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ABSTRACT

Recent advances in AI-generated voices have intensified the challenge of detecting
deepfake audio, posing further risks for the spread of scams and disinformation.
To tackle this issue, we establish a large scale public voice dataset DeepFakeVox-
HQ, comprising 1.3 million samples, including 270,000 high-quality deepfake
samples from 14 diverse sources. Despite previously reported high accuracy, ex-
isting deepfake voice detectors struggle with our diversely collected dataset, and
their detection success rates drop even further under realistic corruptions and ad-
versarial attacks. We conduct a holistic investigation into factors that enhance
model robustness and show that incorporating a diversified set of voice augmen-
tations is beneficial. Moreover, we find that the best detection models often rely
on high-frequency features, which are imperceptible to humans and can be easily
manipulated by an attacker. To address this, we propose the F-SAT: Frequency-
Selective Adversarial Training method focusing on high-frequency components.
Empirical results demonstrate that our training dataset boosts baseline model per-
formance (without robust training) by 33%, and our robust training further im-
proves accuracy by 7.7% on clean samples and by 29.3% on corrupted and at-
tacked samples, over the state-of-the-art RawNet3 model.

1 INTRODUCTION

Existing Deepfake (Training)

DeepFakeVox-HQ (Testing)

Attacked Existing Deepfake (Testing)

Corrupted Existing Deepfake (Testing) Decision Boundary

Figure 1: The distribution of deepfake samples over pre-
dicted scores using the state-of-the-art detector (Jung et al.,
2022) trained on the In-the-Wild dataset (Müller et al.,
2022), with a decision boundary at 0.5. Tests on original,
corrupted, attacked, and real-world deepfake audio reveal
significant shifts in prediction scores, highlighting that train-
ing solely on current public datasets without robust training
methods leads to poor performance.

AI-generated voices have become
increasingly realistic due to larger
datasets and enhanced model ca-
pacities (Ju et al., 2024; Neekhara
et al., 2024), and they have been
used in many important applica-
tions (Calahorra-Candao & Martı́n-
de Hoyos, 2024). However, the suc-
cess of AI-synthesized human voices
poses significant security risks, in-
cluding deepfake voice fraud and
scams (Tak et al., 2021; Sun et al.,
2023; Yang et al., 2024). A recent
CNN report reveals a fraud in Hong
Kong where a finance worker sent
$25 million to scammers after a video
call with a deepfake ‘chief financial
officer’. The voice was created by an AI model, highlighting the risk of such technology.

Due to the importance of this problem, a number of work has investigated detecting AI-generated
audio. Despite previously reported high detection accuracy on public datasets (Todisco et al., 2019;
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Filtering features below 4000 Hz

Filtering features below 7000 Hz

Figure 2: We apply a high-pass filter to audio samples to remove low-frequency components. The
x-axis represents the center frequency of the filter applied. Notably, there is a marked decline for
RawNet3 Model in detection performance for real audio starting at 4000 Hz and for fake audio at
6000 Hz, suggesting that existing audio models often rely on high frequency signals for prediction.

Frank & Schönherr, 2021), existing deepfake voice detectors perform poorly under real-world con-
ditions (Xu et al., 2020; Müller et al., 2022; Radford et al., 2023). This is because the established
benchmarks are often trivial, small, outdated, and homogeneous. Consequently, models trained and
validated solely on these datasets fail to generalize to more diverse and challenging real-world deep-
fake samples. Moreover, deep learning models for audio are particularly vulnerable to adversarial
attacks (Szegedy et al., 2013) (Zhang et al., 2019), where an attacker can subtly alter audio inputs
in ways that are imperceptible to humans but mislead models into incorrect classifications. Fig-
ure 1 illustrates a dramatic shift in the models’ prediction scores when exposed to these factors,
underscoring the need for more robust training methodologies.

To address the above limitations, we first created the largest deepfake audio dataset to date,
DeepFakeVox-HQ, including 270,000 high-quality deepfake samples from 14 diverse and distinct
origins. We show that simply training on our collected dataset can produce new state-of-the-art
models.

Moreover, we find that even the state-of-the-art AI-voice detection model (RawNet3) often depend
on high-frequency features to make decisions (see Figure 2), which are imperceptible to humans.
On the other hand, the low frequency signals can be heard by humans but are not relied on by the
model to make predictions. As a result, natural corruptions in high frequency or attackers can easily
manipulate the model by changing the high frequency signals, reducing the detection’s robustness.

In an initial study, we observed that standard adversarial training on raw waveforms not only fails
to bolster robustness but also diminishes performance on unattacked data. To address these short-
comings, we propose Frequency-Selective Adversarial Training (F-SAT), which focuses on high-
frequency components. Since our adversarial training is targeted, we can mitigate specific vulnera-
bilities without touching the true features at lower frequencies, thus enhancing the model’s resilience
to corruptions and attacks while maintaining high accuracy on clean data.

Visualizations and empirical experiments demonstrate that using only our training dataset, we can
produce state-of-the-art models, achieving a 33% improvement on the out-of-distribution portion of
our test set, which includes 1,000 deepfake samples from the top five AI voice synthesis companies
and 600 samples from social media. Additionally, by incorporating random audio augmentations,
our model achieves the highest accuracy across 24 different types of corruptions. Furthermore, after
applying F-SAT, our model further achieves a 30.4% improvement against adversarial attacks in the
frequency domain and an 18.3% improvement against unseen attacks targeting raw waveform data
in the time domain.

2 RELATED WORK

AI-synthesized human voice: AI voice synthesis generally falls into two categories: text-to-speech
(TTS) and voice conversion (VC). TTS systems convert written text into spoken audio using a de-
sired voice. This process typically involves three main components: a text analysis module that
transforms text into linguistic features, an acoustic model that converts these features into a mel-
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Dataset #Real Utt #Fake Utt Language Conditions Year #Fake Source Fake Type

ASVSpoof19 12k 109k English Clean 2019 17 TTS, VC
ASVSpoof21 22k 589k English Clean, Noisy 2021 UNK TTS, VC

WavFake 14k 90k English, Japanese Clean 2021 7 TTS
ADD2022 61k 251k Chinese Clean 2022 UNK TTS, VC

In-The-Wild 20k 12k English Clean, Noisy 2022 19 TTS
LibriSeVoc 13k 79k English Clean 2023 6 TTS
Our Train 690k 640k English Clean, Noisy 2024 40 TTS, VC
Our Test 3k 3k English Clean, Noisy 2024 15 TTS, VC

Table 1: Comparison of Deepfake Audio Datasets

spectrogram, and a vocoder. Some of the leading TTS models include StyleTTS (Li et al., 2024),
VoiceCraft (Peng et al., 2024), XTTS (Casanova et al., 2024), and Tortoise-TTS (Betker, 2023), and
are known for their ability to produce high-quality audio that closely mimics real human speech.

VC models, in contrast, take an audio sample from one person and transform it to sound like an-
other person for the same speech content. Recent VC approaches primarily operate within the mel-
spectrum domain (Ju et al., 2024; Shen et al., 2023; Popov et al., 2021), using deep neural networks
to shift the mel-spectrograms from the source to the target voice.

Detection Method: AI deepfake detection models based on deep learning can be grouped into two
main categories: those processing raw audio end-to-end and those analyzing spectrum. The first
category includes models like RawNet2, which employs Sinc-Layers (Ravanelli & Bengio, 2018)
to extract features directly from waveforms, and RawGAT-ST, which utilizes spectral and temporal
sub-graphs (Tak et al., 2021). RawNet3 (Jung et al., 2022), which begins by using parameterized fil-
terbanks (Zeghidour et al., 2018) to extract a time-frequency representation from the raw waveform
and then is followed by three backbone blocks with residual connections, a structural approach that
sets it apart from ECAPA-TDNN (Desplanques et al., 2020).These models process the audio data in
its raw form to capture nuanced details directly impacting model performance.

The second category of AI deepfake detection models involves transforming raw audio into spectro-
grams for analysis. This process utilizes extracted features such as Mel Frequency Cepstral Coef-
ficients (MFCCs) (Sahidullah & Saha, 2012), Constant Q Cepstral Coefficients (CQCCs) (Todisco
et al., 2017), bit-rate (Borzı̀ et al., 2022). The analysis of these features is conducted using tradi-
tional machine learning methods like Gaussian Mixture Models (GMMs) (Todisco et al., 2019) or
advanced neural networks such as Bidirectional Long Short-Term Memory (Bi-LSTM) (Akdeniz &
Becerikli, 2021), ResNet (Alzantot et al., 2019), and Transformers (Zhang et al., 2021). These meth-
ods enable deeper and more intricate pattern recognition, enhancing the model’s ability to identify
and classify deepfake audio accurately.

Adversarial Attack: Neural networks are highly vulnerable to nearly imperceptible perturbations,
known as adversarial attacks (Szegedy et al., 2013). Although initial studies focused on image mod-
els, speech tasks are similarly susceptible. Notably, adversarial attacks generated on spectrograms
can deceive 2D CNN models and, when converted back to waveforms, can also effectively fool 1D
CNN models (Koerich et al., 2020).

Adversarial training, initially developed for image processing systems (Madry et al., 2017; Mao
et al., 2019), has been increasingly adapted to the audio domain (Chen et al., 2023), particularly to
enhance the robustness of applications such as Automatic Speech Recognition (ASR) and speaker
verification systems. Another defense method, smoothing, based on additive noise masking, has
demonstrated great improvements in model robustness for these tasks (Olivier et al., 2021; Cohen
et al., 2019). Additionally, a defensive strategy that employs diffusion models to counter adversarial
audio attacks (Wu et al., 2023) effectively smooths out perturbations and prevents attackers from
altering audio signals without significantly compromising signal quality.

While these techniques enhance robustness, they hurt the detection on unattacked audio, highlight-
ing a trade-off between robustness and accuracy (Zhang et al., 2019; Tsipras et al., 2018). This
compromise is particularly critical in scenarios that demand high accuracy and user satisfaction.
Furthermore, the generalizability of adversarially trained models to new and unseen attacks remains
limited (Rajaratnam et al., 2018), raising questions about their effectiveness in rapidly evolving
threat environments.
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3 DEEPFAKEVOX-HQ

3.1 TRAINING DATASET

In this section, we introduce a new training dataset and a rigorous test set. In contrast to prior dataset,
our dataset is large, diversified, realistic, and up-to-date, as shown in Table 1. Prior detectors show
poor generalization capabilities in realistic settings, as shown in Figure 8. Both our training and test-
ing datasets integrate the latest advancements in AI voice synthesis technologies. Additionally, the
testing dataset includes several new models not covered in the training dataset, specifically designed
to test the generalization ability of our detection systems.

High quality deepfake samples: The limitations of existing public datasets, which often lack high-
quality deepfake samples, can potentially impair model performance. To address this, we have in-
vestigated more than 30 recent advancements in Text-to-Speech (TTS) and Voice Conversion (VC)
models developed in the past few years. Our training dataset now includes deepfake audio sam-
ples generated using the top seven TTS models: MetaVoice-1B (Liu et al., 2021), StyleTTS-v2 (Li
et al., 2024), VoiceCraft (Peng et al., 2024), WhisperSpeech (Radford et al., 2023), VokanTTS,
XTTS-v2 (Casanova et al., 2024), and Elevenlabs. We use four datasets—VCTK (Yamagishi, 2012),
LibriSpeech (Panayotov et al., 2015), In-The-Wilds (Müller et al., 2022), and AudioSet (Gemmeke
et al., 2017)—to generate deepfake audio. These datasets include both clean, high-quality and noisy,
low-quality real audio, ensuring that the deepfake audio produced is highly diverse and accurately
reflects real-world conditions.

Reference data: For both fake and real audio, having only high-quality samples is insufficient. A
broader diversity of samples is essential for the training dataset. Thus, for real audio, we utilize
portions from six public audio datasets: VCTK, LibriSpeech, AudioSet, ASRspoof2019 (Todisco
et al., 2019), Voxceleb1 (Nagrani et al., 2017), and ASRspoof2021 (Liu et al., 2023), with half
consisting of clean audio and the other half of noisy audio. For fake audio, we include two low-
quality fake audio datasets: WaveFake (Frank & Schönherr, 2021) and ASRspoof2019 to further
enhance the diversity of the training material.

3.2 TESTING DATASET

Our test dataset comprises approximately 6,000 samples, with an equal balance between real and
fake audio. All data used is legally permissible, as detailed in Section A.1, where we discuss the
sources and usage policies in further detail.

Real audio samples are sourced from recent celebrity speeches and conversational videos. For the
fake audio, we not only utilize samples created using the seven latest TTS models but have also
expanded our dataset to include contributions from eight of the most advanced AI voice synthesis
models or commercial software currently available, namely CosyVoice (Du et al., 2024), Resemble,
Speechify, LOVO AI, Artlist, and Lipsynthesis. Additionally, this set includes fake audio directly
collected from social media platforms like YouTube and X, further enriching the dataset with a
diverse range of real-world scenarios. This comprehensive composition is strategically designed to
rigorously test the generalization capabilities of our model.

Insight: Figure 8 shows that training with previous public datasets yields lower accuracy on ours.
Additionally, removing high-quality deepfake samples from our training set significantly also re-
duces accuracy, highlighting their importance.”

4 METHOD

In this section, we present our selective adversarial training approach, F-SAT. We also present a
taxonomy of the most common corruptions and attacks in audio processing, which can be used
for robust evaluation in realistic settings. Additionally, we discuss the implementation of Rand-
Augmentation for audio to further enhance the robustness of our detection system.
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Perturbed audio (x’)
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Step1: Decompose Step2: Iteratively find worst-case perturbation
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Loss (H( ො𝑦, y))

Figure 3: F-SAT Pipeline

4.1 F-SAT: FREQUENCY-SELECTIVE ADVERSARIAL TRAINING

Let x be a waveform input audio, and y be its ground-truth category label, To perform classification,
neural networks commonly learn to predict the category ŷ = Fθ(x) by optimizing the cross-entropy
H(ŷ,y) between the predictions and the ground truth. We use RawNet3 (Jung et al., 2022) that can
process waveform audio input. The network parameters θ are estimated by minimizing the expected
value of the objective:

Lc(x,y) = H(Fθ(x),y),

Time domain Attack: Adversarial attacks on audio can be directly added to the waveform. Let the
additive perturbations be δ. For attacks in the time domain, we directly add δ to the waveform x.
Due to the huge amount of freedom of the attack vector δ, the added attack vectors are often high
frequency. We formulate this attack as: x′ = x+ δ.

Frequency Domain Attack: Attacks can also be applied in the frequency domain, accessed through
a reversible Fourier transformation of the waveform. We transform the waveform x to the frequency
domain X using the Short-Time Fourier Transform (STFT). The attack modifies X by adding δ,
yielding X′ = X + δ. The Inverse Short-Time Fourier Transform (ISTFT) then reverts X′ back to
the time domain, creating the manipulated audio waveform x′.

Frequency-Selective Attack: Compared to time-domain attacks, frequency-domain attacks provide
an inductive bias that enables the crafting of more controlled perturbations, such as those within
a restricted bandwidth. Building on this, we introduce a Frequency-Selective Attack that targets
specific frequency ranges within the magnitude component of a waveform. We define this attack as

x′ = s(x, δ, fl, fu)

where fl and fu represent the lower and upper frequency boundaries of the range where the attack
is to be applied. The procedure can be described as follows:

Starting with STFT result X, we first compute its magnitude component Xρ and phase component
Xϕ. To map the frequency range to the index range of the STFT spectrum, we calculate the lower
and upper boundary indices rl and ru of the FFT spectrum using formulas:

rl =

⌊
fl × nfft

sr

⌋
, ru =

⌈
fu × nfft

sr

⌉
,

where nfft is the number of FFT points, and sr is the sampling rate of the original signal x. We then
define a mask function M using a diagonal matrix D such that

Dkk =

{
1 if rl ≤ k ≤ ru
0 otherwise

This matrix D selectively targets the desired frequency components within the specified range
[rl, ru] for perturbation. The selective perturbation is then defined as:

δs = M(δ, rl, ru) = D · δ.

By adding this perturbation δs to the magnitude component of the spectrogram, the perturbed spec-
trogram can be represented as:

X′ = (Xρ + δs) · ejXϕ = (Xρ +D · δ) · ejXϕ

5
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Finally, we employ the ISTFT to convert the attacked spectrogram X′ back into the time-domain
signal x′, thus generating the attacked audio waveform x′.

Moreover, attackers design these worst-case perturbations to disrupt a trained network Fθ, aiming
to maximize misclassifications by optimizing the objective:

x′ = argmax
x′

Lc(x
′,y), s.t. ∥x′ − x∥q < ϵ,

where the perturbation δ = x′ − x is constrained by the q norm to be less than ϵ, ensuring minimal
deviation.

F-SAT: Based on the Frequency-Selective Attack, we propose F-SAT, an adversarial training method
which optimizes perturbations in the frequency domain by targeting the magnitude component
within specific frequency ranges.

x′
n+1 = Πx+S

(
x′
n + α ·M

(
sgn

(
∇x′L(s(x, δ, fl, fu), y)

)
, fu, fl

))
,

where Πx+S represents the projection onto the allowable perturbation set S, defined by the condition
∥x′ −x∥p ≤ ϵ. The parameter α denotes the step size of the update, and ∇x′L is the gradient of the
loss function with respect to the perturbed input x′.

As illustrated in Figure 3, after K iterations (where n ≥ K), we feed the most perturbed sample
back into the detection model and calculate the cross-entropy loss between it and the ground truth
label:

Lrobust(x
′,y) = H(Fθ(x

′),y),

Additionally, to maintain a balance between accuracy on original and attacked samples, we train the
model using both the original and perturbed samples. We introduce a parameter γ to control the
trade-off between clean loss and robust loss. The clean loss is defined as:

Lclean(x,y) = H(Fθ(x),y),

The total loss Ltotal is then computed as a weighted sum of clean and robust losses.

Ltotal = Lclean + γ · Lrobust

Since time domain attacks are often high frequency, by focusing the adversarial training on the high
frequency, our approach not only enhances model robustness against frequency-targeted attacks, but
also improves defenses against time-domain attacks.

4.2 RANDAUGMENT FOR AUDIO

Realistic Corruptions for Deepfake Audio Generation: As shown in Figure 9, we present a tax-
onomy for analyzing the robustness of deepfake audio detection systems that incorporate the most
common corruptions and attacks. Corruptions in audio result from unintentional modifications dur-
ing recording, processing, or transmission, impacting noise levels and frequency responses. Ad-
versarial attacks, in contrast, are intentional manipulations aimed at deceiving detection systems
through subtle changes across various attack methodologies.

RandAugment: Experiments show that the best detection model, RawNet3, experiences a great
drop in accuracy when faced with audio corruptions. Inspired by the image-based RandAug-
ment (Cubuk et al., 2020), which improves model robustness, we adapted this method for audio.
We selectively apply N transformations from the available options, each assigned a uniform prob-
ability. An additional probability p determines whether each transformation is applied at a given
instance, to balance the accuracy between original and corrupted samples. The magnitude of each
transformation is controlled within predefined boundaries, with the intensity randomly sampled from
this range.

5 EXPERIMENTS

We first compare our approach to existing state-of-the-art methods across three benchmarks and
demonstrate improved accuracy. We then assess its robustness against corruption and adversarial
attacks. We finally conduct ablation study on enhancements to the detection system’s robustness.
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Fake sources not covered in training Fake sources covered in training

Figure 4: Detailed results across different AI-voice synthesis models on our test set. Fake audio is
categorized into sources included and not included in training. Models evaluated include RawNet2,
RawNet3, and Ours. Our method outperforms all others across all different sources.

5.1 DATASET

DeepFakeVox-HQ (test) Our custom test dataset incorporates 14 of the latest and highest quality
TTS and VC models to generate fake audio. It also includes fake audio samples directly collected
from social media platforms such as YouTube and X, providing a diverse set of real-world scenarios.
For the experiments described in this paper, we specifically utilize seven fake sources not present
in the training set. However, we also include samples from seven other fake sources used during
training to facilitate future research.

ASVspoof2019 (Todisco et al., 2019) derived from the VCTK base corpus, which includes speech
data captured from 107 speakers. It contains three major forms of spoofing attacks, namely synthetic,
converted, and replayed speech.

5.2 BASELINE

RawNet2 (Tak et al., 2021) employs Sinc-Layers (Ravanelli & Bengio, 2018) to directly extract
features from audio waveforms. These layers function as band-pass filters that enhance the detection
of spoofed audio content.

RawGAT-ST (Tak et al., 2021) utilizes spectral and temporal sub-graphs integrated with a graph
pooling strategy, effectively processing complex auditory environments.

TE-ResNet (Zhang et al., 2021) processes synthetic speech detection by first extracting MFCC from
input speech. These coefficients are used as features for a CNN that extracts spatial features, fol-
lowed by a Transformer that analyzes these to detect characteristics of synthetic speech effectively.

RawNet3 (Jung et al., 2022) begins by using parameterized filterbanks to extract a time-frequency
representation from the raw waveform. This is followed by three backbone blocks with residual
connections, a structural approach that deviates from ECAPA-TDNN (Desplanques et al., 2020).

5.3 MAIN RESULT

Results on Original Data: We trained all models on DeepFakeVox-HQ and tested them across two
benchmarks: our test set and ASVspoof2019, as shown in Table 2. Our method achieved state-of-
the-art results across both benchmarks. Compared with RawNet3, our method shows improvements
of 7.8% F1 score on DeepFakeVox-HQ (test), 1.1% F1 score on ASVspoof2019.

Among all baseline models, Rawnet3 performs the best. Therefore, for subsequent evaluations
involving corruption and attacks, we will apply robust training methods to Rawnet3 and conduct
comparisons.

Figure 4 outlines results across various AI-voice synthesis models on our test set. For the fake
sources are included in the training, all models demonstrated high accuracy . However, for un-
foreseen source, our method significantly outperformed others, particularly those from real-world
social media platforms like YouTube and Lipsync, by up to 50% points, highlighting its superior
generalization capabilities on out-of-distribution data.

Result on Corrupted data: Figure 5a shows detailed results for various corruptions. Our methods
are depicted in the green region with F-SAT, and in the red region without F-SAT. They outperform
all other baseline methods across 24 types of corruptions, with an average absolute increase of 15.3%

7
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Approach DeepFakeVox-HQ ASVspoof2019

Real Acc Fake Acc F1 Real Acc Fake Acc F1

TE-ResNet 0.859 0.433 0.629 0.894 0.973 0.933
RawGAT-ST 0.926 0.698 0.810 0.943 0.951 0.947
RawNet2 0.946 0.578 0.754 0.930 0.985 0.957
RawNet3 0.961 0.759 0.861 0.970 0.908 0.939
Ours 0.975 0.964 0.974 0.950 0.982 0.966

Table 2: Comparative performance of our method and baseline models on DeepFakeVox-HQ and
ASVspoof2019 test sets, our method outperforms prior approaches. (We ensured our deepfake test
set does not overlap with the training set.)

origin
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color noise

gaussian noise

short noise
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bandpass filter
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bitcrush

clip
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gain transition
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Figure 5: Comparative results showcasing the accuracy of our method against various types of
corruptions and attacks. Our method outperforms the baseline across nearly all tested conditions.

points. However, as we can observe, aliasing has the most negative impact on accuracy. During
aliasing, audio is intentionally downsampled and then resampled back, which not only removes
high-frequency features but also introduces distortions characteristic of aliasing. In addition, low-
pass filters, time stretching, and noise also significantly impact performance more than others.

5.4 RESULTS ON ATTACKED DATA

To assess our model’s robustness against adversarial attacks, we employ the Projected Gradient
Descent (PGD) attack, a well-established method in adversarial training. We compare our F-SAT
with conventional adversarial training and smoothing defense methods.

Attack Settings for Evaluation and Perceptibility Assessment: In the main paper, we evaluate the
l∞-PGD attack on the time domain (ϵ = 1× 10−4, α = 4× 10−5, iter = 2) and on the magnitude
component of the frequency domain (ϵ = 1 × 10−3, α = 4 × 10−4, iter = 2). For the frequency
domain, we progressively expand the attacked frequency range to include 6-8 kHz, 4-8 kHz, 2-8
kHz, and 0-8 kHz. The average attack result is calculated across these ranges. More comprehensive
attack analyses are provided in Appendix A2. To ensure the imperceptibility of the attacks in both
domains, we evaluate the Signal-to-Noise Ratio (SNR) of the attacks compared to the original audio.
The SNR values are 58.4 dB for the time domain attack and 68.7 dB for the frequency domain attack,
indicating that the attacks remain imperceptible.

Compared with other defense method: We compare our Method F-SAT with other defense meth-
ods—MAD smoothing (Olivier et al., 2021), Gaussian smoothing (Cohen et al., 2019), and standard
adversarial training (Mkadry et al., 2017)—on the RawNet3 model against various adversarial at-
tacks in both time and frequency domains. As shown in Figure 5b, F-SAT outperforms all other
methods.
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(a) Impact of Different Attack Types (b) Frequency Range for Attack (ϵ = 0.01)

Figure 6: Exploring Model Vulnerabilities: (a) shows accuracy under under various attack types;
(b) details how attacks targeting magnitude in various frequency domains affect accuracy. We show
attacks based on magnitude in the frequency domain are highly effective at degrading model perfor-
mance, with those targeting higher frequency ranges having a greater impact.

5.5 ABLATION STUDY AND ANALYSIS

Choice of attack type for F-SAT: As discussed in Section 4.2, there are three types of adversarial
attacks on audio: time domain, frequency domain on magnitude, and frequency domain on phase.
All of these can be employed for adversarial training. However, our focus on targeting the magnitude
component in attacks is explained in Figure 6a. Through our evaluation, we found that attacks based
on magnitude in the frequency domain are particularly effective at degrading model performance.
This is due to the fact that changes in magnitude directly affect the amplitude of audio signals, crucial
for maintaining core acoustic features. Such changes alter the sound intensity across frequencies,
complicating the model’s task of distinguishing key characteristics between real and fake audio.
Conversely, phase attacks have minimal impact on the model’s predictions, as phase alterations
primarily influence spatial audio perception and do not significantly affect feature detection.

We further validate our conclusions experimentally, as shown in Table 3. Our findings indicate that
F-SAT excels in adversarial training against attacks on both time and frequency domains. Surpris-
ingly, incorporating adversarial training focused on the time domain appears to diminish overall
accuracy on original data and does not effectively enhance robustness against attacks in either do-
main. Direct attacks in the time domain may disrupt most features critical for differentiating between
real and fake audio, potentially overburdening the model during training.

Additionally, the introduction of RandAug to the RawNet3 baseline model significantly enhances
accuracy on corrupted data, suggesting that the model benefits from exposure to varied conditions
during training.

Approach Origin Corruption Attack(Time) Attack(Frequency)
Real Acc Fake Acc F1 Real Acc Fake Acc F1 Real Acc Fake Acc F1 Real Acc Fake Acc F1

RawNet3 0.961 0.759 0.861 0.947 0.556 0.720 0.979 0.035 0.134 0.804 0.083 0.202

+RandAug 0.976 0.947 0.968 0.899 0.826 0.860 0.747 0.661 0.693 0.630 0.573 0.613

+RandAug+AT(Time) 0.947 0.825 0.891 0.881 0.772 0.818 0.871 0.124 0.211 0.665 0.152 0.207

+RandAug+ F-SAT 0.975 0.964 0.974 0.948 0.830 0.885 0.902 0.880 0.910 0.933 0.915 0.924

Table 3: Ablation study evaluating the impact of our RandAug and F-SAT, comparing their effects
against time-domain adversarial training (AT) and phase-based adversarial training. RandAug en-
hances robustness to corruptions, while F-SAT improves robustness to adversarial attacks.

Impact of frequency range for F-SAT: The importance of high-frequency components is under-
scored in Figure 6b, which shows the model’s performance under gradient-based adversarial attacks
across different frequency ranges. Attacks targeting higher frequencies notably degrade deepfake
detection more than lower frequencies, underscoring the vulnerability of high-frequency features.
By focusing attacks on high-frequency regions, we preserve low-frequency integrity, simplifying
the model’s task of distinguishing deepfake audio features. This approach maintains high accuracy
on unattacked data and improves adversarial robustness.

Further analysis on selecting the optimal frequency range for F-SAT is presented in Table 4. Ad-
versarial training within the 4k to 8k frequency range yields the best performance. We observe that
increasing the attack frequency range decreases accuracy on original data due to the distortion of
more critical features, adding complexity to the model’s learning process.

Moreover, we observe that narrowing the frequency range of F-SAT increases the accuracy for at-
tacked fake data while decreasing it for attacked real data. This supports the findings shown in

9
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Approach Original Attack (Time) Attack (Frequency)
Real Acc Fake Acc F1 Real Acc Fake Acc F1 Real Acc Fake Acc F1

F-SAT (0-8kHz) 0.977 0.818 0.898 0.978 0.795 0.877 0.970 0.751 0.862

F-SAT (2-8kHz) 0.983 0.896 0.940 0.976 0.736 0.831 0.979 0.754 0.836

F-SAT (4-8kHz) 0.975 0.964 0.974 0.902 0.880 0.910 0.933 0.915 0.924
F-SAT (6-8kHz) 0.971 0.974 0.952 0.912 0.850 0.879 0.923 0.896 0.907

Table 4: The results of frequency range selections for F-SAT. 4-8k is the most effective range.

Figure 2, which highlight a significant gap between the frequency domains where real and fake au-
dio features predominantly exist. Fake audio features are concentrated in higher frequency ranges
compared to real audio. In most real-world applications, criminals aim to make fake audio sound
real enough to deceive detectors for committing fraud. Therefore, focusing adversarial training on
high frequencies effectively enhances the robustness of fake audio.

(a) Impact of Attack Magnitude ϵ on Detection
Accuracy

(b) Impact of ratio γ between robust and clean
loss (Lrobust/Lclean) on Detection Accuracy

Figure 7: Exploration of hyperparameters to control attacks, balancing accuracy and robustness.
(We train Rawnet3 + RandAug + F-SAT on 10% of DeepFakeVoc-HQ)

Balance Between Clean and Attacked Data: Figure 7a demonstrates that F-SAT achieves optimal
performance with an attack magnitude of ϵ = 0.01, maintaining high accuracy on both attacked and
clean data. Figure 7b reveals that a ratio of 0.1 between robust and clean loss, (Lrobust/Lclean),
results in the highest overall accuracy. The results show that excessive focus on attacked data does
not consistently boost robustness and may decrease clean data accuracy. Similarly, an undue em-
phasis on clean data does not reliably enhance accuracy and can weaken robustness. Thus, striking
a balance between clean and attacked samples is critical for optimal model performance.

Additional Analysis of the F-SAT: The fundamental rationale for our algorithm lies in the dual
nature of high-frequency features: while they are crucial for identifying deepfake audio, they are
also susceptible to adversarial attacks. In contrast, low-frequency features, though more robust, do
not provide sufficient information on their own to train an effective detector. Therefore, simply using
a lowpass filter to eliminate all high-frequency features is not a feasible strategy; instead, a powerful
and resilient detector must retain and protect these high-frequency features.

Additionally, our F-SAT approach specifically targets the magnitude component of audio signals
while preserving the phase. This focused strategy significantly bolsters the effectiveness of our
method. To substantiate this approach, we conducted frequency-selective adversarial training on the
high-frequency phase component, which led to a substantial decline in accuracy on unattacked data.
This outcome suggests that the model may overfit to artifacts introduced by phase perturbations,
thereby diminishing its generalization capacity.

6 CONCLUSION

In our study, we introduce a dataset DeepFakeVoc-HQ that addresses diversity and quality issues
in prior datasets, and provide a taxonomy to explore common audio corruptions and attacks. We
find that leading AI voice detection models depend on vulnerable high-frequency features. This
discovery leads us to develop F-SAT, a targeted adversarial training method that focuses on high-
frequency components while while preserving the integrity of low-frequency features. Our approach
effectively maintains accuracy on unattacked data and enhances robustness against various attacks.
These results pioneer robust training for detecting fake audio for the first time, opening up a new
direction for identifying such threats.
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A APPENDIX

A.1 LEGAL PERMISSIONS FOR BENCHMARK DATASET

Our benchmark dataset is sourced from three main platforms: YouTube, commercial software, and
open-source projects from GitHub. For both commercial software and open-source projects, we
have reviewed their respective policies and confirmed that they permit the sharing of generated data
for non-commercial use.

To address concerns regarding YouTube’s terms of service and ethical considerations, we will not
directly distribute any content sourced from YouTube. Instead, we will provide only metadata (video
ID, start time, and end time), ensuring that researchers can access the content through YouTube’s
official interface in compliance with the platform’s policies.

A.2 COMPARISON OF DATASETS

ASVspoof2019 In-The-Wild WaveFake Ours (test)

Train Set

Test Set

Figure 8: Performance of the RawNet3 baseline model on various datasets. ‘Ours (train, w/o new)’
represents our training dataset after removing all high-quality deepfake samples.

A.3 EXPLANATION OF SOME TYPES OF CORRUPTIONS

Air Absorption: Air absorption refers to the phenomenon where high-frequency sound waves are
more strongly attenuated by air molecules. As sound travels through the air, it loses energy, partic-
ularly at higher frequencies, due to air viscosity and thermal conduction.

Room Simulator: A room simulator is a digital tool that emulates the acoustics of different rooms
or spaces. It includes parameters such as room size, wall materials, and shape, which affect how
sound reflects and diffuses.

Peaking: Peaking refers to adjusting a specific range of frequencies around a central frequency. It
is commonly used in parametric equalizers.

Aliasing: Aliasing occurs when high-frequency components are sampled below the Nyquist rate,
causing them to appear as lower frequencies. This can be represented using the Nyquist theorem:

fsample > 2 · fmax,

where fsample is the sampling frequency, and fmax is the maximum frequency of the signal. When this
condition is violated, the signal is folded back into the lower frequencies, creating aliasing artifacts.

Bit-Crush: Bit-crushing reduces the bit depth of an audio signal, causing quantization errors.

Tanh Distortion: Tanh distortion is a form of soft clipping achieved using the hyperbolic tangent
function. The output y is given by:

y = tanh(kx),

where x is the input signal, and k controls the amount of distortion. As k increases, the function
approximates a hard clipping effect.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Published as a conference paper at ICLR 2025

Corruption

Robustness

Attack

Noise

Acoustic Effects

Filter

Distortion

Equalization

Frequency Shifting

Dynamic Range Control

Temporal Modifications

background noise, color noise, short 

noise, gaussian noise

air absorption, room simulator

band-pass, band-stop, high-pass, low-

pass, high-shelf, low-shelf, peaking

aliasing, bit-crush, clip, tanh distortion

gain transition

seven-band parametric EQ

pitch shift

time mask, time stretch

Compression MP3, AAC, M4a

Attack Objective

Attack Method

Perturbation Domain

Perturbation Strength

Perturbation Scope

untargeted, targeted (Fake only)

White-box

time-domain, frequency-domain

imperceptible, perceptible

Black-box

Global

Local

gradient-based (FGSM, PGD)

transfer-based, query-based

time segment, frequency band

whole audio

Figure 9: Overview of various corruption types and adversarial attack strategies affecting audio
robustness. The diagram categorizes different forms of corruptions (e.g., noise, filtering, distortion)
and adversarial attacks (e.g., white-box, black-box) based on their methods, objectives, and scope
of perturbation. This framework outlines the challenges in ensuring the robustness of audio systems
against both environmental corruption and intentional adversarial manipulation.

Gain Transition: Gain transition refers to smoothly adjusting the amplitude over time.

Seven-Band Parametric EQ: A seven-band parametric EQ provides independent control over
seven frequency bands. Each band can be adjusted using three parameters: center frequency (f0),
gain (G), and bandwidth (Q). The overall transfer function is a combination of individual band
filters:

H(f) =

7∏
i=1

Hi(f),

where Hi(f) represents the frequency response of the i-th band.

Time Mask: Time masking involves temporarily silencing or removing a segment of audio.

A.4 RANDAUGMENT FOR AUDIO

Figure 10: Python code for RandAugment for audio

Details of RandAugment for Audio are shown in Figure 10. In our experiments, we set N = 1 and
p = 0.9.
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A.5 ROBUSTNESS TO COMPRESSION

To evaluate the robustness of our detection model to compression, we tested two lossy formats: MP3
and AAC. The evaluation utilized RawNet3 combined with RandAug and F-SAT. As shown in the
table 5, both MP3 and AAC compression had minimal impact on detection accuracy.

Format Real Fake Avg

Origin (90% wav + 10% mp3) 97.5% 96.4% 97.0%
MP3 97.5% 95.6% 96.6%
ACC 96.9% 96.6% 96.8%

Table 5: Detection Results for Compressed Audio Formats

A.6 COMPREHENSIVE ANALYSIS OF ALL ATTACK TYPES

Table 6 presents the detailed adversarial attack results for RawNet3 and our method under vari-
ous conditions. It includes both white-box and black-box approaches and examines the impacts of
attacks in both the time and frequency domains, detailing the different attack hyperparameters used.
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Domain Iters Restart Source RawNet3 RawNet3+RandAug RawNet3+RandAug+F-SAT
Real Acc Fake Acc Real Acc Fake Acc Real Acc Fake Acc

No Attack - - - 96.1% 75.9% 97.6% 94.7% 97.5% 96.4%

Time

2 1 A 97.9% 3.50% 74.7% 66.1% 90.2% 88.0%
5 1 A 90.6% 2.10% 34.4% 42.4% 66.7% 80.9%
5 2 A 90.2% 1.70% 33.2% 39.4% 65.4% 80.3%
2 1 A’ 98.9% 8.10% 79.8% 69.0% 92.9% 89.2%
5 1 A’ 92.1% 2.90% 43.7% 52.4% 74.4% 84.0%
5 2 A’ 91.6% 3.20% 42.1% 50.3% 73.2% 83.1%
2 1 B 100.0% 17.3% 98.7% 91.7% 98.7% 96.4%
5 1 B 100.0% 16.0% 98.9% 92.1% 98.7% 96.3%
5 2 B 100.0% 16.2% 98.9% 92.1% 98.7% 96.3%

Frequency
(0-8k Hz)

2 1 A 65.0% 5.7% 38.5% 42.9% 87.0% 86.3%
5 1 A 23.8% 2.9% 7.5% 14.9% 63.8% 69.4%
5 2 A 23.0% 2.7% 7.3% 15.2% 63.7% 69.2%
2 1 A’ 77.3% 14.9% 50.6% 55.1% 90.2% 88.1%
5 1 A’ 31.6% 4.92% 14.9% 27.6% 72.7% 74.6%
5 2 A’ 23.8% 2.4% 7.8% 16.0% 63.8% 66.4%
2 1 B 99.8% 34.60% 98.9% 85.98% 98.7% 96.8%
5 1 B 99.8% 29.5% 98.9% 85.3% 98.7% 96.8%
5 2 B 100.0% 31.9% 98.9% 84.9% 98.7% 96.7%

Frequency
(2-8k Hz)

2 1 A 74.3% 6.8% 50.4% 49.3% 93.1% 89.5%
5 1 A 34.0% 4.29% 12.9% 22.9% 83.5% 82.6%
5 2 A 33.0% 4.44% 12.7% 21.4% 83.0% 82.1%
2 1 A’ 84.0% 16.5% 59.7% 63.5% 94.0% 89.8%
5 1 A’ 43.8% 7.00% 23.5% 35.2% 87.5% 85.1%
5 2 A’ 33.5% 4.0% 12.9% 21.3% 82.9% 80.3%
2 1 B 99.8% 33.3% 98.9% 84.2% 98.6% 97.0%
5 1 B 100.0% 28.4% 98.4% 84.7% 98.7% 95.9%
5 2 B 99.8% 31.0% 99.1% 84.2% 98.6% 96.0%

Frequency
(4-8k Hz)

2 1 A 87.2% 8.5% 72.9% 61.3% 96.7% 94.6%
5 1 A 54.9% 7.78% 35.4% 36.3% 96.2% 93.4%
5 2 A 54.4% 6.83% 35.1% 36.3% 95.7% 93.2%
2 1 A’ 91.4% 18.3% 80.0% 71.9% 97.1% 95.6%
5 1 A’ 64.9% 10.5% 47.3% 50.6% 96.5% 94.5%
5 2 A’ 54.6% 7.1% 36.0% 36.3% 96.0% 93.4%
2 1 B 99.7% 34.4% 99.0% 88.0% 98.0% 96.3%
5 1 B 99.7% 29.2% 99.0% 87.5% 98.0% 96.3%
5 2 B 99.7% 32.5% 99.2% 87.8% 98.0% 96.3%

Frequency
(6-8k Hz)

2 1 A 95.2% 12.3% 90.1% 76.7% 96.5% 95.6%
5 1 A 83.8% 16.0% 70.6% 65.6% 95.7% 95.3%
5 2 A 83.7% 15.7% 70.5% 65.0% 95.9% 94.9%
2 1 A’ 95.7% 21.9% 92.7% 80.4% 96.7% 95.9%
5 1 A’ 86.8% 16.8% 78.4% 70.4% 96.0% 95.9%
5 2 A’ 83.2% 15.9% 70.5% 63.4% 95.9% 95.8%
2 1 B 99.7% 38.3% 98.9% 89.1% 97.0% 96.4%
5 1 B 99.7% 32.2% 98.9% 88.5% 97.1% 96.4%
5 2 B 99.7% 36.8% 99.0% 88.5% 97.3% 96.4%

Table 6: Adversarial Attack Results on RawNet3 and Its Variants under Various Conditions. For the
attack scenarios, we include both white-box and black-box approaches: A represents tests with the
same model and identical weights, while A′ indicates the same model but with different weights,
and B denotes tests on a completely different model. For attacks in the time domain, we use ϵ =
10−4 and α = 4 · 10−5. For attacks in the frequency domain, the parameters are ϵ = 10−3 and
α = 4 · 10−4.
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A.7 DATASET DETAILS

Fake Source Total Duration (Hours) Audio Count Mean Duration (Seconds)
VCTK 14.1 12.0k 4.2
Librispeech (Train) 961.1 281.2k 12.3
In-The-Wilds 14.6 9.3k 5.7
ASRspoof2019 (LA) 11.9 12.5k 3.4
Voxceleb1 340.4 148.6k 8.2
Audioset (Narration) 50.1 12.2k 14.8

Table 7: Summary of fake audio sources data

Fake Source Total Duration (Hours) Audio Count Mean Duration (Seconds)
Metavoice 189.1 61.7k 11.0
StyleTTS-v2 186.6 61.6k 10.9
XTTS-v2 175.5 61.8k 10.2
VoiceCraft 119.9 59.4k 7.3
Whisperspeech 155.2 61.9k 9.0
Vokan-TTS 161.7 61.6k 9.4
Elevenlabs 3.3 3.2k 3.7
ASRspoof2019 (LA) 97.8 109.0k 3.2
Wavefake (English) 198.7 117.9k 6.1

Table 8: Summary of fake audio sources data

VCTK Speaker id: p244 In-the-Wild Speaker: Alan Watts

Model Ovrl MOS Sig MOS Bak MOS P808 MOS Ovrl MOS Sig MOS Bak MOS P808 MOS
Real refer 3.26 3.56 4.04 3.61 3.02 3.40 3.74 3.57
metavoice 3.29 3.58 4.05 3.63 3.15 3.52 3.88 3.55
StyleTTS v2 3.28 3.56 4.08 3.87 3.28 3.57 4.06 3.83
XTTS v2 3.13 3.41 4.00 3.78 3.11 3.41 3.98 3.70
VoiceCraft 3.16 3.51 3.94 3.61 3.01 3.34 3.80 3.43
Whisperspeech 3.28 3.56 4.07 3.82 3.15 3.44 3.99 3.59
Vokan-TTS 3.23 3.55 4.01 3.71 2.94 3.39 3.66 3.60

Table 9: MOS Scores for Various TTS Models

Table 7 presents the real audio data we utilized from previously published datasets. For generating
deepfake audio for the training set, we employ models such as XTTS v2, StyleTTS v2, Metavoice,
Whisperspeech, Vokan-TTS, VoiceCraft, and Elevenlabs. Additionally, for the test set, we use
Cosyvoice, PlayHT 2.0, Resemble, LOVO AI, and Lipsynthesis to create deepfake voices. We
introduce post-processing augmentations to generate noisy deepfakes. Four real datasets—VCTK
(12.0k), Librispeech-clean-100 (28.5k), Audioset (narration) (12.2k), and In-The-Wild (real parts:
9.3k)—are utilized to generate deepfake voices for the training set. Details of our generated deepfake
audio and references to previous public deepfake audio datasets are presented in Table 8. Addition-
ally, we employed DNSMOS (Reddy et al., 2021) to quantitatively measure the synthetic speech
quality across these models, using a scale from 1 to 5, where higher values indicate better quality.
As demonstrated in Table 9, Metavoice and StyleTTS outperform other AI voice synthesis models.
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A.8 F-SAT’S TRAINING EFFICIENCY

F-SAT’s training efficiency is influenced by hyperparameters such as attack iterations and restart
counts, which identify the worst-case perturbation. Drawing on insights from ”Fast Is Better Than
Free: Revisiting Adversarial Training,” we optimized these parameters by setting restarts to one and
attack iterations to one or two, while employing a larger attack magnitude to enhance robustness.
Training time is shown in the Table 10. Although F-SAT requires longer training times, it improves
accuracy by an average of 9% on original data and 43% on attacked data compared to Standard
Adversarial Training. We should not compromise accuracy merely to accelerate training

Description w/o Adversarial Training Standard Adversarial Training F-SAT

Training Duration (Days) 2 4.5 8
Number of Epochs 15 15 15
Hardware Used A100 GPU A100 GPU A100 GPU

Table 10: Training time comparasion

A.8.1 TRAINING HYPERPARAMETER

Here are the Training hyperparameter of F-SAT for Table 3:

Training Hyperparameters

• Learning Rate (lr): 1× 10−5

• Epochs: 15
• Batch Size (bs): 16
• Optimizer: adam
• Augmentation Number (aug num): 1 or 2
• Augmentation Probability (aug prob): 0.9

LR Scheduler (Warmup Cosine)

• Warm-up Epochs: 1
• Warm-up LR: 1× 10−6

• Minimum LR: 1× 10−7

Attack Hyperparameters

• Attack Type: l∞
• Epsilon: 0.005, Alpha: 0.002
• Gamma (control ratio of clean loss and robust loss): 0.1
• Attack Iterations: 2
• Restarts: 1
• Frequency Range: 4-8k Hz

Mixup Hyperparameters

• Mixup Alpha: 0.5

19


	Introduction
	Related Work
	DeepFakeVox-HQ
	Training dataset
	Testing dataset

	Method
	F-SAT: Frequency-Selective Adversarial Training
	Randaugment for audio

	Experiments
	Dataset
	Baseline
	Main Result
	Results on Attacked Data
	Ablation Study and Analysis

	Conclusion
	Appendix
	Legal Permissions for Benchmark Dataset
	Comparison of Datasets
	explanation of some types of corruptions
	RandAugment for Audio
	Robustness to compression
	Comprehensive Analysis of all Attack Types
	Dataset Details
	F-SAT's training efficiency
	Training hyperparameter



