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Abstract1

We introduce graph-time convolutional autoencoder (GTConvAE), a novel spa-2

tiotemporal architecture tailored to unsupervised learning for multivariate time3

series on networks. The GTConvAE leverages product graphs to represent the4

time series and a principled joint spatiotemporal convolution over this product5

graph. Instead of fixing the product graph at the outset, we make it parametric6

to attend to the spatiotemporal coupling for the task at hand. On top of this, we7

propose temporal downsampling for the encoder to improve the receptive field8

in a spatiotemporal manner without affecting the network structure; respectively.9

In the decoder, we consider the opposite upsampling operator. We prove that the10

GTConvAEs with graph integral Lipschitz filters are stable to relative network per-11

turbations, ultimately showing the role of the different components in the encoder12

and decoder. Numerical experiments for denoising and anomaly detection in solar13

and water networks corroborate our findings and showcase the effectiveness of the14

GTConvAE compared with state-of-the-art alternatives.15

1 Introduction16

Learning unsupervised representations from spatiotemporal network data is commonly encountered17

in applications concerning multivariate data denoising [1], anomaly detection [2], missing data18

imputation [3], and forecasting [4], to name just a few. The challenge is to develop models that19

jointly capture the spatiotemporal dependencies in a computation- and data-efficient manner yet being20

tractable so that to understand the role played by the network structure and the dynamics over it. The21

autoencoder family of functions is of interest in this setting, but vanilla spatiotemporal forms [5–7]22

that ignore the network structure suffer the well-known curse of dimensionality and lack inductive23

learning capabilities [8].24

Upon leveraging the network as an inductive bias [9], graph-time autoencoders have been recently25

developed. These approaches are typically composed of two interleaving modules: one capturing26

the spatial dependencies via graph neural networks (GNNs) [10] and one capturing the temporal27

dependencies via temporal CNN or LTSM networks. For example, the work in [1] uses an edge-28

varying GNN [11] followed by a temporal convolution for motion denoising. The work in [12]29

considers LSTMs and graph convolutions for variational spatiotemporal autoencoders, which have30

been further investigated in [3, 13], respectively, for spatiotemporal data imputation as a graph-31

based matrix completion problem and dynamic topologies. Graph-time autoencoders over dynamic32

topologies have also been investigated in [14, 15]. Lastly, [4] embeds the temporal information into33

the edges of a graph and develops an autoencoder over this graph for forecasting purposes.34

By working disjointly first on the graph and then on the temporal dimension of the graph embeddings,35

these approaches fail to capture the joint spatiotemporal dependencies present in the raw data. It is36

also challenging to analyze their theoretical properties and to attribute to what extent the benefit comes37

from one module over the other. This aspect has been investigated for supervised spatiotemporal38

learning via GNNs [16–21] but not for autoencoders. The two works elaborating on this are [2]39

and [22]. The work in [2] replicates the graph over time via the Cartesian product principle [23]40

and uses an order one graph convolution [24] to learn spatiotemporal embeddings that are fed41

into an LSTM module to improve the temporal memory, ultimately giving more importance to the42

temporal dimension of the latent representation. Differently, [25] proposed a variational graph-time43
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autoencoder that its encoder is based on [17] and its decoder is a multi-layer perceptron; hence, being44

suitable only for topological tasks such as dynamic link prediction but not for tasks concerning time45

series over networks such as denoising or anomaly detection.46

In this paper, we propose a GTConvAE that, differently from [2], captures jointly the spatiotemporal47

coupling both in the raw data and the intermediate higher-level representations. The GTConvAE48

operates over a parametric product graph [26] to attend to the spatiotemporal coupling for the task49

at hand rather than fixing it at the outset. Differently from [17], the GTConvAE has a symmetric50

structure with graph-time convolutions in both encoder and decoder, making it suitable for tasks51

concerning network time series. We also study the capability of the GTConvAE to transfer learning52

across different networks, which is of importance as practical topologies differ from the models used53

during training (e.g., because of model uncertainness, perturbations, or dynamics). The latter has54

been studied for traditional [27–29] and graph-time GNN models [20, 26, 30] but not for graph-time55

autoencoders.56

Our contribution in this paper is twofold. First, we propose a symmetric graph-time convolutional57

autoencoder that jointly captures the spatiotemporal coupling in the data suited for tasks concerning58

multivariate time series over networks. The GTConvAE represents the time series as a graph signal59

over product graphs and uses the latter as an inductive bias to learn unsupervised representations.60

The product graph is parametric to attend to the coupling for the specific task, and it generalizes61

the popular choices of product graphs [31]. We also propose a temporal downsampling/upsampling62

in the encoder/decoder to increase the spatiotemporal receptive field without affecting the network63

structure; hence, preserving the inductive bias. Second, we prove GTConvAE is stable to relative64

perturbations on the spatial graph; highlighting the role played by the encoder, decoder, parametric65

product graph, convolutional filters, and downsampling/upsampling rate. Numerical experiments66

about denoising and anomaly detection over solar and water networks corroborate our findings and67

show a competitive performance compared with the more involved state-of-the-art alternatives.68

The rest of this paper is organized as follows. Section 2 formulates the GTConvAE model and69

Section 3 analyzes its theoretical properties. Numerical experiments are presented in Section 4 and70

conclusions in Section 5. The proofs are collected in the appendix.71

2 Graph-Time Convolutional Autoencoders72

GTconvAE learns representations from N−dimensional multivariate time series xt ∈ RN , t =73

1, . . . , T, collected in matrix X ∈ RN×T . These time series have a spatial network structure74

represented by a graph G = (V, E) composed of N nodes V = {v1, . . . , vN} and M edges. The75

n-th row of X contains the time series xn = [x1(n), . . . , xT (n)]
⊤ on node vn and the t-th column a76

graph signal xt = [xt(1), . . . , xt(N)]⊤ at timestamp t [32, 33]. For example, the time series could77

be nodal pressures measured over junction nodes in a water distribution network, while the pipe78

connections rule the spatial structure. The representations learned from the tuple {G,X} can then be79

used, among others, for anomaly detection [5], denoising dynamic data over graphs [1], and missing80

data completion [3].81

The GTconvAE follows the standard encoder-decoder structure [34], but in each module, it jointly82

captures the spatiotemporal structure in the data. We denote the GTconvAE as83

X̂ = GTConvAE(X,G;H) := DEC
(
ENC(X,G;He),G;Hd

)
where the encoder ENC(·, ·;He) and decoder DEC

(
·, ·;Hd

)
are non-linear parametric functions and84

where set H = He ∪Hd collects all parameters. The encoder takes as input the graph G and the time85

series X and produces higher-level representations Z ∈ RN×Te . These representations are built in86

a layered manner where each layer comprises: i) a joint graph-time convolutional filter to capture87

the spatiotemporal dependencies in a principled manner; ii) a temporal downsampling module to88

increase the receptive field without affecting the network structure; and iii) a pointwise nonlinearity89

to have more complex representations. The decoder has a mirrored structure w.r.t. the encoder by90

taking as input Z and outputting an estimate of the input X̂. The model parameters are estimated91

end-to-end by minimizing a spatiotemporal regularized reconstruction loss L(X, X̂,G,H).92
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2.1 Product Graph Representation of Network Time Series93

GTConvAE uses product graphs to represent the spatiotemporal dependencies in X [23]. Product94

graphs have been proven successful for processing multivariate time series, such as imputing missing95

values [35, 36], denoising [37], providing a spatiotemporal Fourier analysis [33], as well as building96

vector autoregressive models [38], spatiotemporal scattering transforms [39], and graph-time neural97

networks [26]. Specifically, denote by S ∈ RN×N the graph shift operator (GSO) of the spatial graph98

G, e.g., adjacency, Laplacian. Consider also a temporal graph GT = (VT , ET ,ST ), where the node99

set VT = {1, . . . , T} comprises the discrete-time instants, the edge set ET ⊆ VT × VT captures the100

temporal dependencies; e.g., a directed line or a cyclic graph, and ST ∈ RN×N is the respective101

GSO [40, 41]. The time series xn now can be defined as a graph signal over temporal graph ST102

where xt(n) is a scalar value assigned to the t-th node of GT .103

The product graph representing the spatiotemporal patterns in X is denoted by G⋄ = GT ⋄ G =104

(V⋄, E⋄,S⋄). The node set V⋄ is the Cartesian product between VT and V which leads to NT105

distinct spatiotemporal nodes i⋄ = (n, t). The edge set E⋄ connects these nodes and the GSO106

S⋄ ∈ RNT×NT is dictated by the product graph. Fixing the product graph implies fixing the107

spatiotemporal dependencies in the data, which may lead to wrong inductive biases. To avoid this108

and improve flexibility, we consider a parametric product graph whose GSO is of the form109

S⋄ =

1∑
i=0

1∑
j=0

sij(S
i
T ⊗ Sj) = s00IT ⊗ IN︸ ︷︷ ︸

self-loops

+ s01IT ⊗ S+ s10ST ⊗ IN︸ ︷︷ ︸
Cartesian

+ s11ST ⊗ S︸ ︷︷ ︸
Kronecker︸ ︷︷ ︸

Strong

, (1)

where the scalar parameters {sij} attend the spatiotemporal connections and encompass the typical110

product graph choices such as the Kronecker, the Cartesian, and the strong product. By column-111

vectorizing X into x⋄ = vec(X) ∈ RNT , we obtain a product graph signal assigning a real value to112

each spacetime node i⋄. I.e., the dynamic data xt over G is now a static signal x⋄ over the product113

graph G⋄.114

2.2 Encoder115

The encoder is an Le-layered architecture in which each layer comprises a bank of product graph116

convolutional filters, temporal downsampling, and pointwise nonlinearities.117

GTConv filter captures the spatiotemporal patterns in the data matrix X. Given the parametric118

product graph representation G⋄ = (V⋄, E⋄,S⋄) [cf. (1)] and the product graph signal x⋄ = vec(X)119

as input, the output of a graph-time convolutional filter of order K is120

y⋄ = H(S⋄)x⋄ =

K∑
k=0

hkS
k
⋄x⋄ (2)

where h = [h0, . . . , hK ]⊤ are the filter parameters and H(S⋄) :=
∑K

k=0 hkS
k
⋄ the filtering matrix.121

The filter in (2) is called convolutional as the output y⋄ is a weighted linear combination of shifted122

graph signals over the product graph up to K times [42]. Hence, the filter is spatiotemporally local in123

a neighborhood of radius K. The filter locality does not only depend on the order K but also on the124

type of product graph. For example, for a fixed K, the Cartesian product is more localized than the125

strong product, which can be considered to have a longer spatiotemporal memory [26]. Consequently,126

learning parameters {sij} in (1) implies learning the multi-hop resolution radius.127

In the ℓ−th layer, the encoder has Fℓ−1 product graph signal features x1
⋄,ℓ−1, . . . ,x

g
⋄,ℓ−1, . . .x

Fℓ−1

⋄,ℓ−1,128

processes these with a bank of FℓFℓ−1 filters and outputs Fℓ product graph signal features as129

yf
⋄,ℓ =

Fℓ−1∑
g=1

Hfg(S⋄)x
g
⋄,ℓ−1, f = 1, . . . Fℓ, (3)

which are the higher-level linear representation of the layer.130

Temporal downsampling reduces the temporal dimension in each output {yf
⋄,ℓ}f in (3) by down-131

sampling the latter along the temporal dimension with a rate r. More specifically, we first transform132

3



Graph-Time Convolutional Autoencoders

the f−th output yf
⋄,ℓ ∈ RNT e

ℓ−1 into a matrix Yf
1 = vec−1(yf

⋄,1) ∈ RN×T e
ℓ−1 and then summarize133

every r consecutive columns without overlap to obtain the downsampled matrix Xf
d,ℓ ∈ RNT e

ℓ with134

T e
ℓ < T e

ℓ−1. The (n, t)−th entry of Xf
d,ℓ is computed as135

Xf
d,ℓ(n, t) = SUM

(
Yf

ℓ (n, r(t− 1) + 1 : rt)
)
, f = 1, . . . Fℓ, (4)

where SUM(·) is a summary function over the temporal indices r(t− 1) + 1 to rt. This summary136

function could be a simple downsampling (i.e., output the first column in the block Yf
ℓ (n, r(t−1)+1 :137

rt)) or an aggregation function (i.e., mean/max/min per spatial node).138

This temporal downsampling increases the encoder spatiotemporal memory without affecting the139

spatial structure. I.e., nodes with the temporal indices t, rt, (r + 1)t, . . . become neighbors, which140

brings in a longer memory in the next layer and increases the encoder receptive field. While also141

spatial graph pooling can be added [43], we do not advocate it for two reasons. First, the spatial142

graph acts as an inductive bias for the GTConvAE [9]; hence, changing the graph in the layers via143

graph reduction, coarsening, or alternatives will affect the spatial structure, ultimately changing the144

inductive bias. Second, the spatial graph often represents the communication channels for distributed145

implementation of GTConv [20, 42, 44], and changing it may be physically impossible as sensor146

nodes have a limited transmission radius. An option in the latter setting may be a zero-pad spatial147

pooling [45, 46] but it requires memorizing the indices where the zero-padding is applied, which may148

be challenging for large graphs.149

Activation functions nonlinearize the downsampled features to increase the representational capacity.150

We consider an entry-wise nonlinear function σ(·) such as ReLU and produce layer ℓ−th output as151

Xf
ℓ+1 = σ(Xf

d,ℓ), f = 1, . . . Fℓ. (5)

The encoder performs operations (3)-(4)-(5) for all the Le layers to yield the encoded output152

Z⋄ := X⋄,L = ENC(x⋄,0,S,ST ;He, s), (6)

where x⋄,0 := x⋄ ∈ RNT , Z⋄ = [z1⋄, . . . , z
FL
⋄ ] ∈ RNTLe×FL , and we made explicit the dependence153

from the product graph parameters s = [s00, s01, s10, s11]
⊤ [cf. (1)].154

2.3 Decoder155

Mirroring the encoder, the decoder reconstructs the input from the latent representations in (6). At the156

generic layer ℓ, graph-time convolutional filtering is performed, subsequently a temporal upsampling,157

and a pointwise nonlinearity.158

GTConv filtering decodes the spatiotemporal latent representations from the encoder. Considering159

again Fℓ−1 input features z1⋄,ℓ−1, . . . , z
g
⋄,ℓ−1, . . . , z

Fℓ−1
⋄,ℓ−1 and a filter bank of FℓFℓ−1 GTConv filters160

as per (2), the outputs are161

yf
⋄,ℓ =

Fℓ−1∑
g=1

Hfg(S⋄)z
g
⋄,ℓ−1, f = 1, . . . Fℓ. (7)

Upsampling zero-pads the removed temporal values during downsampling [cf. (4)] so that the final162

GTConvAE output matches the dimension of X. Specifically, given the f−th feature yf
⋄,ℓ ∈ RNTd

ℓ−1163

from (7), we again transform it into a matrix Yf
1 = vec−1(yf

⋄,1) ∈ RN×Td
ℓ−1 and obtain the164

upsampled matrix Zf
u,ℓ ∈ RN×Td

ℓ whose (n, t)−th entry is computed as165

Zf
u,ℓ(n, t) =

{
Yf

ℓ (n, ⌈t/r⌉); if ∃k ∈ Z : t = kr

0; o/w
(8)

where ⌈·⌉ is the ceiling function.1 The GTConv filter bank in the next layer interpolates these166

zero-padded values from the downsampled ones. This implies that the downsampling rate in the167

1We considered the same down/up-sampling rate in each layer of the decoder and encoder; hence, because of
the mirrored structure T e

ℓ in (5) equals T d
ℓ−1 in (8).
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encoder cannot be too harsh to lose information, and also, the filter orders in the decoder cannot be168

too small to have a high interpolatory capacity.169

Activation functions again nonlinzearize the upsampled features in (8) and yield170

Zf
ℓ = σ(Zf

u,ℓ), f = 1, . . . Fℓ. (9)

The decoder performs operations (7)-(8)-(9) for all Ld layers to yield the decoded output x̂⋄ =171

z⋄,Ld
∈ RNT , which also corresponds to the GTConvAE output172

x̂⋄ = z⋄,Ld
= DEC(Z⋄,S,ST ;Hd, s), (10)

where we match the dimensions by setting FLd
= 1.173

2.4 Loss Function174

Given (6) and (10), the GTConvAE in (1) can be detailed as175

x̂⋄ = GTConvAE(x⋄,S,ST ;H, s) = DEC
(
ENC(x⋄,S,ST ;He, s),S,ST ;Hd, s

)
. (11)

The GTConv filter parameters in H and the product graph parameters in s are estimated by minimizing176

the loss function177

L(X, X̂,G,H) = ED [∥x⋄ − x̂⋄∥2] + ρ∥s∥1. (12)
where the first term measures the reconstruction error over the probabilistic distribution D of the178

training set, whereas the second term imposes sparsity in the spatiotemporal dependencies of the179

product graph. Scalar ρ > 0 controls the trade-off between fitting and regularization, and a higher180

value implies a stronger spatiotemporal sparsity (from the norm one ∥·∥1); i.e., sparser spatiotemporal181

attention.182

Complexity analysis: Denoting the maximum number of features in all layers by Fmax = max{Fℓ}183

the GTConvAE has |H| = (Le + Ld)(K + 1)F 2
max parameters. This is because each GTConv filter184

(2) has K + 1 parameters and in each layer a filter bank of at most F 2
max filters is used. Despite the185

product graphs are of large dimensions, the latter is highly sparse and the computation complexity of186

the GTConvAE is of order O(M⋄|H|), where M⋄ = NT +NMT +MT + 2MMT is the number187

of edges of the product graph (M edges in the spatial graph and MT edges in the temporal graph).188

This is because each graph-time filter has a computational complexity of order O((K + 1)M⋄) [26]189

and the GTConvAE consists of (Le + Ld)F
2
max graph-time filters. Note that we consider r = 1190

sampling rate to provide the worst case analysis, but the computational complexity can be further191

reduced for r > 1.192

3 Stability Analysis193

In this section, we conduct a stability analysis of the GTConvAE w.r.t. relative perturbations in the194

spatial graph. This stability analysis is motivated by the fact that we do not always have access to195

the ground truth spatial graph due to modeling issues or when the physical network undergoes slight196

changes over time. Hence, the spatial graph used for training differs from that used for testing; thus,197

having a stable GTConvAE is desirable to perform the tasks reliably.198

We consider the relative perturbation model proposed in [27]199

Ŝ = S+ (SE+ES) (13)

where Ŝ is the perturbed GSO and E is the perturbation matrix with bounded operator norm ∥E∥ ≤ ϵ.200

This model accounts for graph perturbation depending on its structure, i.e., a higher degree node (a201

node with higher-weighted connected edges) is relatively prone to more perturbation.202

3.1 Spatiotemporal integral Lipschitz filters203

To investigate the stability of GTConvAE, we first characterize the graph-time convolutional filters204

in the spectral domain. Consider the eigendecompositions of the spatial GSO S = VΛVH and of205

the temporal GSO ST = VTΛTV
H
T . Matrices V = [v1, . . . ,vN ]⊤ and V = [vT,1, . . . ,vT,T ]

⊤206

collect the spatial and the temporal eigenvectors, respectively, and Λ = diag(λ1, . . . , λN ) and207
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ΛT = diag(λT,1, . . . , λT,T ) the corresponding eigenvalues. From (1), the eigendecomposition of208

the product graph GSO is S⋄ = V⋄Λ⋄V
H
⋄ with eigenvectors V⋄ = VT ⊗V being the Kronecker209

product ⊗ of the respective GSOs and the eigenvalues Λ⋄ = ΛT ⋄Λ are defined by the product graph210

rule. As in graph signal processing [32], it is possible to characterize the joint graph-time Fourier211

transform of product graph signals. Specifically, the graph-time Fourier of signal x⋄ is defined as212

x̃ = (VT ⊗V)Hx⋄ and the eigenvalues in Λ⋄ now collect the graph-time frequencies of the product213

graph [33]. Applying this Fourier transform on the input and output of the GTConv filter in (2), we214

can write the filter input-output as ỹ⋄ = H(Λ⋄)ỹ, where ỹ⋄ is the Fourier transform of the output215

and H(Λ⋄) is an NT ×NT diagonal matrix containing the filter frequency response on the main216

diagonal. This frequency response is of the form217

h(λ⋄,(n,t)) =

K∑
k=0

hkλ
k
⋄,(n,t) (14)

where λ⋄,(n,t) = λT,t ⋄ λn indicates the eigenvalue of S⋄ corresponding to the spatial index n ∈ [N ]218

and temporal index t ∈ [T ] of the product graph.219

The eigenvalues λ⋄,(n,t) can be considered as the frequencies of the product graph and can be ordered220

in ascending order of magnitude. We can then characterize the variation of the filter frequency221

response for two different spatial eigenvalues.222

Definition 1. A GTConv filter with a frequency response h(λ⋄,(n,t)) is graph integral Lipschitz if223

there exists constant C > 0 such that for all frequencies λ⋄,(n,t), λ⋄,(n′,t′) ∈ Λ⋄, it holds that224

|h(λ⋄,(n,t))− h(λ⋄,(n′,t′))| ≤ C
|λn − λn′ |

|λn + λn′ |/2
for all {λn, λn′} ∈ Λ. (15)

225

Expression (15) states that the frequency response of graph-time convolutional filter should vary226

sub-linearly while the coefficient depends on the gap |λ⋄,(n,t) + λ⋄,(n′,t′)|/2. This implies227 ∣∣∣∣λn

∂h(λ⋄,(n,t))

∂λn

∣∣∣∣ ≤ C for all λn ∈ Λ and λ⋄,(n,t) ∈ Λ⋄ (16)

which means the integral Lipschitz filter cannot vary drastically in high frequencies. Hence, such a228

filter can discriminate low frequency content but not high frequency ones.229

Definition 2. A graph-time convolutional filter has normalized frequency response if |h(λ⋄,(n,t))| ≤ 1230

for all λ⋄,(n,t) ∈ Λ⋄.231

This definition is a direct consequence of normalizing the filters’ frequency response by their232

maximum value. We shall show next that GTConvAE with filters satisfying Def. 1 and 2 are stable to233

perturbations in the form (13).234

3.2 Stability result235

The following theorem with proof in Appendix A provides the main result.236

Theorem 1. Consider a GTConvAE with an Le-layer encoder and an Ld-layer decoder having237

Fℓ ≤ Fmax and Fd,ℓ ≤ Fmax features per layer in encoder and decoder, respectively, and a summary238

function SUM(·) performing pure downsampling with rate r. Consider also the filters are integral239

Lipschitz [cf. Def. 1] with a normalized frequency response [cf. Def. 2] and that the nonlinearities240

are 1−Lipschitz (e.g., ReLU, absolute value). Let this GTConvAE be trained over the product graph241

(1) and deployed over its perturbed version whose spatial GSO is given in (13) with a perturbation of242

at most ∥E∥ ≤ ϵ. The distance between the two models is upper bounded by243

∥GTConvAE(x⋄,S,ST )− GTConvAE(x⋄, Ŝ,ST )∥2 ≤ (Ld + Le)r
−Le/2ϵ∆FLe+Ld−1

max ∥x⋄∥2.
(17)

where ∆ = 2C(s01 + s11λT,max)(1 + δ
√
NT ), and δ = (∥U−V∥2 + 1)2 − 1 with eigenvectors244

U from E = UMUH and V from S = VΛVH.245

The result (17) states that GTConvAE is stable against relative perturbations. It also suggests that246

GTConvAE is less stable for larger product graphs (
√
NT ) since more nodes pass information over247
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the perturbed edges. Moreover, making the model more complex by increasing the number of features248

or layers compromises stability as more graph-time convolutional filters work on a perturbed graph249

(FLe+Ld−1
max ). We also see the stability improves with the sampling rate r > 1 because fewer nodes250

operate over the perturbed graph after downsampling. Furthermore, for a deeper encoder we have251

more downsampling hence the stability improves; yet there is a tradeoff between improving the bound252

imposed by the terms r−Le/2, FLe+Ld−1
max , and Le + Ld. Finally, parameters s01 and s11 appear in253

the stability bound because they are the only ones composing the spatial edges; thus, minimizing254

∥s∥1 in (12) leads to improved stability.255

4 Numerical Results256

This section compares the GTConvAE with baseline solutions and competitive alternatives for time257

series denoising as well as anomaly detection with real data from solar irradiance and water networks.258

In all experiments, the ADAM optimizer with the standard hyperparameters is used and an unweighted259

directed line graph is considered for the temporal graph in (1).260

4.1 Denoising of solar irradiance time series261

Figure 1: Denoising performance of the proposed
GTConvAE and alternatives. The standard devia-
tion for all the models is of order 10−2.

We consider the task of denoising solar irradi-262

ance time series over N = 75 solar cities around263

the northern region of the U.S. measured in GHI264

(W/m2) [4]. Each solar city is a vertex and an265

undirected edge is set using the physical dis-266

tances between the cities via Gaussian threshold267

kernel with σ = 0.25 and th = 0.1 after nor-268

malizing maximum weight to 1 [32]. The noise269

is generated via a zero-mean Gaussian distri-270

bution with a covariance matrix corresponding271

to the pseudo-inverse of the normalized graph272

Laplacian.273

Experimental setup. We considered the first274

2000 samples for training and validation (2000-275

2014) and the subsequent 200 (2014-2016) for276

testing. The input data is a single feature corresponding to the GHI measurement and the product277

graph has N = 75 spatial nodes and T = 8 temporal nodes. The GTConvAE has three layers with278

{8, 4, 2} features in the encoder and reversely in the decoder; all filters are 4th-order and normalized279

Laplacian is used as GSO; a downsampling rate of r = 2; a max function in (4); and ReLU activation280

functions. The regularizer weight in (12) is ρ = 0.2 and the learning rate is 25× 10−4. We compared281

the GTConvAE with the following alternatives:282

• C3D [5]: non-graph spatiotemporal autoencoder using three-dimensional CNNs.283

• ConvLSTMAE [7]: A non-graph spatiotemporal autoencoder using two-dimensional CNNs284

followed by LSTMs.285

• STGAE [1]: A modular spatiotemporal graph autoencoder that uses an edge varying filter for286

the graph dimension followed by temporal convolution.287

• Baseline GCNN [42]: An autoencoder built with a conventional graph convolutional neural288

network using the time series as features over the nodes. The shift operator is the normalized289

Laplacian matrix.290

The first two methods are considered to show the role of using a distance graph as an inductive bias.291

The third method is considered to compare the joint GTConvAE over disjoint alternatives, whereas292

the last model is considered to show the role of the sparse product graphs rather than treating time293

series as node features. The parameters for all models are chosen via grid search from the ranges294

reported in Appendix B.295

Results. Fig. 1 shows the reconstruction normalized mean squared error (NMSE) for different296

signal-to-noise ratios (SNRs). The proposed GTConvAE compares well with STGAE for low SNRs297

but better for high SNRs. We attribute this improvement to the ability of the GTConvAE to capture298

7



Graph-Time Convolutional Autoencoders

Table 1: Comparison of different models in the BATADAL dataset. All metrics are the higher the
better.

Model NA S STTD SCM TPR TNR

STGCAE-LSTM [2] 7 0.924 0.920 0.928 0.892 0.964

TGCN [47] 7 0.931 0.934 0.928 0.885 0.971

GTConvAE (ours) 7 0.940 0.928 0.952 0.922 0.981

jointly the spatiotemporal patterns in the data while STGAE operates disjointly. We also see that in299

comparison with the baseline GCNN, the GTConvAE performs consistently better, highlighting the300

importance of the sparser product graphs and temporal downsampling. Finally, we also observe a301

superior performance compared with the non-graph alternatives C3D and ConvLSTMAE.302

4.2 Anomaly detection in water networks303

We now consider the task of detecting cyber-physical attacks on a water network. We considered the304

C-town network from the Battle of ATtack Detection ALgorithms (BATADAL) dataset comprising305

N = 388 nodes (demand junctions, storage tanks, and reservoirs) and 8762 hourly measurements306

of 43 different node feature signals for a period of 12 months. We used the same setup as in [47]307

and considered a correlation graph from the data. The dataset provides a normal operating condition308

comprising recordings for the first 12 months and an anomalous event operating condition comprising309

7 attacks over the successive 3 months. Refer to [48, 49] for more detail about the BATADAL dataset.310

Experimental setup. The normal operating condition data are used to train the model for one-step311

forecasting to be used for detecting anomalies. The anomalous event operating condition data is312

used for testing and an anomaly is flagged if the prediction error exceeds a fixed threshold. We313

set the threshold intuitively to three times the error variance during training. The inputs are the 43314

time series over the N = 388 nodes and we considered T = 6 for the temporal graph dimension.315

The GTConvAE has two layers with {8, 2} features in the encoder and reversely in the decoder; all316

filters are of order K = 4; a downsampling rate r = 2; a max function in (4); and ReLU activation317

functions. The regularizer weight in (12) is ρ = 0.14 and learning rate is 5× 10−4. We compared318

the performance against two graph-based alternatives:319

• STGCAE-LSTM [2]: A related solution to our method that uses a Cartesian spatiotemporal graph320

with graph convolutions followed by an LSTM in the latent domain.321

• TGCN [47]: A modular graph-based autoencoder using cascades of temporal convolutions and322

message passing.323

The parameters for all models are obtained via grid search from the ranges reported in Appendix C.324

We measure the performance via the S-score present in the BATADAL dataset, which contains STTD325

for the timing in detecting anomalies and SCM for the classification accuracy. The S-score is defined326

as327

S = 0.5(STTD + SCM) = 0.5

(
(1− 1

NA

NA∑
i=1

TTDi

∆Ti
) +

TPR+TNR
2

)
, (18)

where NA is the number of attacks, TTD is the detection time of the attack, ∆Ti is the duration of328

the i−th attack, TPR is the true positive rate, and TNR is the true negative rate.329

Results: Table 1 shows that all the models managed to detect all of the attacks, however, the TGCN330

has a better performance in timing STTD. This is due to the calibration of the threshold in their work331

with a validation dataset while we used a fixed intuitive threshold only based on training. In the332

accuracy of anomaly detection SCM, the GTConvAE outperforms the other two models as the product333

graphs alongside downsampling enable it to learn spatiotemporal patterns in the data effectively.334

Overall, the GTConvAE performs better than other models by a small margin.335
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(a) (b) (c)

Figure 2: Stability results for different scenarios of the GTConvAE and fixed product graphs. (a)
Different SNRs in the topology. (b) Different graph sizes in 4dB perturbation. (c) Different sampling
rates r.

4.3 Stability analysis336

To investigate the stability of the GTConvAE, we trained the model over a synthesized dataset337

so we could control all the settings such as the spatial graph size N . The graph is an undirected338

stochastic block model with 5 communities among N = {50, 100, . . . , 500}. The edges are drawn339

independently with probability 0.8 for nodes in the same community and 0.2 otherwise. Each data340

sample is a diffused signal over the graph X = [Sx, . . . ,STx] with T = 6 and x having a random341

non-zero entry. The autoencoder is used to reconstruct this data.342

Experimental setup The model has two layers of encoder and decoder with sampling rate r = 2.343

Each layer of the encoder has {8, 4} features and reversely in the decoder. All filters are of order344

four and the normalized graph Laplacian is used as GSO. The activation functions are ReLU and345

pure donwsampling is considered. The regularizer weight is 0.25 and learning rate is 25 × 10−3.346

The model is trained over the graph with different sizes and tested with a perturbed graph following347

the relative perturbation model in (13) for different SNR scenarios in the topology. We compare the348

stability of the GTConvAE with learned graphs with the same autoencoder having fixed Cartesian349

and strong product graphs.350

Results Fig. 2a indicates that the GTConvAE in different noisy scenarios. GTConvAE is the most351

stable in medium and high SNRs as it leverages sparsity in the spatiotemporal coupling. However,352

GTConvAE performance drops more rapidly in low SNR scenarios as its parameters are trained for353

the data and task. Fig. 2b shows the results for reconstruction error over graphs with different sizes.354

The GTConvAE is more stable than the other models, even in graphs with the larger sizes for the355

same reason as before. All the models lose performance similarly as the size of the graph grows. This356

is consistent with the theoretical result in (17).357

5 Conclusion358

We introduced GTConv-AE as an unsupervised model for learning representations from multivariate359

time series over networks. The GTConv-AE uses parametric product graphs to aggregate information360

from a spatiotemporal neighborhood while it yet learns spatiotemporal couplings in the product graph.361

We proposed a spectral analysis for GTConv-AE due to its convolutional nature which led to stability362

analysis. The stability analysis states that GTConv-AE is stable against relative perturbations in363

the spatial graph as long as graph-time filters vary smoothly over high spatiotemporal frequencies.364

Finally, numerical results showed that the GTConv-AE compares well with the state-of-the-art models365

on benchmark datasets and corroborated the stability results.366
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A Stability proof516

The proof is structured in three components. First we prove the graph-time convolutional filter517

is stable to perturbations. Then, we prove stability for the encoder and finally for the decoder.518

Throughout the proof we will use the following lemmas.519

Lemma 1. [27] Let S = VΛVH and E = UMUH such that ∥E∥ ≤ ϵ. Assume that EV = VMVH520

is the projection of perturbation E over graph eigenspace of S, and E = EV + EU . For any521

eigenvector vn of S it holds that522

Evn = mnvn +EUvn (19)
with ∥EU∥ ≤ ϵδ, where δ = (∥U−V∥2 + 1)2 − 1 and mn is the n-th eigenvalue of M. Recall that523

∥ · ∥ represents the operator norm of a matrix.524

Lemma 2. Given the frequency response of a graph-time convolutional filter as h(λ⋄) =
∑K

k=1 hkλ
k
⋄ ,525

the partial derivation w.r.t. graph frequency λ is526

∂h(λ⋄)

∂λ
= (s01 + s11λT )

K∑
k=1

khkλ
k−1
⋄ . (20)

Proof. Using the product graph definition (1) we have527

∂λ⋄

∂λ
=

∂(s00 + s01λ+ s10λT + s11λTλ)

∂λ
= s01 + s11λT . (21)

Then,528

∂h(λ⋄)

∂λ
=

∂h(λ⋄)

∂λ⋄
× ∂λ⋄

∂λ
= (

K∑
k=1

khkλ
k−1
⋄ )(s01 + s11λT ) (22)

completes the proof.529

To ease notation, let us also rearrange the parametric product graph GSO as530

S⋄ = (s00IT + s10ST )⊗ IN + (s01IT + s11ST )⊗ S = ST0 ⊗ IN + ST1 ⊗ S (23)

where ST0 = s00IT + s10ST collects the fully temporal edges and ST1 = s01IT + s11ST the edges531

ruled by the spatial graph.532

GTConv filter stability.533

The difference of the filter operating on the perturbed and nominal graph is534

H(S⋄)−H(Ŝ⋄) =

K∑
k=0

hk(Ŝ
k
⋄ − Sk

⋄) (24)

Leveraging the product GSO expansion (23) and the perturbation model Ŝ = S+ (SE+ ES) [cf.535

(13)] we can write the k−th power of the perturbed product graph GSO as536

Ŝk
⋄ = (ST0 ⊗ IN + ST1 ⊗ (S+ (SE+ES)))

k

= (S⋄ + (ST1 ⊗ (SE+ES)))k

= Sk
⋄ +

k−1∑
r=0

Sr
⋄(ST1 ⊗ (SE+ES))Sk−r−1

⋄ +D,

(25)

where we applied the first-order Taylor expansion in the third line. Matrix D contains all terms of537

order O(ϵ2) and can be ignored.538

Substituting then (25) into (24), we get539

H(S⋄)−H(Ŝ⋄) =

K∑
k=0

hk

k−1∑
r=0

Sr
⋄(ST1 ⊗ (SE+ES))Sk−r−1

⋄ . (26)
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Upon applying the filters to an input x⋄ we get the output difference y⋄− ŷ⋄ = (H(S⋄)−H(Ŝ⋄))x⋄.540

Substituting into this the graph-time Fourier expansion of the input541

x⋄ =

T∑
t=1

N∑
n=1

x̃(n,t)(vT,t ⊗ vn) (27)

with x̃(n,t) the (n, t)−th Fourier coefficients and (vT,t,vn) the eigenvector pair for the temporal and542

spatial GSOs [cf. Sec. 3.1], we can write the output difference as543

y⋄ − ŷ⋄ =

T∑
t=1

N∑
n=1

x̃(n,t)

K∑
k=0

hk

k−1∑
r=0

Sr
⋄(ST1 ⊗ (SE+ES))Sk−r−1

⋄ (vT,t ⊗ vn). (28)

Since (vT,t ⊗ vn) is an eigenvector of S⋄, we have544

Sk−r−1
⋄ (vT,t ⊗ vn) = λk−r−1

⋄,(n,t) (vT,t ⊗ vn) (29)

which by substituting to (28) yields545

y⋄ − ŷ⋄ =

T∑
t=1

N∑
n=1

x̃(n,t)

K∑
k=0

hk

k−1∑
r=0

λk−r−1
⋄,(n,t) S

r
⋄(ST1 ⊗ (SE+ES))(vT,t ⊗ vn) (30)

where λ⋄,(n,t) is the eigenvalue of the product graph GSO S⋄ for indices (n, t). Leveraging mixed546

product property of Kronecker product2 allows us to rewrite (30) as547

y⋄ − ŷ⋄ =

T∑
t=1

N∑
n=1

x̃(n,t)

K∑
k=0

hk

k−1∑
r=0

λk−r−1
⋄,(n,t) S

r
⋄(ST1vT,t ⊗ (SE+ES)vn). (31)

Replacing ST1 = s01IT + s11ST leads to548

ŷ⋄ − y⋄ =

T∑
t=1

N∑
n=1

(s01 + s11λT,t)x̃(n,t)

K∑
k=0

hk

k−1∑
r=0

λk−r−1
⋄,(n,t) S

r
⋄(vT,t ⊗ (SE+ES)vn). (32)

Applying Lemma 1 results in549

ŷ⋄−y⋄ =

T∑
t=1

N∑
n=1

(s01+s11λT,t)x̃(n,t)

K∑
k=0

hk

k−1∑
r=0

λk−r−1
⋄,(n,t) S

r
⋄(vT,t⊗(S+λnIN )(mnvn︸ ︷︷ ︸

term 1

+EUvn︸ ︷︷ ︸
term 2

)),

(33)
which leaves us with two terms that shall be discussed separately.550

For the first term, we have551

t1 =

T∑
t=1

N∑
n=1

2λnmn(s01 + s11λT,t)x̃(n,t)

K∑
k=0

hk

k−1∑
r=0

λk−r−1
⋄,(n,t) S

r
⋄(vT,t ⊗ vn). (34)

By exploiting eigenvector property Sr
⋄(vT,t ⊗ vn) = λr

⋄,(n,t)(vT,t ⊗ vn) we can rewrite (34) into552

t1 =

T∑
t=1

N∑
n=1

2λnmn(s01 + s11λT,t)x̃(n,t)

K∑
k=0

khkλ
k−1
⋄,(n,t)(vT,t ⊗ vn). (35)

Applying Lemma 2 leads to553

t1 =

T∑
t=1

N∑
n=1

2mnx̃(n,t)λn

∂h(λ⋄,(n,t))

∂λn
(vT,t ⊗ vn). (36)

For the second term, we have554

t2 =

T∑
t=1

N∑
n=1

(s01 + s11λT,t)x̃(n,t)

K∑
k=0

hk

k−1∑
r=0

λk−r−1
⋄,(n,t) S

r
⋄(vT,t ⊗ (S+ λnIN )EUvn). (37)

2(A⊗B)(C ⊗D) = AC ⊗BD
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By substituting the eigendecomposition Sr
⋄ = (VT ⊗V)Λr

⋄(VT ⊗V)H we get555

t2 =

T∑
t=1

N∑
n=1

x̃(n,t)(VT ⊗V)diag(g(n,t))(VT ⊗V)H(vT,t ⊗EUvn). (38)

where the entries of vectors g(n,t) ∈ RNT for n ∈ [N ] and t ∈ [T ] are defined as556

g(n,t)(n
′, t′) = (s01 + s11λT,t)(λn + λn′)

k∑
k=0

hk

k−1∑
r=0

λk−r−1
⋄,(n,t) λ

r
⋄,(n′,t′)

=


2λn

∂h(λ⋄,(n,t))

∂λn
; (n, t) = (n′, t′)

(s01 + s11λT,t)(h(λ⋄,(n,t))− h(λ⋄,(n′,t′)))
λn+λn′
λn−λn′

; (n, t) ̸= (n′, t′)

(39)

With this in place, we now upper bound the two-norm of the difference y⋄ − ŷ⋄ = t1 + t2 by557

bounding each of the terms t1 and t2 separately. From ∥E∥ ≤ ϵ, we have that |mn| ≤ ϵ. Also from558

the integral Lipschitz property of the filter [cf. Def. 1]. Using these two into (36), we can upper559

bound the norm of term t1 as560

∥t1∥2 ≤ 2ϵC

T∑
t=1

N∑
n=1

x̃(n,t)(vT,t ⊗ vn) ≤ 2ϵC∥x⋄∥2, (40)

where the second inequality holds due to Fourier transform definition (27).561

Moving on to t2, we use mixed product property as vT,t ⊗ EUvn = (IT ⊗ EU )(vT,t ⊗ vn) and562

operator norms in (38) to obtain an upper bound as563

∥t2∥2 ≤
T∑

t=1

N∑
n=1

|x̃(n,t)|∥(VT ⊗V)∥∥diag(g(n,t))∥∥(VT ⊗V)H∥∥IT ⊗EU∥∥vT,t ⊗ vn∥2. (41)

From the integral Lipschitz property we can bound ∥diag(g(n,t))∥ ≤ 2C(s01 + s11λT,max) in (39)564

where λT,max is a temporal eigenvalue with the largest absolute value. As VT ⊗V is an orthonormal565

bases, its operator norm is ∥VT ⊗V∥ = 1, and l2-norm of the eigenvectors is ∥vT,t ⊗ vn∥2 = 1.566

Lemma 1 states that ∥E∥ ≤ ϵδ which leads to ∥IT ⊗ EU∥ ≤ ϵδ. Finally, l1-norm can be bounded567

by
∑T

t=1

∑N
n=1 |x̃(n,t)| = ∥x̃∥1 ≤

√
NT∥x̃∥2 =

√
NT∥x⋄∥2. Considering all the abovementioned568

bounds and replacing them in (41) yields569

∥t2∥2 ≤ 2(s01 + s11λT,max)ϵCδ
√
NT∥x⋄∥2. (42)

Finally, based on the triangle inequality the GTConv filter difference is570

∥H(S⋄)−H(Ŝ⋄)∥ ≤ 2(s01 + s11λT,max)ϵC(1 + δ
√
NT ) = ϵ∆. (43)

Encoder stability.571

Consider the encoder contains Le layer each having Fℓ features and r sampling rate. We are interested572

in the output difference of the encoder573

∥ENC(x⋄,S,ST )− ENC(x⋄, Ŝ,ST )∥22 =

FLe∑
f=1

∥xf
⋄,Le

− x̂f
⋄,Le

∥22. (44)

To ease exposition, we denote H := H(S) and Ĥ := H(Ŝ). For the f−th output encoder feature we574

have575

∥xf
⋄,Le

− x̂f
⋄,Le

∥2 =

∥∥∥∥∥∥σ
FLe−1∑

g=1

Sr(H
fg
Le
xg
⋄,Le−1)

− σ

FLe−1∑
g=1

Sr(Ĥ
fg
Le
x̂g
⋄,Le−1)

∥∥∥∥∥∥
2

(45)

where Sr(·) is the sampling operator with rate r, i.e., simple SUM(·) function without any aggrega-576

tion. The downsampling reduces the norm of each time series by a factor 1/
√
r, so ∥y⋄,Le

∥2 will be577
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reduced by 1/
√
r. As non-linearity is 1-Lipschitz, i.e., |σ(a)− σ(b)| ≤ |a− b|, we can conclude the578

following inequality from (45) by use of triangular inequality579

∥xf
⋄,Le

− x̂f
⋄,Le

∥2 ≤ 1√
r

FLe−1∑
g=1

∥∥∥Hfg
Le
xg
⋄,Le−1 − Ĥfg

Le
x̂g
⋄,Le−1

∥∥∥
2
. (46)

We add and subtract Ĥfg
L xg

⋄,L−1 inside the l2-norm and use the triangular inequality once again for580

each of the input features g to get581 ∥∥∥Hfg
Le
xg
⋄,Le−1 − Ĥfg

Le
x̂g
⋄,Le−1

∥∥∥
2
≤ ∥(Hfg

Le
− Ĥfg

Le
)xg

⋄,Le−1∥2 + ∥Ĥfg
Le
(xg

⋄,Le−1 − x̂g
⋄,Le−1)∥2

≤ ∥Hfg
Le

− Ĥfg
Le
∥∥xg

⋄,Le−1∥2 + ∥Ĥfg
Le
∥∥xg

⋄,Le−1 − x̂g
⋄,Le−1∥2

(47)

The stability of GTConv filter in (43) provides an upper bound for the first term as ∥Hfg
Le

−Ĥfg
Le
∥ ≤ ϵ∆582

which is applicable for all the layers. Note that ∆ depends on temporal graph size, so it is different583

in each layer due to the downsampling. However, we assume the largest temporal size T so the584

inequality holds for all the layers 3. The second term is bounded by spectral normalization assumption585

∥Hfg
Le
∥ ≤ 1 [cf. Def. 2]. Leveraging these bounds and replacing in (46) we get586

∥xf
⋄,Le

− x̂f
⋄,Le

∥2 ≤ 1√
r

FLe−1∑
g=1

ϵ∆∥xg
⋄,Le−1∥2 + ∥xg

⋄,Le−1 − x̂g
⋄,Le−1∥2. (48)

This equation defines a recursion among the encoder layers with initial condition xg
⋄,0 = x̂g

⋄,0 := xg
⋄587

for all the input features. So for the ℓ−th layer, we can write588

∥xf
⋄,ℓ − x̂f

⋄,ℓ∥2 ≤ 1√
r

Fℓ−1∑
g=1

ϵ∆∥xg
⋄,ℓ−1∥2 + ∥xg

⋄,ℓ−1 − x̂g
⋄,ℓ−1∥2. (49)

To solve this recursive inequality, we first upper bound ∥xf
⋄,ℓ∥2 as589

∥xf
⋄,ℓ∥2 ≤ 1√

r

Fℓ−1∑
g=1

∥Hfg
ℓ xg

⋄,ℓ−1∥2 ≤ 1√
r

Fℓ−1∑
g=1

∥xg
⋄,ℓ−1∥2, (50)

where the last inequality is due to the assumption ∥Hfg
ℓ ∥ ≤ 1 [Def. 2]. Solving this recursion leads to590

∥xf
⋄,ℓ∥2 ≤ 1

rl/2

ℓ−1∏
i=1

Fi

F0∑
g=1

∥xg
⋄∥2 = r−ℓ/2

ℓ−1∏
i=1

Fi

F0∑
g=1

∥xg
⋄∥2. (51)

Replacing (51) in (49) and solving the recursion considering the initial conditions we get591

∥xf
⋄,ℓ − x̂f

⋄,ℓ∥2 ≤ r−ℓ/2ϵ∆ℓ

ℓ−1∏
i=1

Fi

F0∑
g=1

∥xg
⋄∥2. (52)

Setting ℓ = Le in (52) and replacing it in (44) yields to592

∥ENC(x⋄,S,ST )− ENC(x⋄, Ŝ,ST )∥F ≤ Ler
−Le/2ϵ∆

√
FLe

Le−1∏
n=1

Fn

F0∑
g=1

∥xg
⋄∥2. (53)

GTConv-AE stability.593

Let Z⋄ = ENC(x⋄,S,ST ) be the input of the decoder and z⋄,Ld
= DEC(Z⋄,S,ST ) its output. To594

prove GTConvAE stability, we need to bound595

∥DEC(Z⋄,S,ST )− DEC(Z⋄, Ŝ,ST )∥22 =

Fd,Ld∑
f=1

∥zf⋄,Ld
− ẑf⋄,Ld

∥22. (54)

3It is possible to solve the recursive equation with ∆T as a variable, but it leads to overcrowded multipliers
in inequalities without carrying important information on the bound.
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For each feature in the output we have596

∥zf⋄,Ld
− ẑf⋄,Ld

∥2 =

∥∥∥∥∥∥σ
Fd,Ld−1∑

g=1

Ur(H
fg
Ld

zg⋄,Ld−1)

− σ

Fd,Ld−1∑
g=1

Ur(Ĥ
fg
Ld

ẑg⋄,Ld−1)

∥∥∥∥∥∥
2

(55)

where Ur(·) is an upsampling operator with rate r which insert zeros among the samples. The597

upsampling module leaves the l2-norm per time series unaffected and can be ignored. Given 1-598

Lipschitz continuity of activation function σ(·), the following inequality can be concluded from (55)599

using the triangular inequality600

∥zf⋄,Ld
− ẑf⋄,Ld

∥2 ≤
Fd,Ld−1∑

g=1

∥∥∥Hfg
Ld

zg⋄,Ld−1 − Ĥfg
Ld

ẑg⋄,Ld−1

∥∥∥
2
. (56)

Adding and subtracting Ĥfg
Ld

zg⋄,Ld−1 in the norm and leveraging again the triangular inequality yields601 ∥∥∥Hfg
Ld

zg⋄,Ld−1 − Ĥfg
Ld

ẑg⋄,Ld−1

∥∥∥
2
≤ ∥(Hfg

Ld
− Ĥfg

Ld
)zg⋄,Ld−1∥2 + ∥Ĥfg

Ld
(zg⋄,Ld−1 − ẑg⋄,Ld−1)∥2

≤ ∥Hfg
Ld

− Ĥfg
Ld

∥∥zg⋄,Ld−1∥2 + ∥Ĥfg
Ld

∥∥xg
⋄,Ld−1 − ẑg⋄,Ld−1∥2,

(57)
for g = 1, . . . , Fd,Ld−1. The first term is bounded by GTConv filters stability in (43) and the second602

term is upper-bounded because filters are normalized ∥Hfg
ℓ ∥ ≤ 1 [cf. Def. 2]. Given these two603

bounds, (57) can be upper-bounded as604

∥zf⋄,Ld
− ẑf⋄,Ld

∥2 ≤
Fd,Ld−1∑

g=1

ϵ∆∥zg⋄,Ld−1∥2 + ∥zg⋄,Ld−1 − ẑg⋄,Ld−1∥2. (58)

This allows defining a recursion for the generic layer ℓ as605

∥zf⋄,ℓ − ẑf⋄,ℓ∥2 ≤
Fd,ℓ−1∑
g=1

ϵ∆∥zg⋄,ℓ−1∥2 + ∥zg⋄,ℓ−1 − ẑg⋄,ℓ−1∥2. (59)

For the first term on the right hand-side of (59), we have606

∥zf⋄,ℓ∥2 ≤
Fd,ℓ−1∑
g=1

∥Hfg
ℓ zg⋄,ℓ−1∥2 ≤

Fd,ℓ−1∑
g=1

∥zg⋄,ℓ−1∥2 =

ℓ−1∏
j=1

Fd,j

Fd,0∑
g=1

∥zg⋄,0∥2 (60)

because ∥Hfg
ℓ ∥ ≤ 1 [cf. Def. 2]. Replacing (60) into (59) and evaluating it at ℓ = Ld brings the607

recursion to its initial conditions608

∥zf⋄,Ld
− ẑf⋄,Ld

∥2 ≤ ϵ∆Ld

Ld−1∏
j=1

Fd,j

Fd,0∑
g=1

∥zg⋄,0∥2 +
Ld−1∏
j=1

Fd,j

Fd,0∑
g=1

∥zg⋄,0 − ẑg⋄,0∥2. (61)

For initial conditions we have Z⋄,0 = Z⋄, however, the error caused by spatial graph perturbation in609

the encoder appears here as an initial condition where ∥zf⋄,0 − ẑf⋄,0∥2 is bounded by the result in (53)610

for f ∈ [Fd,0].611

As the initial condition of the decoder states Z⋄,0 = Z⋄ = X⋄,L, we can set ℓ = L in (51) to obtain612

∥zf⋄∥2 ≤ r−Le/2
Le−1∏
i=1

Fi

F0∑
g=1

∥xg
⋄∥2. (62)

Substituting encoder stability bound (53), to enforce the initial condition for
∑Fd,0

g=1 ∥z
g
⋄,0 − ẑg⋄,0∥2,613

and (62) into (61) results in614

∥zf⋄,Ld
− ẑf⋄,Ld

∥2 ≤ Ldr
−Le/2ϵ∆Fd,0

Le−1∏
i=1

Fi

Ld−1∏
j=1

Fd,j

F0∑
g=1

∥xg
⋄∥2

+ Ler
−Le/2ϵ∆Fd,0

Le−1∏
i=1

Fi

Ld−1∏
j=1

Fd,j

F0∑
g=1

∥xg
⋄∥2. (63)
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Calculating over all the output features completes the upper-bound as615

∥GTConvAE(x⋄,S,ST )− GTConvAE(x⋄, Ŝ,ST )∥2 ≤

(Ld + Le)r
−Le/2ϵ∆

√
Fd,Ld

Le−1∏
i=1

Fi

Ld−1∏
j=0

Fd,j

F0∑
g=1

∥xg
⋄∥2.

(64)

Assuming F0 = Fd,Ld
= 1 and {Fd, F} ≤ Fmax completes the proof.616

B Denoising solar irradiance time series617

In this appendix we provide extra information on numerical experiment for denoising solar irradiance618

time series.619

SNR: An error vector et ∼ N (0, L†) is generated independently for each timestamp t ∈ [T ].620

Matrix L represents normalized Laplacian and † stands for pseudo-inverse operation. This noise621

varies smoothly over spatial graph which makes it more difficult to detect. Assume noise matrix622

σE = σ[e1, . . . , eT ] ∈ RN×T , we define SNR as follow:623

SNR = 20 log
∥X∥F
σ∥E∥F

, (65)

where σ is used to control SNR for the experiments.624

Model parameters: The time window is searched over T ∈ {2, . . . , 8}. The number of layers for625

both encoder and decoder are selected from Le = Ld ∈ {2, 3}. The number of features for every626

layer are chosen from F ∈ 32, 16, 8, 4, 2. The filter order is evaluated on K ∈ {2, 3, 4, 5}. The627

sampling is searched over r ∈ {1, 2, 3, 4}. All the aggregation function have been tested. Finally, the628

regularizer weight initially selected from logarithmic interval ρ ∈ {10−2, . . . , 102} and fine-tuned629

around optimum value.630

C Anomaly detection in water networks631

In this appendix we provide extra information on numerical experiments for anomaly detection in632

water networks.633

Model parameters: The model parameters are evaluated and fine-tuned by sliding window back-634

testing. The time window is searched over T ∈ {2, . . . , 8}. The number of layers for both encoder635

and decoder are selected from Le = Ld ∈ {2, 3}. The number of features for every layer are636

chosen from F ∈ 128, 64, 32, 16, 8, 4, 2. The filter order is evaluated on K ∈ {2, 3, 4, 5}. The637

sampling is searched over r ∈ {1, 2, 3}. All the aggregation functions have been tested. Finally, the638

regularizer weight initially selected from logarithmic interval ρ ∈ {10−2, . . . , 102} and fine-tuned639

around optimum value.640
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