
A On Algorithmic Details of Meta-Referential Games581

In this section, we detail algorithmically how Meta-Referential Games differ from common RGs. We582

start by presenting in Algorithm 4 an overview of the common RGs, taking place inside a common583

supervised learning loop, and we highlight the following:584

(i) preparation of the data on which the referential game is played (highlighted in green),585

(ii) elements pertaining to playing a RG (highlighted in blue),586

(iii) elements pertaining to the supervised learning loop (highlighted in purple).587

Helper functions are detailed in Algorithm 1, 2 and 3. Next, we can now show in greater and588

contrastive details the Meta-Referential Game algorithm in Algorithm 5, where we highlight the589

following:590

(i) preparation of the data on which the referential game is played (highlighted in green),591

(ii) elements pertaining to playing a RG (highlighted in blue),592

(iii) elements pertaining to the meta-learning loop (highlighted in purple).593

(iv) elements pertaining to setup of a Meta-Referential Game (highlighted in red).594

Algorithm 1: Helper function : DataPrep
Given :

• a target stimuli s0,
• a dataset of stimuli Dataset,
• O : Number of Object-Centric samples in each Target Distribution over stimuli TD(·).
• K : Number of distractor stimuli to provide to the listener agent.
• FullObs : Boolean defining whether the speaker agent has full (or partial) observation.
• DescrRatio : Descriptive ratio in the range [0, 1] defining how often the listener agent is

observing the same semantic as the speaker agent.
1 s′0, D

Target ← s0, 0;
2 if random(0, 1) > DescrRatio then
3 s′0 ∼ Dataset− TD(s0); ; /* Exclude target stimulus from listener’s

observation ... */
4 DTarget ← K + 1; ; /* ... and expect it to decide accordingly. */
5 end
6 else if O > 1 then
7 Sample an Object-Centric distractor s′0 ∼ TD(s0);
8 end
9 Sample K distractor stimuli from Dataset− TD(s0): (si)i∈[1,K] ∼ Dataset− TD(s0);

10 ObsSpeaker ← {s0}; if FullObs then
11 ObsSpeaker ← {s0} ∪ {si|∀i ∈ [1,K]};
12 end
13 ObsListener ← {s′0} ∪ {si|∀i ∈ [1,K]};

/* Shuffle listener observations and update index of target decision:
*/

14 ObsListener, D
Target ← Shuffle(ObsListener, D

Target);
Output : ObsSpeaker, ObsListener, D

Target;

14

Algorithm 2: Helper function : MetaRGDatasetPreparation
Given :

• V : Vocabulary (finite set of tokens available),
• Ndim : Number of attribute/factor dimensions in the symbolic spaces,
• Vmin : Minimum number of possible values on each attribute/factor dimensions in the

symbolic spaces,
• Vmax : Maximum number of possible values on each attribute/factor dimensions in the

symbolic spaces,
1 Initialise random permutation of vocabulary: V ′ ← RandomPerm(V)

2 Sample semantic structure: (d(i))i∈[1,Ndim] ∼ U(Vmin;Vmax)
Ndim ;

3 Generate symbolic space/dataset D((d(i))i∈[1,Ndim]);
4 Split dataset into supporting set Dsupport and querying set Dquery (((d(i))i∈[1,Ndim]) is omitted for

readability);
Output : V ′, D((d(i))i∈[1,Ndim]), D

support, Dquery;

Algorithm 3: Helper function : PlayRG
Given :

• Speaker and Listener agents,
• Set of speaker observations ObsSpeaker,
• Set of listener observations ObsListener,
• N : Number of communication rounds to play,
• L : Maximum length of each message,
• V : Vocabulary (finite set of tokens available),

1 Compute message MS = Speaker(ObsSpeaker|∅);
2 Initialise Communication Channel History: CommH← [MS];
3 for round = 0, N do
4 Compute Listener’s reply ML

round, _ = Listener(ObsListener|CommH);
5 CommH← CommH + [ML

round];
6 Compute Speaker’s reply MS

round = Speaker(ObsSpeaker|CommH);
7 CommH← CommH + [MS

round];
8 end
9 Compute listener decision _, DL = Listener(ObsListener|CommH);

Output : Listener’s decision DL, Communication Channel History CommH;

15

Algorithm 4: Common Referential Game inside a Common Supervised Learning Loop
Given :

• a dataset of stimuli Dataset,
• a set of hyperparameters defining the RG:

– O : Number of Object-Centric samples in each Target Distribution over stimuli TD(·).
– N : Number of communication rounds to play.
– L : Maximum length of each message.
– V : Vocabulary (finite set of tokens available).
– K : Number of distractor stimuli to provide to the listener agent.
– FullObs : Boolean defining whether the speaker agent has full (or partial) observation.
– DescrRatio : Descriptive ratio in the range [0, 1] defining how often the listener agent

is observing the same semantic as the speaker agent.
– L : Loss function to use in the agents update.

Initialize :
• Speaker(·) and Listener(·) agents.

1 Systematically split Dataset into training and testing dataset, Dtrain and Dtest;
2 for epoch = 1, Nepoch do
3 for target stimulus s0 ∈ Dtrain do

/* Preparation of observations and target decision: */
4 ObsSpeaker, ObsListener, D

Target ← DataPrep(Dataset, s0, O,K,FullObs,DescrRatio)
/* Play Referential Game: */

5 DL, _ = PlayRG(Speaker,Listener, ObsSpeaker, ObsListener, N, L, V);
/* Supervised Learning Parameters Update on Training Stimulus Only:

*/
6 Update both speaker and listener agents’ parameters using the loss L(DTarget, DL);
7 end
8 Initialise ZSCT accuracy: AccZSCT ← 0;
9 for target stimulus s0 ∈ Dtest do

/* Preparation of observations and target decision: */
10 ObsSpeaker, ObsListener, D

Target ← DataPrep(Dataset, s0, O,K,FullObs,DescrRatio)
/* Play Referential Game: */

11 DL, _ = PlayRG(Speaker,Listener, ObsSpeaker, ObsListener, N, L, V);
/* Update ZSCT Accuracy: */

12 AccZSCT ← Update(AccZSCT, D
Target, DL);

13 end
14 end

595

16

Algorithm 5: Meta-Referential Game inside a Meta-Learning Loop
Given :

• Nepisode, Ndim : Number of episodes, and number of attribute/factor dimensions,
• S : Minimum number of Shots over which each possible value on each attribute/factor

dimension ought to be observed by the agents (as part of a target stimulus).
• Vmin, Vmax : Minimum and maximum number of possible values on each attribute/factor

dimensions in the symbolic spaces,
• TSS(D,S, S) : Target stimulus sampling function which samples from dataset D, given a

set of previously sampled stimuli S, while maximising the likelihood that each possible
value on each attribute/factor dimension are sampled at least S times.

• a set of hyperparameters defining the RG:
– O : Number of Object-Centric samples in each Target Distribution over stimuli TD(·).
– N : Number of communication rounds to play.
– L : Maximum length of each message.
– V : Vocabulary (finite set of tokens available).
– K : Number of distractor stimuli to provide to the listener agent.
– FullObs : Boolean defining whether the speaker agent has full (or partial) observation.
– DescrRatio : Descriptive ratio in the range [0, 1] defining how often the listener agent

is observing the same semantic as the speaker agent.
Initialize :

• Speaker(·) and Listener(·) agents.
1 for episode = 1, Nepisode do

/* Preparation of the symbolic space/dataset: */
2 V ′, Depisode, D

support
episode, D

query
episode ←MetaRGDatasetPreparation(V,Ndim, Vmin, Vmax);

3 Initialise set of sampled supporting stimuli: Ssupport ← ∅;
4 repeat
5 Sample training-purposed target stimulus si0 ∼ TSS(Dsupport

episode,Ssupport, S)

6 Ssupport ← Ssupport ∪ {si0}; i← i+ 1;
7 until all values on each attribute/factor dimension have been instantiated at least S times;
8 Initialise RG index: i← 0;

/* Supporting Phase: */
9 for target stimulus si0 ∈ Ssupport do

10 ObsiSpeaker, ObsiListener, D
Target
i ← DataPrep(Dsupport

episode, s
i
0, O,K,FullObs,DescrRatio);

11 DL
i , CommHi = PlayRG(Speaker,Listener, ObsiSpeaker, ObsiListener, N, L, V ′);

12 _, _ = Listener(ObsiSpeaker|CommHi) ; /* Listener-Feedback Step */
13 end

/* Querying/ZSCT Phase: */
14 Initialise ZSCT accuracy: AccZSCT ← 0;
15 for target stimulus si0 ∈ Dquery

episode do
16 ObsiSpeaker, ObsiListener, D

Target
i ← DataPrep(Depisode, s

i
0, O,K,FullObs,DescrRatio);

17 DL
i , CommHi = PlayRG(Speaker,Listener, ObsiSpeaker, ObsiListener, N, L, V ′);

18 _, _ = Listener(ObsiSpeaker|CommHi) ; /* Listener-Feedback Step */
/* Update ZSCT Accuracy: */

19 AccZSCT ← Update(AccZSCT, D
Target
i , DL

i); i← i+ 1;
20 end

/* Meta-Learning Parameters Update on Whole Episode: */

21 Update both agents using rewards Ri =


1 if DTarget

i == DL
i

0 otherwise, during supporting phase
−2 otherwise, during querying phase

;

22 end

596

17

Figure 4: Top: visualisation on each column of the messages sent by the posdis-compositional
rule-based speaker agent over the course of the episode presented in Figure 3. Colours are encoding
the information of the token index, as a visual cue. Bottom: OHE/MHE and SCS representations
of example latent stimuli for two differently-structured symbolic spaces with Ndim = 3, i.e. on the
left for d(0) = 4, d(1) = 2, d(2) = 3, and on the right for d(0) = 3, d(1) = 3, d(2) = 3. Note the
shape invariance property of the SCS representation, as its shape remains unchanged by the change
in semantic structure of the symbolic space, on the contrary to the OHE/MHE representations.

B Agent architecture & training597

The baseline RL agents that we consider use a 3-layer fully-connected network with 512, 256, and598

finally 128 hidden units, with ReLU activations, with the stimulus being fed as input. The output599

is then concatenated with the message coming from the other agent in a OHE/MHE representation,600

mainly, as well as all other information necessary for the agent to identify the current step, i.e. the601

previous reward value (either +1 and 0 during the training phase or +1 and −2 during testing phase),602

its previous action in one-hot encoding, an OHE/MHE-represented index of the communication603

round (out of N possible values), an OHE/MHE-represented index of the agent’s role (speaker or604

listener) in the current game, an OHE/MHE-represented index of the current phase (either ’training’605

or ’testing’), an OHE/MHE representation of the previous RG’s result (either success or failure), the606

previous RG’s reward, and an OHE/MHE mask over the action space, clarifying which actions are607

available to the agent in the current step. The resulting concatenated vector is processed by another608

3-layer fully-connected network with 512, 256, and 256 hidden units, and ReLU activations, and then609

fed to the core memory module, which is here a 2-layers LSTM [Hochreiter and Schmidhuber, 1997]610

with 256 and 128 hidden units, which feeds into the advantage and value heads of a 1-layer dueling611

network [Wang et al., 2016].612

Table 5 highlights the hyperparameters used for the learning agent architecture and the learning613

algorithm, R2D2[Kapturowski et al., 2018]. More details can be found, for reproducibility purposes,614

in our open-source implementation at HIDDEN_FOR_REVIEW_PURPOSE.615

Training was performed for each run on 1 NVIDIA GTX1080 Ti, and the average amount of training616

time for a run is 18 hours for LSTM-based models, 40 hours for ESBN-based models, and 52 hours617

for DCEM-based models.618

18

B.1 ESBN & DCEM619

The ESBN-based and DCEM-based models that we consider have the same architectures and620

parameters than in their respective original work from Webb et al. [2020] and Hill et al. [2020], with621

the exception of the stimuli encoding networks, which are similar to the LSTM-based model.622

B.2 Rule-based speaker agent623

The rule-based speaker agents used in the single-agent task, where only the listener agent is a624

learning agent, speaks a compositional language in the sense of the posdis metric [Chaabouni et al.,625

2020], as presented in Table 4 for Ndim = 3, a maximum sentence length of L = 4, and vocabulary626

size |V | >= maxid(i) = 5, assuming a semantical space such that ∀i ∈ [1, 3], d(i) = 5.627

C Cheating language628 Table 4: Examples of the latent
stimulus to language utterance map-
ping of the posdis-compositional
rule-based speaker agent. Note that
token 0 is the EoS token.

Latent Dims Comp. Language

#1 #2 #3 Tokens

0 1 2 1, 2, 3, 0
1 3 4 2, 4, 5, 0
2 5 0 3, 6, 1, 0
3 1 2 4, 2, 3, 0
4 3 4 5, 4, 5, 0

The agents can develop a cheating language, cheating in the629

sense that it could be episode/task-invariant (and thus semantic630

structure invariant). This emerging cheating language would631

encode the continuous values of the SCS representation like an632

analog-to-digital converter would, by mapping a fine-enough633

partition of the [−1,+1] range onto the vocabulary in a bijective634

fashion.635

For instance, for a vocabulary size ∥V ∥ = 10, each symbol can636

be unequivocally mapped onto 2
10 -th increments over [−1,+1],637

and, by communicating Ndim symbols (assuming Ndim ≤638

L), the speaker agents can communicate to the listener the639

(digitized) continuous value on each dimension i of the SCS-represented stimulus. If maxjd(j) ≤640

∥V ∥ then the cheating language is expressive-enough for the speaker agent to digitize all possible641

stimulus without solving the binding problem, i.e. without inferring the semantic structure. Similarly,642

it is expressive-enough for the listener agent to convert the spoken utterances to continuous/analog-643

like values over the [−1,+1] range, thus enabling the listener agent to skirt the binding problem644

when trying to discriminate the target stimulus from the different stimuli it observes.645

D Further experiments:646

D.1 On the BP instantiated by the SCS representation647

Hypothesis. The SCS representation differs from the OHE/MHE one primarily in terms of the648

binding problem [Greff et al., 2020] that the former instantiates while the latter does not. Indeed,649

the semantic structure can only be inferred after observing multiple SCS-represented stimuli. We650

hypothesised that it is via the dynamic binding of information extracted from each observations that651

an estimation of a density distribution over each dimension i’s [−1,+1] range can be performed.652

And, estimating such density distribution is tantamount to estimating the number of likely gaussian653

distributions that partition each [−1,+1] range.654

Evaluation. Towards highlighting that there is a binding problem taking place, we show results of655

baseline RL agents (similar to main experiments in Section 4) evaluated on a simple single-agent656

recall task. The Recall task structure borrows from few-shot learning tasks as it presents over 2 shots657

all the stimuli of the instantiated symbolic space (not to be confused with the case for Meta-RG658

where all the latent/factor dimensions’ values are being presented over S shots – Meta-RGs do not659

necessarily sample the whole instantiated symbolic space at each episode, but the Recall task does).660

Each shot consists of a series of recall games, one for each stimulus that can be sampled from an661

Ndim = 3-dimensioned symbolic space. The semantic structure (d(i))i∈[1;Ndim] of the symbolic662

space is randomly sampled at the beginning of each episode, i.e. d(i) ∼ U(2; 5), where U(2; 5) is the663

19

uniform discrete distribution over the integers in [2; 5], and the number of object-centric samples is664

O = 1, in order to remove any confounder from object-centrism.665

Each recall game consists of two steps: in the first step, a stimulus is presented to the RL agent, and666

only a no-operation (NO-OP) action is made available, while, on the second step, the agent is asked667

to infer/recall the discrete l(i) latent value (as opposed to the representation of it that it observed,668

either in the SCS or OHE/MHE form) that the previously-presented stimulus had instantiated, on669

a given i-th dimension, where value i for the current game is uniformly sampled from U(1;Ndim)670

at the beginning of each game. The value of i is communicated to the agent via the observation671

on this second step of different stimulus that in the first step: it is a zeroed out stimulus with the672

exception of a 1 on the i-th dimension on which the inference/recall must be performed when using673

SCS representation, or over all the OHE/MHE dimensions that can encode a value for the i-th latent674

factor/attribute when using the OHE/MHE representation. On the second step, the agent’s available675

action space now consists of discrete actions over the range [1;maxjd(j)], where maxjd(j) is a676

hyperparameter of the task representing the maximum number of latent values for any latent/factor677

dimension. In our experiments, maxjd(j) = 5. While the agent is rewarded at each game for678

recalling correctly, we only focus on the performance over the games of the second shot, i.e. on the679

games where the agent has theoretically received enough information to infer the density distribution680

over each dimension i’s [−1,+1] range. Indeed, observing the whole symbolic space once (on the681

first shot) is sufficient (albeit not necessary, specifically in the case of the OHE/MHE representation).682

Figure 5: 5-ways 2-shots accuracies
on the Recall task with different stim-
ulus representation (OHE:blue ; SCS;
orange).

Results. Figure 5 details the recall accuracy over all the683

games of the second shot of our baseline RL agent through-684

out learning. There is a large gap of asymptotic perfor-685

mance depending on whether the Recall task is evaluated686

using OHE/MHE or SCS representations. We attribute687

the poor performance in the SCS context to the instantia-688

tion of a BP. We note again that during those experiments689

the number of object-centric samples was kept at O = 1,690

thus emphasising that the BP is solely depending on the691

use of the SCS representation and does not require object-692

centrism.693

D.2 On the ideally-disentangled-ness of the SCS representation694

In this section, we verify our hypothesis that the SCS representation yields ideally-disentangled695

stimuli. We report on the FactorVAE Score Kim and Mnih [2018], the Mutual Information Gap696

(MIG) Chen et al. [2018], and the Modularity Score Ridgeway and Mozer [2018] as they have697

been shown to be part of the metrics that correlate the least among each other [Locatello et al.,698

2020], thus representing different desiderata/definitions for disentanglement. We report on the699

Ndim = 3-dimensioned symbolic spaces with ∀j, d(j) = 5 and O = 5. The measurements are700

of 100.0%, 94.8, and 98.9% for, respectivily, the FactorVAE Score, the MIG, and the Modularity701

Score, thus validating our design hypothesis about the SCS representation. We remark that the MIG702

and Modularity Score are sensitive to the number of object-centric samples O, which can be seen703

decreasing the measurements as low as 64.4% and 66.6% for O = 1. The FactorVAE Score is not704

affected, possibly due to its reliance on a deterministic classifier.705

D.3 Auxiliary Reconstruction Loss706

In the following, we investigate and compare the performance when using an LSTM [Hochreiter707

and Schmidhuber, 1997] or a Differentiable Neural Computer (DNC) [Graves et al., 2016] as core708

memory module, with or without the auxiliary reconstruction loss inspired from Hill et al. [2020].709

In the case of the LSTM, the prediction network of the reconstruction loss takes as input the LSTM710

hidden states, while in the case of the DNC, the input is the memory. Figure 6b shows the stimulus711

reconstruction accuracies for both architectures, highlighting a greater data-efficiency (and resulting712

20

asymptotic performance in the current observation budget) of the LSTM-based architecture, compared713

to the DNC-based one.714

Figure 6a shows the 4-ways (3 distractors descriptive meta-RGs) ZSCT accuracies of the different715

agents throughout learning. The ZSCT accuracy is the accuracy over querying-/testing-purpose716

stimuli only, after the agent has observed for two consecutive times (i.e. S = 2) the supportive717

training-purpose stimuli for the current episode. The DNC-based architecture has difficulty learning718

how to use its memory, even with the use of the auxiliary reconstruction loss, and therefore it utterly719

fails to reach better-than-chance ZSCT accuracies. On the otherhand, the LSTM-based architecture is720

fairly successful on the auxiliary reconstruction task, but it is not sufficient for training on the main721

task to really take-off. As expected from the fact that the benchmark instantiates a binding problem722

that requires relational responding, our results hint at the fact that the ability to use memory towards723

deriving valuable relations between stimuli seen at different time-steps is primordial. Indeed, only the724

agent that has the ability to use its memory element towards recalling stimuli starts to perform at a725

better-than-chance level. Thus, the auxiliary reconstruction loss is an important element to drive some726

success on the task, but it is also clearly not sufficient, and the rather poor results that we achieved727

using these baseline agents indicates that new inductive biases must be investigated to be able to728

solve the problem posed in our proposed benchmark.729

E Broader impact730

No technology is safe from being used for malicious purposes, which equally applies to our research.731

However, aiming to develop artificial agents that relies on the same symbolic behaviours and the same732

social assumptions (e.g. using CLBs) than human beings is aiming to reduce misunderstanding be-733

tween human and machines. Thus, the current work is targeting benevolent applications. Subsequent734

works around the benchmark that we propose are prompted to focus on emerging protocols in general735

(not just posdis-compositional languages), while still aiming to provide a better understanding of736

artificial agent’s symbolic behaviour biases and differences, especially when compared to human737

beings, thus aiming to guard against possible misunderstandings and misaligned behaviours. The738

current state of this work does not allow discussion of potential negative societal impact.739

(a) (b)

Figure 6: (a): 4-ways (3 distractors) zero-shot compositional test accuracies of different architectures.
5 seeds for architectures with DNC and LSTM, and 2 seeds for runs with DNC+Rec and LSTM+Rec,
where the auxiliary reconstruction loss is used. (b): Stimulus reconstruction accuracies for the
architectures augmented with the auxiliary reconstruction task. Accuracies are computed on binary
values corresponding to each stimulus’ latent dimension’s reconstructed value being close enough to
the ground truth value, with a threshold of 0.05 on each dimension, which correspond to a deviation
tolerance of 2.5% since the range in which SCS stimuli are instantiated is [−1, 1].

21

Table 5: Hyper-parameters values used in R2D2, with LSTM or DNC as the core memory module.
All missing parameters follow the ones in Ape-X [Horgan et al., 2018].

R2D2

Number of actors 32
Actor parameter update interval 1 environment step
Sequence unroll length 20
Sequence length overlap 10
Sequence burn-in length 10
N-steps return 3
Replay buffer size 5× 104 observations
Priority exponent 0.9
Importance sampling exponent 0.6
Discount γ 0.997
Minibatch size 32
Optimizer Adam [Kingma and Ba, 2014]
Optimizer settings learning rate = 6.25× 10−5, ϵ = 10−12

Target network update interval 2500 updates
Value function rescaling None

Core Memory Module

LSTM [Hochreiter and Schmidhuber, 1997] DNC [Graves et al., 2016]

Number of layers 2 LSTM-controller settings 2 hidden layers of size 128
Hidden layer size 256, 128 Memory settings 128 slots of size 32
Activation function ReLU Read/write heads 2 reading ; 1 writing

22

	On Algorithmic Details of Meta-Referential Games
	Agent architecture & training
	ESBN & DCEM
	Rule-based speaker agent

	Cheating language
	Further experiments:
	On the BP instantiated by the SCS representation
	On the ideally-disentangled-ness of the SCS representation
	Auxiliary Reconstruction Loss

	Broader impact

