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ABSTRACT

In this paper, we present a novel stability analysis of adversarial training and
prove generalization upper bounds in terms of an expansiveness property of ad-
versarial perturbations used during training and used for evaluation. These ex-
pansiveness parameters appear to not only govern the vanishing rate of the gen-
eralization error but also govern its scaling constant. Our bound attributes the
robust overfitting in PGD-based adversarial training to the sign function used
in the PGD attack, resulting in a bad expansiveness parameter. The peculiar
choice of sign function in the PGD attack appears to impact adversarial train-
ing both in terms of (inner) optimization and in terms of generalization, as shown
in this work. This aspect has been largely overlooked to date. Going beyond
the sign-function based PGD attacks, we further show that poor expansiveness
properties exist in a wide family of PGD-like iterative attack algorithms, which
may highlight an intrinsic difficulty in adversarial training. Code is available at
https://github.com/rzTian/AT-Stability.

1 INTRODUCTION
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Figure 1: The learning curve of a
model trained by AT on CIFAR-10
with 3-step PGD. The standard er-
ror as well as the error against the
same 3-step PGD attack are mea-
sured during AT on both the train-
ing and testing sets. The step size
for PGD and the perturbation ra-
dius w.r.t the ∞−norm are respec-
tively set to 7/255 and 8/255. The
learning rate is decayed at the 100th

and the 150th epoch.

Deep neural networks, despite their great success, have been
shown vulnerable to adversarial attacks (Szegedy et al., 2014;
Goodfellow et al., 2015), where carefully constructed small
modifications of the input may cause the network to output a
wrong prediction. A large body of works (Madry et al., 2019;
Zhang et al., 2019; Croce et al., 2020; Shaham et al., 2018; Qin
et al., 2019; Shafahi et al., 2019; Wong et al., 2020) then pro-
pose revised training algorithms to combat adversarial attacks.
These algorithms, usually referred to as adversarial training (or
AT in this paper), among which the dominant approaches, such
as PGD based AT (Madry et al., 2019), involve perturbing the
input in a way similar to adversarial attacks to hopefully max-
imize the loss function within a prescribed radius (referred to
as “inner maximization”). Although these AT algorithms allow
the learned model to defend, to some extent, against adversar-
ial attacks, significant challenges remain.

First, generalization for such training algorithms is much more
difficult, a phenomenon known as “robust overfitting”(Rice
et al., 2020). Specifically, Rice et al. (2020) shows that on the
CIFAR-10 dataset (Krizhevsky et al., 2009), the model trained
by AT using 10-step PGD attack is still vulnerable to the same
10-step PGD attack on the testing set. Our additional experi-
ments (e.g., Figure 1) suggests that this is quite common. In Figure 1, we perform AT with a 3-step
PGD and measure the error of the model against 3-step PGD attack as well as its standard error in
the training process. We observe that the model trained with 3-step PGD is still vulnerable to the
same PGD attack on the testing set. After the first learning rate decay (the 100th epoch), the testing
error w.r.t the 3-step PGD starts to rise, similar to the observations in Rice et al. (2020).
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Second, it is much more difficult to develop theoretical understanding of the generalization behavior
for models obtained from AT, comparing with those from standard training. In that direction, some
theoretical works consider the setting where the inner maximization is perfectly solved, e.g., in Yin
et al. (2018); Awasthi et al. (2020). However, such settings are invalid for more complex neural
networks, where the closed-form solution for the inner maximization is unavailable. Another line of
works use uniform stability to analyze the generalization of AT. In Xing et al. (2021), the adversarial
loss is assumed convex and non-smooth and AT is regarded as standard SGD on this loss, whereby
an existing generic bound for non-smooth loss in Bassily et al. (2020) is invoked for analysis. As
pointed out in Xiao et al. (2022b), the bound obtained in Xing et al. (2021) is independent of the
specific choice of loss function used for training and insufficient to reflect the difference between
AT and SGD observed in practice. The work of Xiao et al. (2022b) argues that the adversarial loss
is approximately smooth and derive bounds based on the stability framework of SGD in Hardt et al.
(2016). The work of Wang et al. (2024), built upon Xiao et al. (2022b), extends the analysis of AT to
the data-dependent stability framework in Kuzborskij & Lampert (2018). But the bounds obtained
in both Xiao et al. (2022b) and Wang et al. (2024) do not vanish with sample size.

To overcome these limitations and shed new light in understanding robust overfitting, we present in
this work novel stability analysis for the generalization of models learned using an arbitrary AT al-
gorithm. Specifically, we isolate two aspects in the problem scope. The first is the loss function used
for performance evaluation (on both testing and training sets), which can in general be considered as
a modification of the standard loss to a version induced by a perturbation map J and which reduces
to the adversarial loss when J is specialized to a particular form J∗ and to the standard loss when J
is specialized to the trivial identity map J id. The second is the perturbation map π used during AT,
corresponding to the solution heuristics used for solving the inner maximization problem. When
allowing π to potentially deviate from the perturbation J∗, we include in our study the case where
the inner maximization is not solved exactly. Additionally, considering π = J allows us to study
robust overfitting as examplified in Figure 1 where training using a particular attack results in poor
generalization when evaluation on the testing set is under the same attack.

In this setting, we carry out a stability analysis and present novel generalization bounds for models
trained using AT with an arbitrary adversarial perturbation π and evaluated on a loss induced by
an arbitrary perturbation J . At the heart of our analysis is the introduction of a notion of “expan-
siveness” for the perturbation maps (J and π), which governs the behavior of the derived bounds.
Specifically, we show that whenever the expansiveness parameter of J is strictly bounded, our gen-
eralization bounds vanish with sample size n as O(1/n) and a small expansiveness parameter of π
further helps generalization. On the other hand, when the J-loss (i.e., the loss induced by perturba-
tion J) is defined with J taken as the sign-PGD perturbation, the expansiveness parameter of J is no
longer bounded. In this case, our bound reveals an intrinsic tension between the stability parameter,
and the perturbation radius, and the ambient data dimension, in their respective roles on generaliza-
tion – specifically, the bound converges to a constant. Additional advantages of our bounds include
the following. Our generic bound (Theorem 4.2) is applicable to AT algorithms based on any form of
adversarial perturbations. Our bounds do not rely on any assumption on the adversarial loss directly,
since we only make assumptions on the standard loss and all properties of the adversarial loss are
induced via perturbation map J . Finally, varying the form of J potentially enables this framework
to be applicable to settings where generalization on other performance metrics is of interest.

We zoom into models trained with multi-step PGD, and further demonstrate that the sign func-
tion used in the perturbation is an important cause of robust overfitting for such AT methods.
We experimentally replace the sign function in PGD with a smooth approximation tanhγ , where
tanhγ(x) = tanh(γx) and the parameter γ controls the smoothness of the function and hence the
expansiveness of the PGD perturbation (decreasing γ decreases the expansiveness). Our experiments
show that reducing γ results in smaller generalization gaps. These results validate our bound and
its implication on generalization. Interestingly our experiments also reveal that sign-PGD appears
as a stronger attack than tanhγ-PGD and the raw gradient (RG)-PGD attack, even on the train-
ing set. Performing AT with tanhγ-PGD and RG-PGD may be inadequate for defending against
the sign-PGD attacks on the training set. Our observations suggest that sign-function, a building
block of PGD-based AT, appears to play a peculiar role: comparing with the tanhγ counter-part, the
sign function helps to better solve the inner maximization problem but at the same time cause the
perturbation π to suffer from bad expansiveness and results in poor generalization. This aspect of
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sign-PGD has been largely overlooked to date, since most theoretical analysis of PGD removes the
sign function in their consideration (i.e., studying RG-PGD instead).

In this work, we also recognize sign-PGD as an iterative method for solving the inner maximization
problem where each step is principled by a locally linear approximation of the loss function. Based
on this principle, we extend sign-PGD to a wider family of perturbations. We show theoretically that
every member in this family suffers from poor expansiveness. This result seems to point to certain
intrinsic difficulty in training models adversarially.

2 OTHER RELATED WORKS

Robust generalization Beyond investigations via algorithmic stability perspectives (e.g., Xing
et al. (2021); Xiao et al. (2022b); Wang et al. (2024)), robust generalization has also been studied
under the uniform convergence framework with conventional statistical learning tools such as VC
dimension (Montasser et al., 2019), Rademacher complexity (Khim & Loh, 2019; Yin et al., 2018;
Awasthi et al., 2020; Xiao et al., 2022a; Attias et al., 2018) and other PAC learning frameworks
(Cullina et al., 2018; Diochnos et al., 2019). Moreover, robust generalization has been investigated
via the curvature of the local minima of the loss landscape: AT is observed to have a tendency to
reach sharper minima (Liu et al., 2020), and flatter minima usually results in better generalization
(Wu et al., 2020). The work of Chen et al. (2020) observes that robust overfitting can be alleviated
by smoothing the model prediction via knowledge distillation. The difficulty of achieving robust
generalization has also been attributed to the inadequate expressive power of practical deep learning
models (Li et al., 2022), insufficient sample size for models to generalize (Schmidt et al., 2018) as
well as and the model’s tendency to interpolate “hard training instances” (Liu et al., 2021).

Uniform stability Uniform stability was first introduced by the landmark work of Bousquet &
Elisseeff (2002). An influential work by Hardt et al. (2016) adapts this framework to analyze the
uniform stability of SGD with smooth loss functions, explaining the effectiveness of SGD in training
neural networks. Since then, many studies have built upon Hardt et al. (2016) to develop stability
bounds for SGD with non-smooth losses (e.g., Bassily et al. (2020); Lei & Ying (2020)). Data-
dependency in stability analysis is introduced in Kuzborskij & Lampert (2018), and uniform stability
for more sophisticated variants of SGD is also studied (e.g., Mou et al. (2018); Chen et al. (2018)).
Additionally, works such as Farnia & Ozdaglar (2021); Lei et al. (2021) have explored algorith-
mic stability in general minimax problems. These studies are more closely related to generative
adversarial networks (GANs), rather distant from the standard settings of adversarial training.

3 PROBLEM SETUP AND PRELIMINARIES

Over any real vector space, we will use ∥ · ∥p to denote the p-norm and abbreviate the Euclidean
norm (i.e., 2-norm) as ∥ · ∥. For a vector x ∈ Rd, x[i] denotes the ith coordinate of x.

We consider the standard setting of supervised learning, where the training samples are instance-
label pairs, (xi, yi)’s, drawn i.i.d from an underlying data distribution D over X × Y . Here the
input space X is Rd and the label space Y is finite. We restrict to parameterized models, e.g., neural
networks, in which the model parameter w lives in a subset W of some real vector space. We use
f(w, x, y) to denote the loss value of (x, y) under model parameter w, where a standard choice of
loss function (e.g. 0-1 loss, cross-entropy loss, etc.) is absorbed in f . For example, f(w, x, y) can
be the cross-entropy loss of the a neural network with parameter w on sample (x, y).

The central object of this study is adversarial training, which allows the learned model to resist
adversarial attacks. Each adversarial attack (or adversarial perturbation) on input x is assumed to
live in an ∞-norm ball B∞(x, ϵ) := {t ∈ Rd : ∥t− x∥∞ ≤ ϵ} with radius ϵ and centered at x.

Perturbation induced loss Let J be a function mapping W×X ×Y to X satisfying J(x; y, w) ∈
B∞(x, ϵ). Then J(x; y, w) may be regarded as a perturbation of x by a magnitude of up to ϵ (under
∞-norm). We then define the perturbation J induced loss or simply J-loss by

fJ(w, x, y) := f (w, J(x; y, w), y) (1)
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Let J∗(x; y, w) := argmaxx̂∈B(x,ϵ) f(w, x̂, y), and J id(x; y, w) := x. Then it is easy to verify that
when J = J∗, fJ(w, x, y) is the adversarial loss maxx̂∈B(x,ϵ) f (w; x̂, y) —for which reason, we
will denote the adversarial loss fJ∗ by f∗ for simplicity —and when J = J id, fJ(w, x, y) is the
standard loss f(w, x, y). We will soon encounter other forms of J-loss.

Generalization w.r.t the induced loss Let the training set S = {(xi, yi)}ni=1 be drawn from
Dn. Consider a learning algorithm A, which when applied on S gives rise to a learned model
parameter w = A(S). Notably w entails randomness, due to the random sampling of S and the
possible intrinsic randomness in A. The population risk and empirical risk w.r.t J-loss are defined
respectively as:

RD[A(S); J ] := E(x,y)∼D [fJ(A(S), x, y)] and RS [A(S); J ] :=
1

n

n∑
i=1

fJ(A(S), xi, yi)

Note that RD[A(S); J ] and RS [A(S); J ] are both random variables. The expected generalization
gap w.r.t the J-loss is then

GGn(J,A) := ES,A [RD[A(S); J ]−RS [A(S); J ]]

where expectation over A refers to averaging over the intrinsic randomness in A. Specially, we
will call GGn(J

id, A) and GGn(J
∗, A) respectively the standard generalization gap and the robust

generalization gap of the algorithm A.

The generalization gap can be analyzed by exploiting the tool of uniform stability (Bousquet &
Elisseeff, 2002). We say that the algorithm A is ρ−uniformly stable w.r.t J-loss, if

∆n(J,A) := sup
S≃S′

sup
(x,y)∈X×Y

EA[fJ (A(S), x, y)− fJ (A(S′), x, y)] ≤ ρ (2)

Here S ≃ S′ denotes two datasets that each contains n samples but differ in at most one. It is shown
in Hardt et al. (2016) that uniform stability implies generalization in expectation, namely,
Lemma 3.1 (Hardt et al. (2016)). For any perturbation J and any algorithm A,

GGn(J,A) ≤ ∆n(J,A) (3)

The lemma is due to that the analysis Hardt et al. (2016) applies to arbitrary loss functions, including
the J−loss defined above. In our work, we will consider the family of f that are Lipschitz and
gradient-Lipschitz with respect to both x and w in the following sense: there exist positive constants
LX , LW , ΓX and β such that for any y ∈ Y , any x, x′ ∈ X and any w,w′ ∈ W

|f(w′, x′, y)− f(w, x, y)| ≤ LX ∥x− x′∥+ LW∥w − w′∥ (4)

∥∇w′f(w′, x′, y)−∇wf(w, x, y)∥ ≤ ΓX ∥x− x′∥+ β∥w − w′∥ (5)

Similar Lipschitzness and smoothness assumptions are also used in other stability analysis literature,
as in Hardt et al. (2016); Farnia & Ozdaglar (2021); Xiao et al. (2022b); Wang et al. (2024).

With the Lipschitz condition of f , the uniform stability w.r.t fJ can be related to the notion of the
uniform argument stability (UAS), a notion coined in Bassily et al. (2020), as well as an “expansive-
ness” property of J , which we will soon define. Specifically the UAS parameter of A is

δn(A) := sup
S≃S′

EA∥A(S)−A(S′)∥

and for any given c ≥ 0, we define the c-expansiveness of perturbation J as

qc(J) := sup
(x,y)

sup
w,w′:∥w−w′∥>c

∥J(x; y, w)− J(x; y, w′)∥
∥w − w′∥

We note that such a notion of expansiveness reduces to a Lipschitz condition when c = 0. It
measures the sensitivity of an operator to the perturbation of its input, sharing similarity with the
Lipschitz condition but provide extra benefit when analyzing operators whose Lipschitz constant
is unbounded. When taking c > 0, this expansiveness, however, excludes measuring sensitivity
for perturbation with magnitude lower than c. This consideration is motivated by the fact that in
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practice, extremely small perturbation do not arise. Additionally, this expansiveness behaves nicely,
i.e., being bounded, even for non-continuous operators, such as those defined via the sign function,
to arise later in this paper.

For any given S and S′ differing by only one element and every c∗ ≥ 0, let Q(S, S′; c∗) denote the
probability (under the probability measure induced by the randomness in A) that ∥A(S)−A(S′)∥ <
c∗. Specifically, let S∗ and S′

∗ denote two training sets with S∗ ≃ S′
∗ which achieve the supremum

in the definition of ∆n(J,A) in (2). We write Q(c∗) in place of Q(S∗, S
′
∗; c

∗) for simplicity.
Lemma 3.2. If the loss function f satisfies the Lipschitz condition (4), then for any c∗ ≥ 0,

∆n(J,A) ≤ (LW + qc∗(J)LX )δn(A) + LXQ(c∗) · 2ϵ
√
d (6)

The proof of this lemma is deferred to Appendix A. In the remainder of this paper, we will use this
bound to analyze the generalization of adversarial training (AT) algorithms. We will show, for most
cases, that this bound vanishes with sample size n by choosing a judicious choice of c∗. The only
case in which a vanishing bound is not attainable is sign-PGD based AT, where the bound converges
to a constant. This may reveal some intrinsic difficulty in generalization for such AT algorithm.

4 UNIFORM STABILITY OF ADVERSARIAL TRAINING

Lemma 3.2 suggests that the expansiveness of the perturbation J , which is used to define the J-loss
fJ , plays a role in generalization. We now take A as an adversarial training (AT) algorithm where
we will show that the expansiveness of the perturbation used in the AT training algorithm A plays
another role by impacting the UAS parameter δn(A).

AT algorithms We consider the following iterative AT algorithm. At each iteration of AT, it first
draws a training sample (xit , yit) ∈ S and then updates the model parameter wt according to

xadv
t = π(xit ; yit , wt) (7)

wt+1 = wt − τt∇wtf(wt, x
adv
t , yit) (8)

Here τt ∈ R+ denotes the step size of the gradient descend at the iteration t, it ∈ {1, · · · , n} is
drawn uniformly and independently (across t) from {1, 2, . . . , n}, and π(xit ; yit , wt) denotes per-
turbation of xit within B∞(xit , ϵ). We note that ideally π should be J∗(xit ; yit , wt) but in practice
it is only an approximation of it due to the difficulty in acquiring the exact solution. Additionally
and more critically, we note that, despite that both π and J refer to perturbations, the two notions
in this paper may be completely different. Specifically, J induces the J-loss, which is used as a
performance metric (evaluated either on the training set or on the testing set), whereas π denotes
the perturbation operation applied during adversarial training. Although in some cases π is J or is
related to J , there are scenarios in which π and J are completely decoupled, for example, when
we perform adversarial training but choose to evaluate the model using the standard loss, i.e., using
J id-loss. In a later section, we will see more cases in which J and π are completely different. As
a minor comment, we note that when the perturbation π in (7) is chosen as the identity map J id,
the AT algorithm reduces to the standard stochastic gradient descend (SGD) algorithm. Finally, as
we may look into various choices of π in AT algorithms, we use Aπ to denote an AT algorithm,
emphasizing its dependence on π. Under such notations, we may even consider ”mis-matched gen-
eralization gap”, namely, GGn(J,Aπ) with J ̸= π, for example, J = J id and π is a particular
adversarial perturbation.

Note that although xadv
t is also a function of wt, the derivative operator in (8) does not go through

π, an option consistent with the standard AT implementation as in Madry et al. (2019); Rice et al.
(2020).

We now present an upper bound for the UAS of AT.
Theorem 4.1. Suppose that f satisfies the conditions (4) and (5). If we run Aπ for T steps with step
sizes τt ≤ 1

β , there exists a constant c > 0 such that we have

δn(Aπ) ≤
2LW

nβ

T∑
t=0

(2 + qc(π)ΓX /β)t (9)
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We defer the proof of the theorem to Appendix A. With the upper bound of the UAS, an upper
bound for the mismatched generalization gap can be immediately derived according to (3) and (6)
as below:
Theorem 4.2. Under the condition of Theorem 4.1, for any c∗ ≥ 0, there exists a constant c > 0,
such that

GGn(J,Aπ) ≤ (LX qc∗(J) + LW)
2LW

nβ

T∑
t=0

(2 + qc(π)ΓX /β)t + LXQ(c∗) · 2ϵ
√
d (10)

The bound in (10) also includes as a special case the “matched” generalization gap GGn(J,AJ),
where the perturbation used in adversarial training is identical to that defining performance metric,
as is typical in the adversarial training literature. Beyond the Lipschitz and smoothness conditions
of f , the expansiveness parameters of π and J turn out to also influence the generalization of AT
algorithms, as suggested in the generalization bound (10). This has been overlooked by the previous
stability analysis as in Xing et al. (2021); Xiao et al. (2022b); Wang et al. (2024).

The behavior of the bound in (10) clearly depends on Q(c∗). We now show that with additional
conditions, one can choose a c∗ to either remove the term containing Q(c∗) or make Q(c∗) also
vanish with n.

For example, if the perturbation J has bounded Lipschitz constant q∗, that is qc∗(J) ≤ q∗ < ∞ for
any c∗ ≥ 0 , then taking c∗ = 0 simply results in the following bound that vanishes as O(1/n).

GGn(J,Aπ) ≤ (LX q∗ + LW)
2LW

nβ

T∑
t=0

(2 + qc(π)ΓX /β)t (11)

On the other hand, if the second moment of the random variable ∥A(S∗) − A(S′
∗)∥ has a fast

vanishing rate with n, one can choose c∗ to decay with n at a judicious choice of rate, pushing
Q(c∗) to vanish faster than 1/n, resulting in the bound in the following form

GGn(J,Aπ) ≤ (LX qc∗(J) + LW)
2LW

nβ

T∑
t=0

(2 + qc(π)ΓX /β)t + o(1/n) (12)

We defer the proof of (12) to Appendix A.

Convex loss and strongly convex loss When f is further assumed to be convex or strongly convex,
a tighter UAS upper bound can be attained.
Theorem 4.3. Suppose that f(·, x, y) is convex for any (x, y) ∈ X ×Y and satisfies the conditions
(4) and (5). If we run Aπ for T steps with step sizes τt ≤ 1

β , we have

δn(Aπ) ≤
2LW

nβ

T∑
t=0

(1 + qc(π)ΓX /β)t

If we further assume f(·, x, y) is µ−strongly convex, we have

δn(Aπ) ≤
2LW

nβ

T∑
t=0

(
1− µ

2β
+ ΓX qc(π)/β

)t

As shown, performing AT using convex loss functions results in a tighter upper bound compared to
the non-convex functions. When f is strongly convex, the bound can be tightened again. In fact, in
the strongly convex case, if qc(π) is small enough, the UAS upper bound can be made independent
of the number of iteration T .
Corollary 4.4. Suppose that f is µ−strongly convex and satisfies the conditions (4) and (5). Sup-
pose that qc(π) < µ/(2ΓX ) and we run Aπ for T steps with step sizes τt ≤ 1

β , we have

δn(Aπ) ≤
4LW

n(µ− 2qc(π)ΓX )

The proofs of Theorem 4.3 and Corollary 4.4 are deferred to Appendix A. Notably, when π is chosen
as the identity map, we have qc(π) = 0 and Aπ reduces to the standard SGD algorithm. In this case,
our UAS upper bounds matches the bounds in Hardt et al. (2016) up to constants.
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Comparison with existing UAS bounds for AT The work in Farnia & Ozdaglar (2021) derives
UAS bounds for the AT-like algorithm (refer to as GDmax in their paper) under the assumption that
f is strongly concave in X . Our work goes beyond this restricted setting and derive UAS bounds
without this assumption. In Xing et al. (2021), the stability of AT is analyzed by treating AT as
standard SGD with an adversarial loss (i.e., f∗) and invoke the generic bound in Bassily et al. (2020)
for non-smooth losses, while assuming f∗ to be non-smooth. The non-smoothness is however not
quantitatively characterized in their work; additionally since the bound in Bassily et al. (2020) is
developed for SGD with any non-smooth convex functions, it fails to explain the notable difference
between SGD and AT observed in practice. The UAS bounds proposed in Xiao et al. (2022b); Wang
et al. (2024) include terms that do not vanish with increasing sample size. Our bounds overcome
this limitation, vanishing with the sample size (see Appendix E for more details).

5 REVISIT OF PGD-BASED AT

We now discuss the AT algorithm Aπ when π is taken as the PGD perturbation (Madry et al., 2019),
which we denote by πPGD. To begin, associated with any (x, y) and any weight parameter w, we
define and one-step PGD map Tx,y,w by

Tx,y,w(x
′) = ΠB∞(x,ϵ) [x

′ + λG (∇x′f(w, x′, y))]

Here x′ is any point in Rd, G is a mapping from Rd to Rd, possibly taking various forms, which
we will specify momentarily, λ is another step size, and ΠB∞(x,ϵ) : Rd → B∞(x, ϵ) denotes the
projection onto the set B∞(x, ϵ), namely, ΠB∞(x,ϵ)(x

′) = argminx̃∈B∞(x,ϵ) ∥x̃−x′∥2. The K-step
PGD perturbation πPGD is then defined as the K-fold compositions of the (same) mapping Tx,y,w:

πPGD(x; y, w) := TK
x,y,w(x) :=

Tx,y,w ◦ Tx,y,w ◦ . . . Tx,y,w︸ ︷︷ ︸
K times

 (x)

In the well-known PGD attack (Madry et al., 2019), the mapping G is taken as the sign function and
is applied element-wisely on the gradients(see Wong et al. (2020); Andriushchenko & Flammarion
(2020); Wang et al. (2021); Rice et al. (2020); Dong et al. (2021); Wu et al. (2020)), Theoretical
analyses of PGD (as in Deng et al. (2020); Fu & Wang (2023); Bubeck et al. (2015)) often considers
the “raw-gradient” version, namely taking G as the identity map. In our work, we will show that the
choice of G, this peculiar and largely overlooked building block in PGD, in fact has non-negligible
impact on the generalization performance of PGD-based AT.

To begin, we assume that the gradient ∇xf is Lipschitz, namely, that there exist positive constants
η and ΓW such that for any y ∈ Y , any x, x′ ∈ X and any w,w′ ∈ W

∥∇x′f(w′, x′, y)−∇xf(w, x, y)∥ ≤ η∥x− x′∥+ ΓW∥w − w′∥ (13)
Lemma 5.1 (Expansiveness of PGD). Suppose that f satisfies the condition (13) and the mapping
G is α− Lipschitz.

qc(π
PGD) ≤ min

(
K−1∑
i=0

µiν,
2
√
dϵ

c

)
where ν = λαΓW and µ = 1 + λαη.

We defer the proof to Appendix A.

For all J-losses for which qc(J) is uniformly bounded by q∗, plugging this bound to (11) immedi-
ately gives a generalization bound that vanishes as O(1/n). However, one of the most important
J-loss, the one defined using sign-PGD attack, fails to satisfy this boundedness condition and the
bound (11) does not apply.

To carefully study such a setting, let J sign−PGD := πsign−PGD, where πsign−PGD is πPGD with
function G taken as the sign function. We have the following results.
Corollary 5.2. Let J = J sign−PGD. Suppose that for any S and S′ with S ≃ S′, ∥A(S)−A(S′)∥ <
B with probability 1. Under the condition of Theorem 4.1, for any ρ > 0, there exists some N
(depending on ρ), such that when n > N ,

GGn(J,Aπ) < (1− δn(Aπ)/B)LX · 2ϵ
√
d+ ρ.
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The proof is left in Appendix A. Note that for J sign−PGD-loss and without additional information
on ∥A(S)−A(S′)∥, it appears difficult to arrive at a generalization bound that vanishes with n and
the bound given here converges to a constant. Although this may not mean that AT with J sign−PGD-
loss does not have a vanishing generalization error, it nonetheless reveals certain intrinsic difficulty
of generalization for this setting. Specifically, for large n, the perturbation radius (that defines the
J-loss) and the input dimension appear to fight against the UAS parameter δn(Aπ); when UAS pa-
rameter decreases – which pushes towards better generalization, ϵ

√
d is amplified more significantly

– causing poorer generalization.

To investigate how the expansiveness property affects generalization, we consider a smooth approx-
imation of the sign function by a tanh function, i.e., sgn(x) ≈ tanhγ(x) := tanh(γx). Notably, the
approximation error here vanishes with increase γ. By replacing sgn(x) in PGD AT with tanhγ(x),
we may control the expansiveness of πPGD.

Experiments We conduct experiment for PGD-AT when G is chosen as tanhγ as well as the
identity map. Specially, for πPGD with different choice of G, we refer to it as “sign-PGD” when
G(x) = sgn(x), as “tanhγ-PGD” when G(x) = tanhγ(x) and as “raw gradient (RG)-PGD” when
G(x) = x. In all the experiments, we primarily consider the J-loss defined in (1) as our evaluation
metric, with the loss function in f taken as the 0-1 loss and refer to this metric as J-(0-1) loss. We
mainly use J from {tanhγ-PGD, sign-PGD, J id}. The experiments are conducted on CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and SVHN(Netzer et al., 2011). Our experimental setting is
elaborated in Appendix B, which follows from the setting in Rice et al. (2020).
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Figure 2: Experiments on CIFAR-10. (a) Models trained with tanhγ-PGD AT with different γ and
evaluated by J-(0-1) loss on the training and testing set. (b) J-(0-1) loss with J = tanhγ-PGD
measured along the training trajectories of two sets of tanhγ-PGD AT. (c) J-(0-1) loss measured
along the trajectory of the RG-PGD AT with different choice of J .

Figure 2 (a) presents the results of experiments conducted on CIFAR10, where the models are trained
using tanhγ-PGD AT (i.e., Aπ with π = tanhγ-PGD) with various γ values. Each model is trained
for 200 epochs and is evaluated using the J-(0-1) loss for J ∈ {tanhγ-PGD, sign-PGD, J id} (dis-
tinguished by colors), where γ matches the corresponding value in π. We use star-shaped dots and
circle-shaped dots to respectively denote the J-(0-1) loss measured on the training set and the testing
set. The gaps between each pairs of curves in the same color category then represents the gener-
alization gap of the trained models evaluated by different J-(0-1) loss. By decreasing γ in π, the
generalization gaps reduce, as shown by the narrowing gaps across all pairs of the curves in the same
color. The observed experimental results demonstrate that AT with less expansive π tends to achieve
a smaller generalization gap, consistent with the generalization bound of (10). Similar trends are
also observed on SVHN and CIFAR100 (see Appendix D Figure 4).

Due to the mismatch between π and J , the model trained by the algorithm Aπ may still have a large
empirical risk E[RS [Aπ(S), J ]], which in turn results in a high population risk E[RD[Aπ(S), J ]]
even if the generalization gap GGn(J,Aπ) is small. This is illustrated in Figure 2 (a) as the blue
star-shaped curve consistently stays higher than the green star-shaped curve with a notably large gap.
As γ increases, the tanhγ function gradually approaches the sign function, leading to an intersection
of the green and the blue curves. This indicates that sign-PGD is a stronger perturbation compare to
the tanhγ-PGD, as the model trained with tanhγ-PGD AT can still be vulnerable to the sign-PGD
attack on the training set.
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The seminal work by Tsipras et al. (2018) found that AT can negatively impact standard generaliza-
tion. They constructed specific data models to demonstrate that achieving robustness and standard
generalization can be inherently conflicting, suggesting an unavoidable trade-off between these two
goals. This phenomenon has been extensively studied in subsequent research (Zhang et al., 2020;
2019; Yang et al., 2020; Raghunathan et al., 2020; Javanmard et al., 2020; Pang et al., 2022). Our
experimental results offer further insights into this phenomenon from the perspective of algorithmic
stability. Specifically, we find that the decline in standard generalization performance caused by AT
can be attributed to the poor expansiveness condition of the sign-PGD method employed in AT. As
shown by the trend of the red circle-shaped curve in Figure 2 (a), AT does not always harm standard
generalization; a reduction in the J id-(0-1) loss is observed as γ decreases. This suggests that the
trade-off identified by Tsipras et al. (2018) might be a side effect of the sign-PGD AT and is not
necessarily unavoidable.

Figure 2 (b) plots the J-(0-1) loss with J = π evaluated along the trajectory of the tanhγ-PGD
AT with γ = 10 (the solid curves) and γ = 105 (the dashed curves). The dashed curves exhibit
a phenomenon similar to robust overfitting observed in Rice et al. (2020): after the first learning
rate decay (the 100th epoch), as the training loss continuously decreases, the testing loss starts to
elevate. This phenomenon does not appear in the AT with γ = 10, as shown in the trend of the
solid curves. We conduct additional experiments for RG-PGD AT. As shown in Figure 2 (c), the
generalization gap remains small across all groups of J-(0-1) loss throughout the training. Similar
to the previous results, the model trained by this AT variant exhibits notable vulnerability to the
sign-PGD perturbation, as indicated by the consistently high values of the orange and blue curves.
These findings demonstrate that removing or altering the sign function in PGD leads to a non-
negligible influence on both robust generalization and resistance to perturbations on the training set.
This highlights the crucial role of the sign function in PGD-AT, which deserves a more careful and
further in-depth investigation.

6 REVISIT OF SIGN FUNCTION IN PGD

For simplicity, we write f(w, x, y) as f(x) hereafter. The sign-PGD perturbation can be
treated as an iterative optimization algorithm for solving the constrained optimization problem
maxx̂∈B∞(x,ϵ) f(x̂). It is related to the sign gradient methods, which has been used for different
purposes, such as for training neural networks (e.g., Riedmiller & Braun (1992)) and for gradient
compression (e.g., Bernstein et al. (2018)).

We now show that the sign gradient method can be viewed as a Steepest Descend (or ascend in
our context) Method (SDM) w.r.t a ∞−norm ball (e.g., see Chapter 9.4 in Boyd & Vandenberghe
(2004)). Specifically, for the loss f(xk) at the kth iteration in SDM, it updates xk by finding a
steepest ascend direction v within a small neighborhood of xk such that the loss f(xk+1) with
xk+1 = xk + v is locally maximized. Such a neighborhood can be chosen as a p−norm ball around
xk (i.e., Bp(x

k, λp)) with a small radius λp. Finding v introduces a new optimization problem:
maxv∈Bp(xk,λp) f(x

k+v), which is then approximately solved by replacing f(xk+v) with its linear
approximation around xk, namely, solving maxv∈Bp(xk,λp) f(x

k) +∇f(xk)T v which is equivalent
to solving maxv∈Bp(xk,λp) ∇f(xk)T v whose closed form solution is

v∗ = λpGp(∇f(xk)), where Gp(∇f(xk)) :=
sgn(∇f(xk))⊙ |∇f(xk)|q−1

∥∇f(xk)∥q−1
q

(14)

where we require 1/p + 1/q = 1. The operator ⊙ denotes the element-wise product. The closed
form (14) then gives the following updating rule of SDM as

xk+1 = xk + λGp(∇f(xk))

As a special case, when p = 1 with q = ∞, SMD turns into the coordinate gradient method
with G1(∇f(xk)) = sgn(maxi ∇f(xk)[i])ei and i = argmaxj |∇f(xk)[j]|, where ei denotes the
standard basis vector. When p = q = 2, we have G2(∇f(xk)) = ∇f(xk)/∥∇f(xk)∥2
When p = ∞ with q = 1, the mapping G∞ reduces to the sign function, indicating that the sign-
PGD is indeed a (projected) SDM w.r.t B∞(xk, λ∞). It is then curious to investigate the general-
ization performance of the model trained by AT using the Gp−PGD with p ̸= ∞.1. We conduct

1Note that in the Gp−PGD we still consider projecting onto B∞(x, ϵ) when p is taken other than ∞.
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Figure 3: Experiments for Gp-PGD AT: (a) Model trained with various p values and evaluated by
J-(0-1) loss with J = π and J = sign-PGD. (b) Training curves of the AT with various p values.
(c) Standard generalization performance of the models trained by the AT, where the green curves are
copied from (a) for a clearer presentation.

experiments for the Gp-PGD-based AT following the same experimental setting as in the previous
section, except that λp is adjusted to maintain the same volume of the balls Bp(0, λp) across dif-
ferent p values (details in Appendix C). Figure 3 (a) presents the experimental results on CIFAR10
(results on the other datasets are in Appendix D Figure 5 and 6). The models are trained by Aπ

with π = Gp-PGD for various p and are evaluated by the J-(0-1) loss with J = π (green curves) as
well as J =sign-PGD (blue curves). The yellow curve represents the generalization gap for models
trained with Gp-PGD. As shown, a larger p tends to result in larger generalization gaps. Indeed,
nearly all Gp-PGD with p ≥ 1.3 cause notably overfitting in AT with generalization gaps exceeding
30%. The consistently higher position of blue star-shaped curves over the green star-shaped curve
also suggests that sign-PGD is the strongest perturbations among the Gp-PGD. Figure 3 (b) further
exhibits the overfitting in Gp-PGD AT by plotting training curves for p = {1, 2, 6}, where continued
training causes a rise of the testing errors (the blue and green curves), in contrast with the red curves,
which demonstrate a good generalization. Figure 3 (c) shows how the Gp-PGD AT affect standard
generalization where the red curves deontes the J-(0-1) loss with J = J id and the green curves are
copied from Figure 3 (a) for a clearer comparison. An enlarging standard generalization gap is also
observed in Gp-PGD AT with larger p.

The observed overfitting caused by the Gp−PGD family is potentially attributed to that nearly all
the members in {Gp : p ∈ [1,∞]} have a poor Lipschitzness, as shown in the following lemma,
which leads to a bad expansiveness of Gp-PGD.

Lemma 6.1. Consider the mapping Gp : Rd → Rd specified in (14) with p ∈ [1,∞]. Let I :=
{1, · · · , d}. If Gp is αp−Lipschitz over the set H(r) ⊆ Rd with H(r) := {x ∈ Rd : mini∈I |x[i]| ≥
r} for some r > 0, then we have

αp ≥ 1

rd
1
p

We defer the proof in Appendix A. This lower bound also implies that αp is unbounded in Rd, noting
that the lower bound approaches infinity as r → 0. Except for this extreme case, it is reasonable to
assume that the gradients ∇xf(x) lies in a set H(r) with sufficiently small r where all the members
in {Gp : p ∈ [1,∞]} have a bounded but large Lipschitz constant. Noteworthy, the lower bound
increases, as p ranges from 1 to infinity, suggesting that the increased generalization gap in Figure 3
(a) is attributed to the increasing expansiveness of Gp−PGD caused by the rise in αp.

7 LIMITATIONS

The main limitation of this work is that we have only developed an upper bound for the gener-
alization of AT algorithms. Like all theoretical results based on upper bounds, they are adequate
for understanding performance guarantees but may be inadequate to explain poor generalization.
Nonetheless, our experimental results have suggested that our upper bound may well explain robust
overfitting.
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A PROOFS

Proof of Lemma 3.2

∆n(A, fJ) = sup
S≃S′

sup
(x,y)∈X×Y

EA[f (A(S), J(x; y,A(S)), y)− f (A(S′); J(x; y,A(S′)), y)]

(15)

= sup
(x,y)∈X×Y

EA[f (A(S∗), J(x; y,A(S∗)), y)− f (A(S′
∗); J(x; y,A(S

′
∗)), y)] (16)

≤ sup
(x,y)∈X×Y

EA[LX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥+ LW∥A(S∗)−A(S′

∗)∥]

(17)

= sup
(x,y)∈X×Y

EALX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥+ LWEA∥A(S∗)−A(S′

∗)∥

(18)

≤ sup
(x,y)∈X×Y

EALX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥+ LW sup

S≃S′
EA∥A(S)−A(S′)∥

(19)

The inequality (17) is derived based on the condition (4). We now deal with the first term in (19).

For shorter notation, let D(S∗, S
′
∗) := ∥A(S∗) − A(S′

∗)∥. For any number c∗ ≥ 0, let
Q(S∗, S

′
∗; c

∗) := Pr(D(S∗, S
′
∗) < c∗). For any x, y we have

EA[LX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥] (20)

=(1−Q(S∗, S
′
∗; c

∗))EA [LX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥ | D(S∗, S

′
∗) ≥ c∗] (21)

+Q(S∗, S
′
∗; c

∗)EA[LX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥ | D(S∗, S

′
∗) < c∗] (22)

≤(1−Q(S∗, S
′
∗; c

∗))EA[qc∗(J)LXD(S∗, S
′
∗) | D(S∗, S

′
∗) ≥ c∗] +Q(S∗, S

′
∗; c

∗)LX 2ϵ
√
d (23)

≤qc∗(J)LXEAD(S∗, S
′
∗) +Q(S∗, S

′
∗; c

∗)LX 2ϵ
√
d (24)

≤qc∗(J)LX sup
S≃S′

EAD(S, S′) +Q(S∗, S
′
∗; c

∗)LX 2ϵ
√
d (25)

The derivation above start by splitting the expectation into two conditional expectations conditioned
on two complementary events (see the terms (21) and (22)) and then utilize the c−expansiveness
property of J as well as the condition that J(x, y, w) ∈ B∞(x, ϵ) to individually derive the first and
second terms in (23). Plug the final expression above back in (19), the lemma is proved. □

Proof of the Theorem 4.1 Consider the AT algorithm specified in (7) and (8). For two datasets S
and S′ differing in only one sample and respectively containing n samples, let {wt}Tt=1 and {w′

t}Tt=1
respectively denote the sequences of model parameters generated by running AT on S and S′ for T
iterations. Let c denote the smallest non-zero value of ∥wt−w′

t∥ across t and across the randomness
of A when running AT algorithm A on S and S′. (Note that such a choice of c may be overly
pessimistic, but it suffices to obtain the desired rate of vanishing of the generalization bound in this
theorem). For arbitrary iteration t ∈ {1, · · · , T − 1}, we have

E∥wt+1 − w′
t+1∥

≤E∥wt − τt∇wtf (wt, π(x; y, wt), y) + τt∇w′
t
f (w′

t, π(x; y, wt), y)− w′
t∥

+ E∥τt∇w′
t
f (w′

t, π(x
′; y′, w′

t), y
′)− τt∇w′

t
f (w′

t, π(x; y, wt), y) ∥ (26)

Here the expectation is taken over all the randomness in wt and w′
t. We use (x, y) and (x′, y′)

respectively to denote the samples selected by the AT algorithm from S and S′ at the iteration t.
Inequality (26) is derived by adding and subtracting the term τt∇w′

t
f (w′

t, π(x; y, wt), y) and then
applying the triangle inequality. For the first term in (26), we have that

E∥wt − τt∇wtf (wt, π(x; y, wt), y) + τt∇w′
t
f (w′

t, π(x; y, wt), y)− w′
t∥

≤ E∥wt − w′
t∥+ τtβE∥wt − w′

t∥ (27)

by utilizing the triangle inequality and the condition (5). To deal with the second term in (26), we
consider that at each iteration, with probability 1 − 1/n the samples selected by AT respectively
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from S and S′ are the same. We have

E∥τt∇w′
t
f (w′

t, π(x
′; y′, w′

t), y
′)− τt∇w′

t
f (w′

t, π(x; y, wt), y) ∥

≤
(
1− 1

n

)
τtΓXE∥π(x; y, w′

t)− π(x; y, wt)∥+
2τtLW

n
(28)

≤
(
1− 1

n

)
τtΓX qc(π)E∥wt − w′

t∥+
2τtLW

n
(29)

The first term in (28) and (30) make use of the condition (5) and then the expansiveness condition
of π. Since f is LW− Lipschitz w.r.t W , we have ∥∇wf(w;x, y)∥ ≤ LW for ∀x, y, w. The second
term in (28) then follows.

Putting together and considering the step sizes τt ≤ 1
β , we have

E∥wt+1 − w′
t+1∥

≤ (1 + βτt + (1− 1/n)ΓX qc(π)τt)E∥wt − w′
t∥+

2τtLW

n
(30)

≤ (1 + βτt + ΓX qc(π)τt)E∥wt − w′
t∥+

2τtLW

n
(31)

≤ (2 + ΓX qc(π)/β)E∥wt − w′
t∥+

2LW

nβ
(32)

Unravelling the recursion, we have

E∥wT − w′
T ∥ ≤ 2LW

nβ

T∑
t=0

ζt (33)

where we take ζ = 2 + ΓX qc(π)/β. □

Proof of (12) Let a > 2 be a constant. For shorter notation let Z = ∥Aπ(S∗) − Aπ(S
′
∗)∥. We

will show that if the second moment EZ2 = O( 1
na ) , we can take c∗ = EZ − t with t = Ω( 1

nb ) and
b ∈ (1, a/2), such that the probability Q(c∗) decay at the rate of 1

na−2b . This is due to that

Q(c∗) = Pr [Z ≤ c∗] (34)
= Pr [Z ≤ EZ − t] (35)
≤ Pr [t ≤ |Z − EZ|] (36)

≤ Var(Z)

t2
(37)

≤ EZ2

t2
(38)

≤ O
(

1/na

1/n2b

)
= O

(
1

na−2b

)
(39)

where the inequality (37) is based on the Chebyshev’s inequality. Note that such a choice of t will
guarantee that c∗ > 0 such that the derivation above is nontrivial. This is because Theorem 4.1
implies that EZ ≤ δn(Aπ) = O( 1n ) and therefore c∗ = O( 1n − 1

nb ). Taking b > 1 guarantees that
c∗ > 0.

Proof of the Theorem 4.3 and Corollary 4.4 The proof is based on a slight modification of the
proof in Theorem 4.1. We start from the inequality (26). For the first term in (26), since that the
loss function f is convex and τt ≤ 1/β < 2/β, according to Lemma 3.7.2 in Hardt et al. (2016), we
have

E∥wt − τt∇wtf (wt, π(x; y, wt), y) + τt∇w′
t
f (w′

t, π(x; y, wt), y)− w′
t∥

≤ E∥wt − w′
t∥ (40)

When f is further assumed to be µ− strongly convex, we have that µ ≤ β since f is also β−smooth,
implying that τt ≤ 1

β ≤ 2
β+µ . According to Lemma 3.7.3 in Hardt et al. (2016), we have inequality
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(41) as
E∥wt − τt∇wtf (wt, π(x; y, wt), y) + τt∇w′

t
f (w′

t, π(x; y, wt), y)− w′
t∥

≤
(
1− βµτt

β + µ

)
E∥wt − w′

t∥ (41)

≤
(
1− 1

2
τtµ

)
E∥wt − w′

t∥ (42)

In fact, since µ ≤ β, we also have 1 ≤ 2β
β+µ and thus τtµ ≤ 2τtµβ

β+µ with τtµ ≤ 1. The inequality
(41) can be further simplified as (42).

The second term in (26) follows the same derivation as in the proof of Theorem 4.1. Putting together,
when f is convex, we have

E∥wt+1 − w′
t+1∥

≤ (1 + ΓX qc(π)τt)E∥wt − w′
t∥+

2τtLW

n
(43)

≤ (1 + ΓX qc(π)/β)E∥wt − w′
t∥+

2LW

nβ
(44)

when f is µ− strongly convex, we have
E∥wt+1 − w′

t+1∥

≤
(
1− 1

2
τtµ+ ΓX qc(π)τt

)
E∥wt − w′

t∥+
2τtLW

n
(45)

≤
(
1− µ

2β
+ ΓX qc(π)/β

)
E∥wt − w′

t∥+
2LW

nβ
(46)

Unravelling the recursion, we have

E∥wT − w′
T ∥ ≤ 2LW

nβ

T∑
t=0

ζt (47)

with ζ = 1 + ΓX qc(π)/β when f is convex and ζ = 1− µ
2β + ΓX qc(π)/β when f is µ− strongly

convex. For the strongly convex case, if we let qc(π) < µ
2ΓX

, we have ζ < 1. In this case, the

geometric series
∑T

t=0 ζ
t converges as T → ∞ and entails a closed form. The bound in (47) can

therefore be further simplified as

E∥wT − w′
T ∥ ≤ 2LW

nβ

T∑
t=0

ζt

≤ 2LW

nβ

∞∑
t=0

ζt (48)

=
2LW

nβ

1

1− ζ
(49)

=
4LW

n(µ− 2qc(π)ΓX )
(50)

This derives the bound in Corollary 4.4. □

Proof of Lemma 5.1 To establish the proof, we first discuss the expansive property of the one step
PGD perturbation T . For arbitrary x̂ ∈ X , we have

∥Tx,y(x̂;w)− Tx,y(x̂;w
′)∥ (51)

=
∥∥ΠB∞(x,ϵ) [x̂+ λG (∇x̂f(w, x̂, y))]−ΠB∞(x,ϵ) [x̂+ λG (∇x̂f(w

′, x̂, y))]
∥∥ (52)

≤λ ∥G (∇x̂f(w, x̂, y))−G (∇x̂f(w
′, x̂, y))∥ (53)

≤λα ∥∇x̂f(w, x̂, y)−∇x̂f(w
′, x̂, y)∥ (54)

≤λαΓW∥w − w′∥ (55)
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The inequality (53) is due to that the projection operation ΠB∞(x,ϵ) is 1-expansive. The inequalities
(54) and (55) are derived based on the Lipschitz condition of G and ∇xf .

For fixed w ∈ W , we have for arbitrary x′, x′′ ∈ X

∥Tx,y(x
′;w)− Tx,y(x

′′;w)∥ (56)

=
∥∥ΠB∞(x,ϵ) [x

′ + λG (∇x′f(w, x′, y))]−ΠB∞(x,ϵ) [x
′′ + λG (∇x′′f(w, x′′, y))]

∥∥ (57)

≤∥x′ + λG (∇x′f(w, x′, y))− x′′ + λG (∇x′′f(w, x′′, y))∥ (58)

≤∥x′ − x′′∥+ λα ∥∇x′f(w, x′, y)−∇x′′f(w, x′′, y)∥ (59)

≤(1 + λαη)∥x′ − x′′∥ (60)

The derivation here follows the similar idea as above, utilizing the 1-expansiveness condition of
ΠB∞(x,ϵ) as well as the Lipschitz condition of G and the smoothness condition of f w.r.t X .

We now derive the upper bound for the expansiveness of πPGD. With a little abuse of notation,
let xK = TK

x,y(x;w) and similarly x′
K = TK

x,y(x;w
′). For shorter notation, let ν = λαΓW and

µ = 1 + λαη

∥πPGD(x; y, w)− πPGD(x; y, w′)∥ (61)

=∥TK
x,y(x;w)− TK

x,y(x;w
′)∥ (62)

=∥Tx,y(xK−1;w)− Tx,y(x
′
K−1;w

′)∥ (63)

≤∥Tx,y(xK−1;w)− Tx,y(xK−1;w
′)∥+ ∥Tx,y(xK−1;w

′)− Tx,y(x
′
K−1;w

′)∥ (64)

≤π∥w − w′∥+ µ∥xK−1 − x′
K−1∥ (65)

=π∥w − w′∥+ µ∥Tx,y(xK−2;w)− Tx,y(x
′
K−2;w

′)∥ (66)

≤
K−1∑
i=0

µiν∥w − w′∥ (67)

Note that the bound (67) holds for any choice of w,w′. On the other hand, using the condition that
Tx,y(x̂;w) ∈ B∞(x, ϵ), we can derive that for any w,w′ ∈ W with ∥w − w′∥ > c,

∥Tx,y(x̂;w)− Tx,y(x̂;w
′)∥ ≤ 2

√
dϵ =

2
√
dϵ

∥w − w′∥
∥w − w′∥ ≤ 2

√
dϵ

c
∥w − w′∥ (68)

Putting together, we have

qc(π
PGD) ≤ min

(
K−1∑
i=0

µiν,
2
√
dϵ

c

)
(69)

This completes the proof. □

Proof of Corollary 5.2 We first establish the following result.

For any non-negative random variable Z bounded below B and any c∗ > 0,

Pr[Z ≤ c∗] ≤ B − E(Z)

B − c∗
(70)

This result simply follows from Pr[Z ≤ c∗] = Pr[B − Z ≥ B − c∗] and applying the Markov
Inequality to random variable B − Z.

Now let Z = A(S) − A(S′) and c∗ = Bn−1/2 in Theorem 4.2. The second term in bound
of Theorem 4.2 then reduces to

(
1− supS≃S′ E∥A(S)−A(S′)∥

B(1−n−1/2)

)
LX · 2ϵ

√
d, which converges to(

1− supS≃S′ E∥A(S)−A(S′)∥
B

)
LX · 2ϵ

√
d with n. It can be verified that the first term in the bound

of Theorem 4.2 vanishes with n (as n−1/2). The corollary then follows. □.

17



Published as a conference paper at ICLR 2025

Proof of Lemma 6.1 The proof is established by noticing that all members in the set H̃(r) :=

{x ∈ Rd : |x[i]| = r, ∀i ∈ I} achieves 1/(rd
1
p )−Lipschitz and thus the Lipschitz constant over

H(r) is greater than it. Specifically, for any x, x̂ ∈ H̃(r) with x ̸= x̂, let I− := {i ∈ I : sgn(x[i]) ̸=
sgn(x̂[i])} and I+ := I − I−. We have

∥G(x)−G(x̂)∥2 (71)

=

∥∥∥∥ sgn(x)⊙ |x|q−1

∥x∥q−1
q

− sgn(x̂)⊙ |x̂|q−1

∥x̂∥q−1
q

∥∥∥∥
2

(72)

=

(
d∑

i=1

∣∣∣∣ sgn(x[i])|x[i]|q−1

∥x∥q−1
q

− sgn(x̂[i])|x̂[i]|q−1

∥x̂∥q−1
q

∣∣∣∣2
) 1

2

(73)

=

∑
j∈I+

∣∣∣∣ sgn(x[j])|x[j]|q−1

∥x∥q−1
q

− sgn(x̂[j])|x̂[j]|q−1

∥x̂∥q−1
q

∣∣∣∣2 + ∑
k∈I−

∣∣∣∣ sgn(x[k])|x[k]|q−1

∥x∥q−1
q

− sgn(x̂[k])|x̂[k]|q−1

∥x̂∥q−1
q

∣∣∣∣2
 1

2

(74)

=

∑
k∈I−

∣∣∣∣ 2rq−1

rq−1d
1
p

∣∣∣∣2
 1

2

(75)

=
√
|I−|

2

d
1
p

(76)

where |I−| denotes the cardinality of the set I−. The equality (75) is derived by noting that the first
term in (74) is zero since |x[j]| = |x̂[j]| and sgn(|x[j]|) = sgn(|x̂[j]|) for each j ∈ I+ and noting
that ∥x∥q = rd

1
q for any x ∈ H̃(r). The power term q−1

q is replaced by 1
p since 1/q+1/p = 1. We

also have

∥x− x̂∥2 (77)

=

(
d∑

i=1

|x[i]− x̂[i]|2
) 1

2

(78)

=

∑
j∈I+

|x[j]− x̂[j]|2 +
∑
k∈I−

|x[k]− x̂[k]|2
 1

2

(79)

=

∑
k∈I−

|2r|2
 1

2

(80)

=2r
√
|I−| (81)

Putting together, we have that for any x, x̂ ∈ H̃(r) with x ̸= x̂,

∥G(x)−G(x̂)∥2
∥x− x̂∥2

=
1

rd
1
p

≤ sup
x′,x′′∈Q(r)

x′ ̸=x′′

∥G(x′)−G(x′′)∥2
∥x′ − x′′∥2

= αp (82)

This completes the proof. □

B HYPER-PARAMETER SETTINGS FOR THE EXPERIMENTS

In our experiments, we follow the settings in Rice et al. (2020): The perturbation radius is set to
be ϵ = 8/255 w.r.t the ∞−norm for the three datasets. The pre-activation ResNet 18 (PRN-18)
model (He et al., 2016) is used for CIFAR-10 and SVHN. The Wide ResNet 34 (WRN-34) model
(Zagoruyko & Komodakis, 2016) is used for CIFAR-100. We set K = 10 for all the PGD variants
with λ = 2/255 on CIFAR-10 and CIFAR-100, and set λ = 1/255 for SVHN. The initial learning
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rate of AT is set to be 0.1 for CIFAR-10 and CIFAR-100 and set to be 0.01 for SVHN. The learning
rate is decayed by 0.1 at the 100th and the 150th epoch of the training. The batch size is set to be 128
and a weight decay of 5 × 10−4 is used for all the experiments. The experiments are conducted on
our internal GPU clusters. Training PRN-18 on CIFAR-10 and SVHN for 200 epochs spends around
18 hours with two NVIDIA V100 GPUs, and training WRN-34 on CIFAR-100 requires around three
days to complete with the same computing resources.

C COMPUTING λp

The volume of Bp(0, λp) is computed by

vol (Bp(0, λp)) =

(
2Γ
(

1
p + 1

))d
Γ
(

d
p + 1

) λd
p (83)

Here Γ(·) denotes the Euler’s gamma function. For p other than ∞, to make vol (Bp(0, λp)) =
vol (B∞(0, λ∞)), we have

λp = exp

{
1

d
ln Γ(

d

p
+ 1) + ln

λ∞

Γ( 1p + 1)

}
(84)

In the experiments, the value of λ∞ (i.e., the step size for the sign-PGD) is set to be the same as in
Section 5 and values for other λp is computed from (84).
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Figure 4: Experiments in Figure 2 reproduced on SVHN and CIFAR-100.
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Figure 5: Experiments in Figure 3 reproduced on SVHN.

1 1.5 2 4 6 8
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss J = Gp PGD (gap)
J = Gp PGD (trainset)
J = Gp PGD (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(a)

1 1.5 2 4 6 8
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss

J = J id (trainset)
J = J id (testset)
J = Gp PGD (trainset)
J = Gp PGD (testset)

(b)

Figure 6: Experiments in Figure 3 reproduced on CIFAR-100.

E COMPARISON WITH THE WORKS IN XIAO ET AL. (2022B) AND WANG
ET AL. (2024)

Since the work of Wang et al. (2024) is built upon the framework in Xiao et al. (2022b), we here
only presents the connections and differences between Xiao et al. (2022b) and our work.

Summary of generalization bounds in Xiao et al. (2022b) First we would like to note that the
problem setting in this paper includes the setting in Xiao et al. (2022b) as a special case. Specifi-
cally, the generalization gap discussed in Xiao et al. (2022b) corresponds to the generalization gap
GGn(J

∗, AJ∗) defined in this paper, where the perturbations in both J−loss and the AT algorithm
are taken as the optimal adversarial perturbation J∗.

This work and Xiao et al. (2022b) both take the Lipschitzness and smoothness conditions of the
standard loss f as the starting point, but derive generalization bounds from different perspectives:
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the work in Xiao et al. (2022b) defines and proposes to study the η−approximate smoothness of the
adversarial loss ( f∗ in our notation) and derive generalization bounds based on this quantity. This
work defines the notion of c−expansiveness of the perturbation operator (e.g., J∗) and show how
this quantity affects generalization performance of AT.

For completeness, we here present the definition of η−approximate smoothness, rewrite the Defini-
tion 4.1 of Xiao et al. (2022b) using the notations in this paper.
Definition E.1 (η−approximate smoothness Xiao et al. (2022b)). A loss function fJ is called
η−approximately β−gradient Lipschitz if there exists β > 0 and η > 0 such that for any
(x, y) ∈ X × Y and for any w1, w2 ∈ W we have

∥∇fJ(w1, x, y)−∇fJ(w2, x, y)∥ ≤ β∥w1 − w2∥+ η (85)

The work in Xiao et al. (2022b) then derives generalization bounds for loss functions that are
η−approximately smooth. For example, after replacing the notations in Xiao et al. (2022b) with
ours, Theorem 5.1 of Xiao et al. (2022b) shows that if fJ is η−approximately β−gradient Lips-
chitz, convex in w for all (x, y) and the standard loss f satifies the same Lipschitz condition in (6)
of this paper (or Assumption 4.1. in Xiao et al. (2022b)), then their bound in Theorem 5.1 becomes

GGn(J,AJ) ≤
LW

β
ηT +

2L2
W

nβ
T

The authors of Xiao et al. (2022b) show that the adversarial loss f∗ satisfies η-approximately β-
gradient Lipschitz with η = 2ΓX ϵ so that the generalization bound above gives their generalization
bound for adversarial training. In their determination of the η parameter, they have assumed that
the standard loss f satisfies certain Lipschitz and smoothness condition; this condition is effectively
equivalent to the condition (5) in this paper.

It is worth noting that the generalization bounds derived based on the approximate smoothness
parameter η contain a term unrelated to the sample size n because of the independence of η on n.

The limitation of the framework in Xiao et al. (2022b) We would like to note that when the
standard loss f satisfies the Assumption 4.1 in Xiao et al. (2022b) (or condition (5) in this paper),
in fact every J−loss (for any arbitrary J , including but not limited to J∗) is 2ΓX ϵ−approximately
smooth. To see this:

∥∇w1fJ(w1, x, y)−∇w2fJ(w2, x, y)∥
=∥∇w1

f(w1, J(x; y, w1), y)−∇w2
f(w2, J(x; y, w2), y)∥ (86)

≤β∥w1 − w2∥+ ΓX ∥J(x; y, w1)− J(x; y, w2)∥ (87)
≤β∥w1 − w2∥+ ΓX (∥J(x; y, w1)− x∥+ ∥x− J(x; y, w2)∥) (88)
≤β∥w1 − w2∥+ 2ΓX ϵ (89)

where inequality (87) follows from Assumption 4.1 in Xiao et al. (2022b). Inequality (88) and (89)
are derived by using the triangle inequality and the condition that ∥J(x; y, w) − x∥ ≤ ϵ for any
w ∈ W .

Due to the fact that all the J−losses have the same approximate smoothness parameter η, the gener-
alization bounds derived for different J−loss, based on the framework in Xiao et al. (2022b), will be
the same. This type of generalization bound ignores the influence of the perturbations used in AT on
generalization and it is therefore unable to explain the experimental observations in Section 5 and 6
of this paper where different choices of perturbations indeed have distinct impact on generalization.

Difference of our approach from Xiao et al. (2022b) In this paper, we depart from the approach
of Xiao et al. (2022b), which ignores the specific properties of perturbation J , and take a different
route which considers the impact of J measured via its expansiveness parameter. Our approach
allows us to analyze how different perturbations used in AT affect its generalization performance.
Our bounds, derived based on the expansiveness parameter, also avoid having the non-vanishing
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term (like the first term in Theorem 5.1 of Xiao et al. (2022b)) when the expansiveness parameter is
finite. Only in the case when the expansiveness parameter is unbounded, our results are similar to
Xiao et al. (2022b), where the generalization bound contains a non-vanishing term.

The UAS parameter of AT characterizes the gap ∥w − w′∥ where w = A(S) and w′ = A(S′)
are the model parameters produced by the AT algorithm on two nearly identical datasets S ≃ S′.
Intuitively, the difference between w and w′ arises from the single different example in S and S′

(where larger training sample size n tends to reduce the probability of using that single different
example to update model parameters in AT), and gets ”magnified” by the perturbation J along the
AT training trajectory. The expansiveness parameter of J in this paper effectively captures this
”magnification” factor. Thus, the eventual difference between w and w′ depends on not only the
sample size n but also the expansiveness parameter of J . Then the exploitation of the expansiveness
of J brings sample size n into the bounds.
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