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A  Workflow

Adversarial patches are commonly used to attack person detection models [1, 2, 3, 8, 9]. As shown in
Figure A , we summarize the workflow of these methods. Typically, designing a patch-based physical
adversarial attack involves five general steps: @ Adversarial patch generation, @ Adversarial patch
manufacturing, @ Attack deployment, € Threat image capturing, and @ Attack launching. In these
steps, we can observe two domain transitions. Specifically, the first transition takes place in Step @,
where digital patches are translated into tangible real-world patch material. The second transition
occurs in Step @), where the physical scene undergoes the transformation into digital images, typically
achieved by hardware camera devices.

Digital Patch Physical Patch Real-World Scene Camera Digital image DNNs-Based Detector
-
Manufacture . | Apply ? Capture Output ‘? Attack
e 4 : s @
S
(1] (2] (3] [4) (5]
Digital Space Digital to Physical Physical Space Physical to Digital Digital Space

Figure A: Workflow of patch-based physical adversarial attacks against person detection.
Generally, designing a patch-based physical adversarial attack involves five steps: adversarial patch
generation, adversarial patch manufacturing, attack deployment, threat image capturing, and attack
launching.

B Attacks under Multiple Detectors

Our primary investigation focuses on maintaining physical adversarial attack effectiveness across
multiple cameras, and we initially conducted experiments on the YOLOVS [4] detector. To comprehen-
sively evaluate the cross-model generalization capability of our proposed method, we further assess
its performance across different object detection models, specifically YOLOV3 [7] and YOLOVS [5].
Table A presents the comparative results. The experimental results demonstrate that our proposed
CAP method consistently outperforms existing approaches across all tested architectures in terms of
Average Precision (AP) and Attack Success Rate (ASR). Specifically, CAP achieves ASRs of 43.3%,
54.4%, and 14.7% on YOLOv3, YOLOVS, and YOLOVS, respectively. More recent approaches like
NAP [1] and LAP [8], while focusing on naturalistic perturbations, demonstrate limited cross-model
attack capability, with ASRs below 15% across all tested models.
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Table A: Open-source resources utilized in this paper.
YOLOv3 YOLOv5 YOLOvS
AP, ASRT AP, ASRT AP| ASRt

Random Noise  71.3 11.3 81.7 7.3 77.9 4.0
AdvPatch [9] 48.1 333 67.7 19.7 75.6 8.8
AdvT-shirt [13]  55.8 244  76.6 14.6 77.2 6.2
AdvCloak [12] 52.7 30.5 70.5 12.6 73.7 10.1
NAP [1] 66.2 14.0 81.3 7.4 78.1 5.0
LAP [8] 65.2 14.6 81.0 5.6 78.6 4.6
TC-EGA [2] 56.9 24.7 79.9 8.8 77.3 6.7
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(a) Multi-box detection issue in digital space.
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Figure B: Illustration of the multi-box detection issue in the T-SEA attack [3]. We observe that
applying the T-SEA patch results in multiple bounding boxes for the same person instance. This issue
exists in both digital and physical spaces.

(b) Multi-box detection issue in physical space.

C Multi-Box Detection Issue

We discovered a multi-box detection issue in the T-SEA attack [3], which occurs in both digital and
physical spaces. This issue explains why the attack method significantly reduces Average Precision
(AP) but does not achieve a high Attack Success Rate (ASR).

Figure Ba presents some typical examples in digital space. We observe that the detector predicts
multiple bounding boxes for a single person instance compared to the ground truth labels. Figure Bb
illustrates the attack in physical space. The multi-box detection issue does not occur when the person
is without an adversarial patch, but it appears when the person is equipped with the T-SEA patch.

In object detection tasks, the AP value is related to the crucial metric of Precision [6]. The formula
for calculating Precision is as follows:
TP
Precision = ———— 1

TP+ FP’ M
where T'P denotes the true positives and F'P represents the false positives. Precision quantifies the
ratio of correctly predicted positive instances to the total predicted positive instances. Clearly, the
multi-box detection issue results in an increase in F'P, consequently reducing Precision and AP.
Therefore, although the AP decreases, the attack is not truly successful, as the person is not hidden
from the detector.

D Hyperparameters of Camera ISP Proxy Net

Camera ISPs involve multiple processing stages, summarized by Tseng et al. [10] as follows: (1)
Optics, (2) White Balance & Gain, (3) Demosaicking, (4) Denoising, (5) Color & Tone Correction,
and (6) Color Space Conversion & Compression. While the first three stages apply to RAW data,



Table B: Hyperparameters we select from the software camera ISP for building a differentiable
camera ISP proxy network. We select six parameters, with four belonging to the Color & Tone
Correction module and two to the Denoising module.

(a) Color & Tone Correction (b) Denoising

Parameter Symbol  Value interval Max Parameter Symbol  Value interval Max

Brightness Contrast Control a (64, 256) 28 Spatial Filtering d (0.1,2.0) 21
Hue Saturation Control b (64, 256) 28 Non-Local Means e (1.0, 32.0) 25
Gamma Adjustment y 0.4,2.0) 2!
Color Correction Matrix ¢ (512, 1024) 210

the latter three operate on RGB values. As our task centers on RGB images, we selected conditional
parameters from the final three stages, focusing on six critical factors, such as Brightness Contrast
Control and Gamma Adjustment, shown in Table B. Experimental results reveal that these parameters
significantly affect attack outcomes.

Certain parameter combinations may result in complete information loss. To ensure image quality and
diversity from the ISP proxy network, we defined ranges as specified in Table B. For instance, values
for parameter a below 64 yield overly dark images, while values for b under 64 lead to desaturated
colors. Adjustments to y settings above the range introduce noise in dark regions, while lower values
diminish contrast. Deviation in parameter ¢ can degrade image quality, insufficient values for d
introduce excessive noise, and e values below 1 inadequately suppress noise.

E Additional Results

E.1 Qualitative Analysis of Digital-Space Attacks

Figure C demonstrate the digital-space attacks of seven different patch configurations under five
different camera ISP settings. We notice that changes in ISP affect image attributes like brightness
and contrast. This, in turn, impacts the attack performance. Specifically, we find that varying camera
ISPs have minimal impact on benign images, as the detector consistently identifies person instances
across all four ISP settings with marginal confidence variation. A similar phenomenon occurs for
adversarial patches with low attack effectiveness, like Random Noise. These results indicate that the
person detector is inherently robust, having camera-agnostic detection capabilities. AdvPatch [9] and
T-SEA [3], the two comparative methods, did not successfully attack all 4 camera ISPs. However, the
confidence of person instances exhibited noticeable fluctuations. For example, T-SEA decreased from
the highest score of 0.92 (ISP 2) to 0.71 (ISP 3). Ours without camera ISP has demonstrated improved
attack effectiveness, yet it is influenced by the camera ISP. Successful attacks are observed under
ISP 1 and ISP 4, while attacks fail under ISP 2 and ISP 3. Ours without adversarial optimization
is similarly affected by variations in camera ISPs, achieving success only under ISP 1. In contrast,
our full method maintains stable attacks across 5 settings, successfully concealing the person. This
results illustrate that our CAP mitigates the instability of cross-camera attacks and enhances the attack
efficacy of adversarial patches.

E.2 50 Random Camera ISPs Used for Evaluation.

To validate the camera-agnostic attack capability of our method, we selected 50 random camera ISP
settings to evaluate CAP. Given that the samples are six-dimensional data, we employed t-SNE [11]
for visualization. As shown in Figure D, we observe that the samples tested cover the entire sample
space, reflecting the performance of our adversarial patches across diverse camera ISP settings and
enhancing the credibility of our experimental results.

Furthermore, compared to ours without o the camera ISP, Figure D illustrates that our full method
exhibits superior attack performance (lower AP) at each sample. Additionally, we computed the
standard deviations of the AP for both baseline and our method across 50 samples, which are 3.89
and 1.82, respectively. This indicates that our method demonstrates better robustness to changes in
camera ISP settings.
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Figure C: Display of digital-space attacks. We demonstrate the attacks of seven different patch
configurations under five different camera ISP settings. The bounding boxes indicate the YOLOVS [4]
successfully detects the person instances, i.e., the attack fails.

E.3 Qualitative Analysis of Physical-Space Attacks

In Figure E, we display two comparative methods (AdvPatch [9] and T-SEA [3]) alongside our
method. We can observe significant imaging variations when the same scene is captured by different
cameras. These disparities manifest in features such as brightness and saturation in the images. For
instance, images captured by the selected Sony device exhibit the lowest brightness among the 6
devices. These imaging differences have an impact on the attack effectiveness of adversarial patches.
For AdvPatch [9] and T-SEA [3], we observe that participants without carrying adversarial patches
exhibit stable recognition by detectors across different cameras, maintaining a confidence level of
around 0.96. However, for participants carrying adversarial patches, there is a significant fluctuation
in the confidence of person instances. For instance, in the case of AdvPatch, the confidence of the
attacker is below 0.25 on the Samsung camera (0.25 being the confidence threshold set by the detector;
instances below this threshold are discarded), while on the iPhone camera, the confidence reaches as
high as 0.90. T-SEA induces incomplete detection (half-body) or multiple detections in detectors, yet
consistently fails to conceal the presence of a person. The consistent performance improvement of
our adversarial patch, resulting in successful attacks across all six cameras, underscores the capability
of our CAP for real-world cross-camera attacks.



t-SNE visualization of ours w/o the camera ISP t-SNE visualization of our method
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Figure D: The entire sample space of Camera ISP input hyperparameters and our sampled
points. For digital-space attack evaluation, we randomly sampled 50 sets of camera ISP input
hyperparameters to assess the cross-camera attack capability. Here, we employ t-SNE visualization
to illustrate them, with AP values annotated at corresponding locations.
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Figure E: Display of physical-space attacks. We showcase the attack outcomes of three distinct patch
configurations across six different cameras. The bounding boxes indicate the detector successfully
detects the person instances, i.e., the attack fails.

F Licenses

Table C provides a list of the resources that have been used in this research paper and their associated
licenses.

Table C: Open-source resources utilized in this paper.

Name License URL
INRIAPERSON Dataset CC BY 4.0 link
YOLOVS AGPL-3.0, Enterprise link
COCO Dataset Creative Commons Attribution 4.0  link
fast-openISP MIT link
Pytorch BSD-style link



https://universe.roboflow.com/pascal-to-yolo-8yygq/inria-person-detection-dataset
https://github.com/ultralytics/yolov5
https://cocodataset.org/#home
https://github.com/QiuJueqin/fast-openISP
https://github.com/pytorch/pytorch
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