 17q0|" £ ollaTqO|"
~fy(q”) = 7 [(1-0) | ATq|| +0[ AT (F.150)
4 _ 4
1a 51)4 (1-0) ‘ —— +6 (F.151)
4(144) 1]z 1] 4
4
1ad=0) [ + 9] (F.152)
4(1+ 51) 1Zllo
Since, on the event where Proposmon 3.5 holds such that Y = A(I, + A)X,
ATY I+ A)XL,|
1Y 121l II( +A)X 1,3
and, similarly,
_ 4
[a7a®], =
we conclude
1 H +A)XL 1[1-6
M >-11-0 140 >[+0]
@] [( A[EANs SRR R

(F.148)

and Hin < 1. It then follows

with probability 1 — 2e~¢". Here we used the basic inequality ||v||3< r|v||} for any v € R".

With the same probability, we further have

HAT H ? 1—963—97‘ %
provided that
86, 1

o n <« =
1—-0+4+6r = 2r
This is guaranteed by condition (4.3). The proof is complete.
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F.9 Concentration inequalities when A is semi-orthonormal

In this section, we provide deviation inequalities for different quantities between the
population-level problem f(g) in (2.5) and its sample counterpart F'(q) in (2.3), includ-
ing the objective function, the Riemannian gradient and the Riemannian Hessian matrix.
Our analysis adapts some technical results in [44] and [35] to our setting.

F.9.1 Deviation inequalities of the objective value

Recall that
F(q) = ~Topais |a (F.154)
1
@)=~ [0y a7} + o]l 4Tal].
Define )
M, = C(n+1) <9r2 + 1og0 ”) (F.155)

for some constant C' > 0.

Lemma F.13 Under Assumptions 2.1 and 2.3, with probability greater than 1 — en™=° for some
constants c,c’ > 0, one has

sup |F(q)— f(q)| < rlog(M,,) L %Tlog(Mn).

gesr—1 on n n

Proof. Pick any g € SP~!. Note that the result holds trivially if A”q = 0. For AT q # 0, we
define
ATq

— = ith geS 1.
[ATq[, M4

q =
Note that

1
ZF ) with  Fy(x) = ——— (q7z)". (F.156)

IIAqulz 12007

The proof of Lemma 2.5 shows that

f(q) 1 ~ 4 ~nd] .~
E|F5 = =—|(1— = 1<k<n. F.157
Fa @) = g = —7 |- O 1ali+ 018l = 9@, vi<k<n  (F157)
We thus aim to invoke Lemma G.6 withn; = r,d;y = 1, n = r and p = n to bound from
above
sup Fy(x
gesr—1 n Z k )

Consequently, the result follows by notmg that

n

Z (@)

k:

sup |F(q)— f(@)l= suwp |ATq|,-
gesp—1 qeSP~M\ Ry

and using || AT ¢||>< 1 which holds uniformly over g € SP~.

Since the entries of x; are ii.d. Bernoulli-Gaussian random variables with parameter
(0,0?), each xy;, for 1 < i < r, is sub-Gaussian with the sub-Gaussian parameter equal to
o?. It thus suffices to verify Conditions 1 -2 in Lemma G.6. For simplicity, we write = xy.

Verification of Condition 1: Since E[F;(x)] = ¢(q), we observe

1

ElFs @) = 1 [ -0 Il +01l2] < 7l = 3

F1
1 1 (F.158)
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where we used H(}Hj < ||c7||;l Thus By = 1/4. For any ¢q; # g» € S"!, we have

E [Fy, (@)] ~ E[Fy, (@)] (F159)
1-6 0
< = [laly — llgally] + 7 a3 — llgelly (F.160)
1-6
=~ |larly — llgzlla| (lailly + lazl) (laill3 + laell?) (F161)
0
+ 5 laslly = lallol (sl + llasllo) (llaul3 + lazI) (F162)
<(1-0)llar — gally + 0 s — @l by i< llaillo= 1 (F.163)
<la —al,- (F.164)

This gives Ly = 1.

Verification of Condition 2: We define
rT=T+T

as (G.27) with B = 204/log(nr). For the similar fashion, we define &, = & + Tj for
1 <k < n. We verify Condition 2 on the event

n

&= {||gck\|2 < o(Vrb + \/logn)}. (F.165)

k=1

Lemma G.3 ensures that P(’) > 1 — 2n~ ¢ for some ¢ > 0. Note that on the event &’,

|Z]l2 < o(Vro++/logn). (F.166)
Pick any g € S"~1, we have
1 @), = | = (@) < lalzl2ls o (2, loe*n (F167)
a2 {19941 , = 12007 0 '
for some constant C' > 0. Thus,
2
R1 = C (9T2+ loge n) .
On the other hand, we have
sw E[|Fy @3] < sw E[|F @3] <o =Ry (F.168)
qest—1 qesr—1

for some constant ¢ > 0. Here Lemma G.4 is used in the last inequality.

On the other hand, pick q; # g2 € S™—1. We obtain

|Fa, (&) = Fou (@)1, (F169)
- WL! H (af2)" - (qgff‘t (F.170)
_ ﬁ (@7) - (¢¥2)| - |(a7 %) + (a7 )] ((qng—c)2 n (qgg—cf) (F171)
< oo llh s — gl 172

Combine with (F.166) to conclude
|Fq, (&) — Fg, (Z)]l, < Rillar — g5 (F.173)
hence Ly = R;.

Finally, invoke Lemma G.6 with M = ¢/ Ryn = M, to obtain the desired result and complete
the proof. u
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F.9.2 Deviation inequalities of the Riemannian gradient

In this part, we derive the deviation inequalities between the Riemannian gradient of F'(q)
and that of function f (q). From (F.8), note that, for any g € S~ 1,

. 1 3
grad F (q) = grad)q,—, F'(q) = *quL Z (q" Azy)” Ay, (F.174)

grad f (q) = grad) g, 1 (@) = —Pgr | (1=0)>_a;(g"a;)’ +6]q" A54A4"q | .

j=1
(F.175)
Direct calculation shows that

E [grad F (q)] = grad f(q). (F.176)

The following lemma provides deviation inequalities between F'(q) and f(g) by invoking
Lemma G.6, stated in Appendix G. Recall that M,, is defined in (F.155).

Lemma F.14 Under Assumptions 2.1 and 2.3, with probability greater than 1 — cn™ for some
constants ¢, ¢’ > 0, one has

r2log(M,, M, rlog(M,
sup[grad - (a) — gpad ] (@), < | 0B )y Mo 710
qesr—1 n n n

Proof. Pickany g € SP~!. As the result trivially holds for A” g = 0, we only focus on when
ATq # 0. Define

ATq
q= , with ge S L.
AT g2
By writing ¢ = A” g, observe that
lerad F(q) — grad f(q)| (F177)
1 < 3 5
= ||PgL l3904n Z (q" Axy,)” Azy — [(1 —0)A) + 6 ||C||§ AC]] (F.178)
=1 )
1 ~ (T 3 03 2
< | 2o (a7 Aw) " A= [(1-0)A(0) +01¢I; Ac] 2 (F179)
1 g T 3 03 2
< |50 2 (0" Awe) i~ [(1-0) ()" +01¢1; A¢| 2 (E180)
3 1 LI 3 —o g
< | Aaly || 55 Do (@ @e) @~ [(1-0) @ + 013 4] (F181)
= 2
e S (@) |- 0) @ + 0 a2l (F182)
~ ||3004n = ’ 2 , ’
where we have used || Al[,p< 1 and HATqu < 11in the last two steps. Define
1 3
Fj(z) = T (@"z)" = (F.183)
It is easy to verify that
E[Fy @) = [(1-0) @ +0]dl3d] = 9 (@. (F184)
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We thus aim to invoke Lemma G.6 withn; = r,d; = r,n = r and p = n, to bound from

above
1 n
= Fy (k) -
n
k=1 2

Recall that x;; is sub-Gaussian with parameter o2, forl<i<nandl1<j<r.

sup
gesr—1

Verification of Condition 1: By ||g||o= 1, notice that
lo@l, = || = 0) @ +0d|_ <@ —0) @, +0ldl, < lal.=1.  (F185)

Further note that, for any ¢i,g> € S"*,

~ 03

lg (@)~ (@), < 1 =0) @) - @ +0la-al,  (Fise)
<3(1-0)llg1 — q2ll, + 0 lg1 — =, (F.187)
<3la —all,- (F.188)

Here ||(§1)°° — (G2)°° ||l2< 3@ — G2/, is used in the second step. As a result, B; = 1 and
Ly = 6.

Verification of Condition 2: We still work on the event £’ in (F.165) such that (F.166) holds
for all 1 < k < n. In this case,

3 25 log? n
| Fy ()], = ’3904( q ®;)" T i < 3.t <€ o+ —— . (F.189)
Hence
2

R =C (W + 1og0 ") . (F.190)

Also from Lemma G.8 with some straightforward modifications, we know
sup E[HF@ (@)H;] < sup E[HF x;) || ]g c tr, (E.191)

gesr—1 esr—1

for some constant ¢ > 0. We thus have Ry = ¢~ r

To calculate L, we have

_ _ ~T — \3 -
| Fa, (&) — Fg, (&:)]|, = 39 = H irz) 2 - (@z)’ = ) (F.192)
~ ~ 103 —n4
< s || @™ - @) 1l (R193)
Lo~ o o4

< o1 ld =@, |12, - (F.194)

Here g7 — @53||2< 3]|¢1 — g=||,, is used in the last step. We thus conclude
[Fg, (T) — Fao ()|, < Rillqr — a2l (F.195)

hence Ly = R;.

Finally invoke Lemma G.6 with M = C’(n + r)R; to complete the proof. [

F.9.3 Deviation inequalities of the Riemannian Hessian

In this part we will show that the Hessian of F'(q) concentrates around that of f(q). Notice
that, for any g € SP~! with ( = ATgq,

n

Hess F (q) = _; qul [3 (CT:Bk)Q Axy, (Amk)T . (CTa:k)
k=1

4
T L| Py, (F196)
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Hess f (g) = — { (1 - 0) Py1 [3Adiag(¢™) AT — €I} T| Por
0Py [II¢]2 AAT +24¢¢T AT — 1¢I5 T| Py} (F197)
Straightforward calculation shows that
E[Hess F'(q)] = Hess f(q).

The following lemma provides the deviation inequalities between Hess F' (g) and Hess f(q)
via an application of Lemma G.5, stated in Appendix G. Recall that M, is defined in (F.155).

Lemma F.15 Under Assumptions 2.1 and 2.3, with probability greater than 1 — en™=< for some
constants ¢, c’ > 0, one has

r3log(M,, M,, rlog(M,,
sup |[[Hess F'(q) — Hess f (@), < # + 7L
qesr—1 n n n

Proof. Pick any g € SP~! and consider A7 q # 0. Recall that

~ ATq o arei
qg=———, with qgeS .
AT g2
Observe that
[Hess F (q) — Hess f (q)|l,, (F.198)
1 - 4

= Z PqJ_ [3 (CTCBk)Q A:I?k (A:l?k)T — (CT:Ek)

~(1-0) Pyu [3Adiag (¢ AT — UL T] Pyr — 0Pqu [ AAT + 240 AT — ¢ 1| P |

e I,,] Py (F.199)

(F.200)
< 30i4n Z [3 (CTIII]@)Q Awk (Ain)T - (CT$k)4 Ip] (F.ZOl)
~(1-0)[3Adiag(¢) AT — ICI1T, ] ~ o[ ICIE AAT + 24¢¢TAT —cly 1 |
< g 2 [3(¢T ) Ampal 47|~ [3(1 - 6) Ading(c™) AT + 6 ()3 AAT +24¢¢7 A7)
i (F202) .
1 n
oo 2 (€T L= |01l + (1= 0) ¢l 4, (F203)
- .
ﬁ > [3 (¢ @) meal | - 301 - 0) ding(¢>?) + 0 (IICI3 T, +2¢¢7) |
i " (F204)
1 n
+ 550 2 (€M) =6l — (1 -0 <3 (F.205)
_ 901% |ATaly > [ (@ @) @ial |~ [[ATall; [3 (1 - 0) ding(@®) + 0 (1413 T, + 23" ) |
k=1 o
(F206)
I . N N
+ 147 ally g > (@ )" 0] ATq||, lall; - (- 6) | ATq], gl (E207)
k=1
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Define

Loy L g~ N2 T Loy L ~r N4
i (x) = 903 (@"x) zx”, Pyt () = 3003 (g"x) (F.208)
and
g% @) =30 - 0) diag(@) + 0 (1121 +230") o™ @ =01l + (1 - o) al}
(E.209)
such that
E[FE @) =9 @, E[FF@)]=¢"@ (F210)
from Lemma 2.5. Using ¢ = [|{]|, g and ||{||2< 1 further yields
- ~ Ly _ L4 (o
|[Hess F (q) — Hess f ()|, < ZF L2 (g) 390471];1*} (k) — g™ (q)|-

op

(F211)

Notice that the second term has been studied in Appendix F.9.1. It suffices to invoke Lemma
G5 withn; =d; =ds =71, ny =1 and p = n to bound from above

1 n
SR @) - 97 @)
k=1 op

We note that x;; is sub-Gaussian forall 1 < &k < nand 1 < ¢ < r. W.L.O.G., we assume
2
o =1.

sup
Gesr—1

Verification of Condition 1: By ||gl]/2= 1, notice that

e[ @]|, =[s0-ode@ +o (s +2aa)| @22
<3(1-0)]ql3+30 (F.213)
=3 (F.214)

For any ¢1,g> € S"*,
|e[F @] -E[F @) o (F215)

= [}~ o) dinz(@r®) + 260107 31 - 0) ding(@5) ~ 20087 + 0181151 -0 @3

(F216)
< 3(1—0) ||diag(g7*) — diag(@5”) ||, + 20 [|@1a] — @25 ||, +Olla@ll3 — llg=l5| (F217)
<6(1-0)G2— gl +401la2 — aillo, +20]1G2 — G1,,, (F.218)
<6(g2—qll,- (F.219)

We thus have L; = 6 and By = 3.

Verification of Condition 2: We again work on the event £ in (F.165) such that, for each
i€n),

_ 2 12 (4
|7 (@) = H a"z) @al|| <67t |al el (F.220)
1
<C (9 + Oga ”) . (F.221)
Lemma G.9 in Appendix G with some straightforward modifications ensures
T T
Lo (z.) (FL2 (z; < Lo (o, Lo (0. < of-1p2
qglsl}il E |: 9 (mZ) ( i (mZ)) :| op B q:él}zzl E |: a (wz) (Fq (ml)) :| op - Ca '
(F.222)
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for some constant ¢ > 0. Therefore, we have

2
R =C <9r2 + 1°g0"> . Ry=ch Y2 (F.223)
On the other hand, for any ¢;, g2 € S"7},
_ _ Lo op_ N2 NI
[Pz @ - r2 @) <55 |@e) - @e)||2al],, (F224)
2 ~
p ||w1||2 g1 — @2l (F225)
< 2R1 g1 — gz, (F.226)
on the event &', which implies L; = 2R;.
Finally invoke Lemma G.5 with M = C'R;(n + r) to conclude the proof. [

F.10 Concentration inequalities when A is full column rank

In this section we provide deviation bounds for the objective values, Riemannian gradients
and Hessian matrices between F(q) and f,(q) defined as

on - 4
Fy(q) = -1 (Y74l (F.227)
- 1 <7 4 =7 4
fol@) = =1 [ (1= 0) | ATq|l; + 0] A7q], (F.228)
where
v=((xv")")' v =Dy,
A= ((AAT)+> PA=ULVT. (F.229)
F.10.1 Deviation inequalities between the function values
Recall that M, is defined in (F.155).
Lemma F.16 Under Assumptions 2.1 and 2.2, assume
rlog®n | 4 rlogn }
n > Cmax{ ———, Or°logn, ——= F.230
- X{ 0 ® exf 20 (£:230)

for some constant C' > 0. With probability greater than 1 — cn=¢ — 2e=°"",

f r logn\ rlogn
sup |F, (q) = f, ()] < (Vi0++/logn) m*(eh e ) gn

gesr—1 n

Proof. First we introduce

fola) = 71204%\! g AX|;. (F.231)
The proof of Lemma 2.5 yields
Elfs(@)] = fo(a). (F.232)
Triangle inequality gives
sup |Fy (@)~ f, (@)|< sup [Fy ()~ fy @]+ sup |f, (@)~ [y (@)].  (F233)
gesr—1 gesr—1 ) qE Sp—t )
r s
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Controlling I';:  Define

vy :=VOno2YTq and v := (AX)Tq (F.234)
We have
D= o swp [Pt Y- a"AX])]
12040n gegp—1 4 4
2 2
= o 5 [ (ol = Foull) Qwoll + lenl) (ol + oal)]
1 3 3
< swp o = wally (ool + o) (F235)

Invoking Lemma F.17 gives

1 7
P {Fl < (\/ﬁ—i— \/logn) i n\/r%} >1 -2 —cn"¢". (F.236)

Controlling I'y:  Notice that that A” A = I,.. We can thus apply Lemma F.13 by replacing
F(q) and f(q) with £, (g) and f, (g), respectively, to obtain

log( M, M,, rlog(M, /
P {Fz < rlog(My) 4o D08 o8 n)} >1—cn"°.
on n n

Combining the bounds of I'; and I'; and using (F.230) to simplify the expressions complete
the proof. [ |

Recall that, for any q € SP~1,
vy :=VOno2YTq and v := (AX)T q
with A=U,V{ and Y = DY

Lemma F.17 Assume n > Cr/6? for some constant C > 0. With probability 1 — 2e=¢" — 2n=¢
for some constant ¢, > 0, one has

1
sup |lvo —vill, S o (\/T@ ++/log n) \/7 (E.237)
gesp—1 9 n

Furthermore, if additionally (F.230) holds, then with probability 1 — 2¢=°" — ¢/'n=<"",

sup |jvifl, < (9na4)1/4, sup |jvoll, < (9na4)1/4. (F.238)
qgesr—1 gesp—1

Proof. We work on the event &', defined in (F.165), intersecting with
&= {H\/enUZDA Al < % r} : (F.239)
op n

which, according to Lemmas G.3 and G.1, holds with probability 1 — 2e™" — 2n~¢". Recall
Y = DY = DAX. By definition,

v = w1 = max ‘qT (A - vanUZDA) mt) (F.240)
ten
< gn?>]<||wt||2||q||2Hv@no?DA -4 (F241)
en op
<o (\/re ++/log n) ;\/7 (by &' NE"). (F.242)
n
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To bound from above ||v1 ||4, by recalling F(q) and f(q) from (F.154) with A in lieu of A,
we observe that

o114 = [lg” AX || = 120n0"|F(q)|< 120n0" (|F (@) — f(a)|+]£(q)])- (F.243)

By Lemma F.13 and | f(q)|< 1 from its proof, we obtain

sup vl < 120no? <1+ (F.244)

qesSr—1

rlog(M,) M, log(Mn)>
- 7 + - = 7
On n n

with probability at least 1 — (nr)~> — ¢M;; " for some constants ¢,¢ > 0. Here M, is
defined in (F.155). The result then follows by invoking condition (F.230) and noting that
log M,, < logn.

Finally, since
[volla< [Jv1lla+]vo — v1[a< [Jor]la+n*|lvo — vi]loo,

the last result follows by combining the previous two results. [ |

F.10.2 Deviation inequalities between the Riemannian gradients

In this section, we derive the deviation inequalities between the Riemannian gradient of
F,(g) and that of f, (q). Note that, for any g € SP~1,

. on " _ 3
grad Fg (q) = graquH2:1 Fg (q) = _E ql Z (qTYk) }/Vk-7 (F245)
k=1

T

grad f, (q) = grad g, -1 fo(q)=—P,. [(1 —0) Zﬁj(qTAj)g +0|q" A|3AATq | .

j=1
(F.246)
Here Y and A are defined in (F.229).
Lemma F.18 Under Assumptions 2.1 and 2.2, assume
rlog®n 3 2 r2logn rlogn}
n > Cmaxq ———, Or°logn, , , F.247
= { 0 N M PN (F247)

for some constant C' > 0. With probability greater than 1 — cn=¢ — 2=,

- rlogn \/r2 logn 9 log®n\ rlogn
d F, — grad < 0
S, lgrad Fy (q) — grad fy (q)||, < \/ A\ T T -

Proof. Recall f, (q) from (F.231). Its Riemannian gradient is

grad fy (q) := grad) g, fq (@) = fﬁPqL ]; (qTAa:k)S Az (F.248)
We have
Bl lgrad Fy (q) — grad f, (a) |12 (F.249)
< suwp lgrad Fy (q) — grad f, (q) [|l2 + S, lgrad fy (q) — grad fy (q) |2 (F.250)
T r,
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Controlling I'; Recall that vy and v; are defined in (F.234). We have:
I't = sup ngad Fg (g) — grad fg (q>||2

gesr—1
1 n _ _ n B _
= Ssup m 927120'4qu Z (qTYk)B Yk — PqJ_ Z (qTAwk)B A(Bk
qesr—t k=1 k=1 2

1 n B B
< sup ——— Z(VGnaQkaS’k—Amkvfk>

gesr—1 39(74n

2
n

1 _ _
< sup ——— (v Ono?Y;, — A:ck) v,
qeso—1 3004n ; ,
INT!
n
su (3, —v

+ qupp . 3904 g 0k lk) )

ISP

For I'11, we obtain

Ci= sw oo 3004 ‘(\/Gna DA - A) kav% (F.251)
< sup ’ Ono? F.252
gesr—1 390’4 op ( )
< 3 — vl Ono?
n qESP 1 3904n ( ) ( 1k) 2) ‘ op
(F.253)
Observing
n 1 B 3 n
Z xpvd, = 39n04ﬁ ||ATqH2 Z Fy(xr)
k=1 =
with Fg(x;) defined in (F.183) and ¢ = I AT;” € S"~1. We also have
~ (F184) ~o ~12 A
ElFy(@n)] = 9@ "= [(1-0) @ + 01143 4]
with

sup [lg(@)[l2< 1.
qGSr 1

Lemma F.14 and its proof guarantee that

n -~ 3 1 n — 3 ~
SUp o1 Zwkvi < ||A"ql|, sup *ZFG(wk) - +[|A%q|; sup [lg(@)ll,

gesr—1 no Pt ) gesr—1 (|1 el 9 gesr—1

(F.254)
2]og(M,, M, rlog(M,,
<1 g q T log(Mn) | My rlog(Mn) (F.255)
on n n

<1 (F.256)

with probability at least 1 — cn~<', where M, is defined in (F.155). We used condition (F.247)
to simplify the expressions in the last step and HATqHz < 1in the second step. Invoke £”
in (F.239) to conclude

i1 € 24 /= (1+Th2) (F.257)

| =
=
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"

with probability at least 1 — cn~¢ — 2e=¢"",

To control I';5, we have

Ty = sup, 3904 Zwk vl —v3)) (F.258)
1 n n
< NP Shan ( > @i (vor — vie)vd|| +{|D Tkvor (vor — vik) (vor + vik) )
k=1 2 k=1 2
(F.259)
< 1 X |lop su (||'v°2 o (vg —v1)|, + ||v5? o (vo — v1)]|,) (E.260)
3 9 o1 op P 1 0 1)l 0 0 1|9
no qes
< il Xlop sup (ool + 01]) o0 — w1l (F261)
qes
where in the penultimate step we used
v*? o v'|[3= Zv 2 < %Il

Invoking Lemma G.2 and Lemma F.17 yields
s < (W ++/log n) \f (F.262)
with probability at least 1 — cn=¢ — 2e=¢"".

Controlling I'>:  Since AT A = I, and direct calculation gives

E [grad f (q)] = grad f, (q) (F263)
Applying lemma F.14 with F(q) and f(q) replaced by f, (q) and f, (g), respectively, gives
2 /
P{M rbgwmfmflogm»}zl_mc_ (F264)
on n n

Finally collecting (F.257), (F.262) and (F.264) and using (F.247) to simplify the expression
finish the proof. |

F.10.3 Deviation inequalities of the Riemannian Hessian

In this part we will show that the Hessian of F),(g) concentrates around that of f,(g). Notice
that, for any g € S71,

Hess F ( ZP,,L[ ')’ i (Yk)T—(qTYk)“Ip] Py, (F.265)

Hess f, (q) = —{(1 —0) Py, [SAdiag((ATq) ||ATq||4 ] gL -
0P, [ |2 AAT + 2AATqq" AAT — |q" A|}1,] P, } (F.266)
Here Y and A are defined in (F.229).

Lemma F.19 Under Assumptions 2.1 and 2.2, assume

rlog®n rlogn 12 T3logn}

0a92\/§79\/§7 0

n > C' max { (F.267)
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"

for some constant C' > 0. With probability greater than 1 — en=¢ — 4",

sup |[Hess F, (q) — Hess f, (q)

I,

logn r r3logn 9 logZn\ rlogn
(\/r\/é—l—ﬂﬁ +logn>4/02n+4/ on + [ Or° + 7 -

Proof. Recall f, (q) from (F.231). Notice that

sup |Hess F, (q) — Hess f, (q ||
qeSr—1

~~

Iy

+ sup HHeSS fq (@) — Hess JFg (Q)H

gesSr—1
-

sup  IHess Fy (g) — Hess fy (q)ll,,
csp—

I

Straightforward calculation gives

Hess f, (q) = — 3904 ZPqL[ ¢"AX,)" AX, (AXy)" - (a"AX) 1| o

It remains to bound from above I'; and I'; respectively.

Controlling I';:  Using the definition of vy and v; in (F.234), we have:

I'y = sup ||HessFj(q) —Hess f, (q)HOp
qeSr—1

sup
= 300N gegp

0n’o* [3Y ding(¥q)*)¥" — |V q]; 1]

Ono?Y diag (vg?) YT — AX diag (v5?) (AX)T

< sup
- 00'477; qegpfl op

>

B1

1 4 4 ‘
+ g s [l = 3]

B2

Upper bound for 3;: By adding and subtracting terms, we have

1
sup
0oin gesp—1

(VOno'Y — AX) diag(v;?) X 7T

pr =

op

611

VOnodY diag(v$?)(VOnolY — AX)T

1
+ — su
Ooin qegzgl op

>

Biz

VOnotY diag(v$? — v3?)VonotY ™

1
+ —— su
90’4 qu,P 1 op

513
For 311, by recalling that (F.229), we have

1
Bi1 = 7—— sup

(VOno*DA — A)X diag(v{?) X7
Ooin gesp—

op
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(F.268)

(F.269)

(F.270)

(F271)

(F272)

(F.273)

(F.274)

(F.275)

(F.276)

(F.277)

(F.278)

(F.279)



Onot

< su
Ooin qesp 1

(F.280)
op

E vltwtwt
t=1

Recalling (F.208) and (F.209), we have

1 n _ N B 1 n N
o | vkl | < [ATal g™ @]+ 1ATals]|= S PR @) - 9@
t=1 op o t=1 op
(F281)
1 & N
<llg" @, + EZ (@) — g™ (@) (F.282)

op
withg = ATq/||ATq||, € """ and ||g*2(§)||op< 3. Hence, according to the proof of Lemma
F.15, invoke Lemma F.15 and £ in (F.239) together with (F.267) to conclude that

1 ’ o
P{ﬁu < \/7} >1l—cn =2 °". (F.283)
O\ n

By similar arguments and Y = DAX, we have

— Ono? Ono* F.284
Bi2 < s 4n q:;lpp ) gvltwtwt ’ no no op ( )
Since on the event £”, condition (F.267) ensures
‘ Ono’ Ono <1 (F.285)
op
We obtain
1 ’ 1’
P {612 < \/?} >1—cn™ -2 7. (F.286)
O\ n
Finally, on the event £,
Biz < 7 sup Z(vlt — vgy) (v + vor )l ’ Onot (F.287)
n qesp—1 t=1 op
1 n
Nz ;(vu — v0r) (V11 + vor )] (F.288)
= op
2
S q:ggl\\Xllopllvo — 1o ([|vollootv1]l0) - (F.289)

Since on the event £’ in (F.165),

[v1]so= ?é?}]<||qTAmt||oo$ o(Vr6 + +/logn),

and
[volloe < [[v1llcc+llvo — V1[0,
invoke Lemma F.17 and Lemma G.2 to obtain

3 |
b1z < (rf + logn) \/7 «/T rl;;g n (E.290)

with probability at least 1 — 4e=“" — ¢'n
Upper bound for 2 Notice that
1
Po= - sup |Fy(q)— fy(q)l- (F.291)

4 gesp—1
Display (F.236) yields

P {52 < (m+ +/log n) %, /\/%n} >1—2 " —cnc' (F.292)
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Controlling I'>; Notice that AT A = I, and simple calculation gives

E [Hess f, (q)] = Hess f, (q) - (E.293)
Apply Lemma F.15 with F(q) and f(q) replaced by f, (¢) and f, (g), respectively, to obtain
3 /
P{M vmwmmmgw}zl_mc_ (F294)
on n n

Finally, collecting (F.283), (F.286), (F.290), (F.292) and (F.294) and using condition (F.267)
to simplify expressions complete the proof. [ |
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G Auxiliary lemmas

Recall that the SVD of A is U4 DAV} and D is defined in (2.6).

Lemma G.1 Under Assumptions 2.1 and 2.2, assume n > Cr/0? for some constant C' > 0. With
probability at least 1 — 2e™°" for some constant ¢ > 0, we have:

1 /r
< oaf—. 1
o~ 9\/; G1)
Proof. From (F.129), we have

VonaD = UsD;'UY + Ua (VOno?Q"A™/Q - D) U

2 T
- A
H\/Hno DA-ULV

where U contains the left r singular vectors of Y and U4 = UQ. It then follows

H\/Ona?DA —uuvrl| = HUA (\/HnonTA’l/QQDA - Ir> vT (G.2)
op op

— |vono2@" A 2@D, ~ 1, op (G3)

The result follows by invoking (F.142). [ |

Lemma G.2 Under Assumption 2.1, assume n > Cr/ 0? for some constant C' > 0. One has
1X[|,, < Véno? (G.4)
with probability at least 1 — 2e~°". Here c is some positive constant.

Proof. Assume o2 = 1 without loss of generality. Recall from (F.141) that

; <ec <\/Z+ 2) (G.5)

with probability at least 1 — 2¢~¢" for some constants ¢, ¢ > 0. With the same probability,
it follows immediately

1
— XX ||op< 0+ ¢ <\/?+ T) <9
no n n

n > Cr/6?
for some constant C' > 0. [ |

1
HQXXT —0I
no

provided that

Recall that X = (x1,...,2,) € R™*". The following lemma provides the upper bound of
maxie[n] ||.’13L ||2

Lemma G.3 Under Assumption 2.1, we have
maxfe |25 o (Vrf -+ /iog(m)) (G#)
i€n

with probability at least 1 — 2n~°. Here c is some positive constant.

Proof. Pick any i € [n] and assume 02 = 1 without loss of generality. By [16, Theorem
7.30], we have

IF’{‘H:cnger) zt} < 2exp (@) (G.7)

Take t = clogn to obtain

IF’{ A r@‘ < c’(«/r&lognJrlogn)} >1—2n"¢

for some constants c, ¢/, ¢ > 0. Take the union bounds over 1 < i < n to complete the proof.
|
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Lemma G.4 Suppose x € R" has i.i.d Bernoulli-Gaussian entries. Let Fy (x) be defined as equa-
tion (F.156). We have

sup E [||F (2)]3| < co? (G8)
qur—l

for some constant C' > 0.

Proof. Note that z = bo g where b <" Ber(0) and g vrd N(0,0%). We assume o = 1 for
simplicity. Define Z as the nonzero support of « such that we could write x = Pz (g). We

have

E[IF, @3] = (@)E |(a"2)°] = (1;)1@ [(Pr(@).9°].  (©9)

Since
E | (P Sl = (M) Ez||P 5 G.10
(Pz(q).9) (M Ez | [Pz (q)llz] - (G.10)
we further obtain
Er|IPr @3] = Y ahlnerad,lnerad Inerdd, ler.  (G1)
k1,k2,k3,ka

We consider four scenarios.

e Only one index among ki, k2, k3, k4 in Z. In this case we have

Ez|IPz @)l3] = 0" i, <0 llal} (G12)
k1

e Two index among k1, k2, k3, k4 in Z. In this case we have

Ez [IIPz (Q)IIS] =0>>" [}, b, + db di, + 4, a7, ] < 307 gl (G.13)
k1,k2

o Three index among k1, k2, k3, k4 in Z. In this case we have

Er [Pz (@3] =6* Y [akaf,al,] < 6° llal (G14)
k1,k2,k3

o All four index among k1, k2, k3, k4 in Z. In this case we have

Br[IPr(@)l3] =0 > [ttt ] <0'lali  (G15)
k1,k2,k3,ka

Use ||g||2= 1 and collect the above four results to obtain

Ez 1Pz (@)l3] = 0+ 362 + 6% + 0" < 16 (G.16)
Here ¢; > 6. Plugging back into (G.10) yields
6
2 1 -1
Ellfa @)l3] < (1) 17 < €0 (G17)
and finishes our proof. [ |

The following results provide deviation inequalities of the average of i.i.d. functionals of
a sub-Gaussian random vector / matrix. They are proved in [44] and we offer a modified
version here.
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Lemma G.5 (Theorem F.1, [35]) Let Z1,Z,, ..., Z, be i.i.d realizations of a random matrix
Z ¢ R™*"2 satisfying

2 , ,
E[Z] =0, P(|Z;]>t) < 2exp (_M>’ V1<i<ng,1l<j<ng. (G.18)

For any fixed q € S"~!, define a function fq : R™1>"2 — R4 *42 sych that the following conditions
hold.

o Condition 1. There exists some positive numbers By and Ly such that
IE [fq (Z)]ll,, < By, (G.19)
IE [fa, (2)] = Elfa, (Z)lllo, < Ly lar — @2ll,, Va1,q2 €S™7 (G.20)

op —
e Condition 2. Define Z as a truncated random matrix of Z, such that

Zij, if|Zij|< B

zZ=2+2 Zij = {O, otherwise (G21)

with B = 20+ /log (pninz). There exists some positive quantities Ry, Ry and L such that

E[(fa (2)" 12 ()]l } < Por
(G.22)

lfar (Z) = fa: (Z),, < Lsllar — @2l Van,q2 € 5™ (G.23)

12 (D), < Br, max {|[E[1q (2) (fa (2))"]],, |

op —

Then with probability greater than 1 — (ninap) > — eM =" for some constants ¢,¢ > 0 and
M = (Ly+ Ls)(p+ dy + dz), one has

< (d1 N d2)By n Ronlog(M) n Rlnlog(M)'
nin2p p p

sup
gesn—1

© Y 1a(Z) ~Elf, (2)

op

Lemma G.6 (Corollary F.2, [35]) Let Z1,Z>, ..., Z, be i.i.d realizations of a sub-Gaussian ran-
dom vector Z € R™ satisfying

2

t
E[Z]=0, P(]Z;|>t) < 2exp (—w>, V1 <j<mny. (G.24)

For any fixed q € S*~1, define a function fq : R™ — R satisfying the following conditions.
e Condition 1. For some positive numbers B¢, Ly > 0,

IE[fq (Z)]ll, < By, (G.25)
IE[fq (Z2)] —E[fe. (D)l < Ly ll@r — @2ll,  Vai,q2 €S™'. (G.26)

e Condition 2. Let Z be the truncated random vector of Z, such that

- - _ Z;, if|Zjl< B
Z=7Z+2Z, Z;j =13 J 27
* / {0, otherwise (G.27)

with B = 20+/1og (pn1). There exists some positive numbers Ry, Ry and L ¢ such that

Ifa (@), <R E[[lfq(2)]3] < Re. (G28)
|fas (2) = far (Z)]|, < L (@) las — @elly,  Var,@2€8™.  (G29)
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Then with probability greater than 1 — (n1p) ™% — eM =" for some constants ¢,¢’ > 0 and M =
(Ly + Lf)(p + dv), one has

By n Ronlog(M) . Rinlog(M)
nip p p

sup
QGS" -1

0> 1a(Z) - Elfy(2)
1=1

op

Our analysis also uses the following lemmas that have already been established in the ex-
isting literature.

Lemma G.7 (Lemma 4, [44]) Let v € R" contains i.i.d. Ber(0) random variables. We have
3t2nf
2t+6

B[lollo> (1+¢)n6] < 2exp ( (G30)

Lemma G.8 (Corollary F.5, [35]) Suppose x is i.i.d Bernoulli-Gaussian random variables with
parameter (6,02 = 1). Forany q € S"~1, let

We have

sup K [qu (w)lli] <Co'r, (G.31)
qgesSr—1

for some constant C' > 0.

Lemma G.9 (Corollary F.7, [35]) Suppose x € R" contains i.i.d Bernoulli-Gaussian random
variables with parameter (6,02 = 1). Forany q € S"~', let

fq(x) = é (qT:v)2 xx’.

We have
sup || [fq (@) (fq (@))"]]|,, < CO'r?, (G.32)

qEST* 1 0}7

for some constant C' > 0.
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