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ABSTRACT

Recent advancements in reinforcement learning (RL) have achieved great success
in fine-tuning diffusion-based generative models. However, fine-tuning continuous
flow-based generative models to align with arbitrary user-defined reward func-
tions remains challenging, particularly due to issues such as policy collapse from
overoptimization and the prohibitively high computational cost of likelihoods in
continuous-time flows. In this paper, we propose an easy-to-use and theoretically
sound RL fine-tuning method, which we term Online Reward-Weighted Condi-
tional Flow Matching with Wasserstein-2 Regularization (ORW-CFM-W2). Our
method integrates RL into the flow matching framework to fine-tune generative
models with arbitrary reward functions, without relying on gradients of rewards
or filtered datasets. By introducing an online reward-weighting mechanism, our
approach guides the model to prioritize high-reward regions in the data manifold.
To prevent policy collapse and maintain diversity, we incorporate Wasserstein-2
(W2) distance regularization into our method and derive a tractable upper bound
for it in flow matching, effectively balancing exploration and exploitation of policy
optimization. We provide theoretical analyses to demonstrate the convergence
properties and induced data distributions of our method, establishing connections
with traditional RL algorithms featuring Kullback-Leibler (KL) regularization and
offering a more comprehensive understanding of the underlying mechanisms and
learning behavior of our approach. Extensive experiments on tasks including target
image generation, image compression, and text-image alignment demonstrate the
effectiveness of our method, where our method achieves optimal policy conver-
gence while allowing controllable trade-offs between reward maximization and
diversity preservation.

1 INTRODUCTION

Generative models have achieved remarkable success in producing high-fidelity data across various
domains, including text and images (Ouyang et al., 2022a; Esser et al., 2024). Among these,
continuous flow-based models have gained attention for their more concise and flexible design of
the ODE-based denoising process to model complex data distributions (Tong et al., 2024a; Lipman
et al., 2023). However, fine-tuning such flow-based models to align with arbitrary user-defined
reward objectives remains challenging. While recent advancements in reinforcement learning (RL)
have demonstrated considerable success in fine-tuning diffusion-based generative models (Rafailov
et al., 2023), their application to continuous flow-based models remains underexplored. The primary
challenges lie in lacking computationally efficient divergence measurement and tractable methods to
avoid overoptimization (Black et al., 2024) and policy collapse in fine-tuning continuous-time flow
matching models. Particularly, traditional policy gradient methods (Black et al., 2024) struggle in
this continuous domain due to the high computation cost of computing the exact ODE likelihood
for continuous normalizing flows (CNFs), which requires solving intricate transport dynamics and
tracking probability flows with model divergence calculation across time (See App. B.2.4).

*Corresponding authors.
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Furthermore, existing diffusion-based RLHF methods, such as DPO (Rafailov et al., 2023) and DDPO
(Black et al., 2024), face significant limitations when applied to CNFs. DPO relies on pairwise reward
comparisons and filtered datasets, making it unsuitable for optimizing arbitrary reward functions.
DDPO adopts a PPO-style policy optimization that depends on frequent likelihood calculations, which
are computationally intractable for CNFs. Moreover, methods for diffusion often rely on tractable
ELBO likelihood approximation or MDP formulation, which does not apply to CNFs. To tackle
these challenges, we propose a novel RL fine-tuning framework that bypasses the need for explicit
likelihood estimation by focusing on reward-weighted objectives tailored specifically for continuous
flow-based models, which we call Reward-Weighted Conditional Flow Matching (RW-CFM). Our
approach significantly reduces computational overhead while maintaining optimal performance.
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Figure 1: A General Architecture of Our Method.

In the meanwhile, many existing
reward-weighted RL fine-tuning
methods require train on offline
datasets manually collected by hu-
mans (Huguet et al., 2024) or
derived from pre-trained models
(Lee et al., 2023). While this
approach ensures stable learning,
it restricts the model’s ability to
explore optimally in an online
setting, inducing what is known
as the online-offline gap (Tang
et al., 2024) (See Fig. 1 and Figs.
2). This limitation reduces the
model’s flexibility and can lead
to sub-optimal convergence. In
contrast, online RL enables the generative model to continuously update its training distribution,
allowing for greater adaptability and diverse exploration within the reward space. Despite the success
in traditional RL domains, the convergence behavior of online RL in fine-tuning generative mod-
els, particularly continuous flow-based models, has not yet been widely studied. To leverage the
advantages of online RL for generative models, we propose an online reward-weighted fine-tuning
method called Online Reward-Weighted Conditional Flow Matching (ORW-CFM). In this paper,
we theoretically demonstrate that in online reward-weighted settings, the continuous updates of the
training data distribution of the fine-tuned generative model based on reward feedback can cause the
learned policy to collapse into a delta distribution (i.e., becoming extremely exploitative; see Lemma
1). Similar phenomena have been experimentally observed in mode collapse of GAN (Goodfellow
et al., 2014) and over-optimization in diffusion models (Black et al., 2024). Nevertheless, this issue
has not yet been fully addressed or theoretically demonstrated in previous works (Black et al., 2024).

To address these challenges and avoid policy collapse, we introduce a divergence regularization
approach to bound the distance between the fine-tuned model and the pre-trained reference model into
our online RL method. This regularization ensures that the policy updates remain within a controllable
and stable range, preventing collapse while still allowing the model to explore and improve. One of
the major challenges in fine-tuning CNFs lies in finding a computationally tractable distance measure
between different flow matching models, especially considering the KL divergence used in classic
RL methods is inefficient in CNFs. To overcome this, we instead propose to use the Wasserstein-2
(W2) distance (Arjovsky et al., 2017) to measure the distance between the fine-tuned model and the
reference model. In this paper, we derive a tractable upper bound of W2 distance in flow matching
(See Theorem 3) and incorporate it into our online RL method, inducing a reward-distance trade-off
in fine-tuning flow matching models. We demonstrate both theoretically and empirically that W2
distance regularization allows for a controllable and stable fine-tuning process, enabling our agent to
balance the reward objective and generative diversity.

In summary, for the first time, we propose an online RL method to fine-tune continuous flow-based
generative models towards arbitrary reward objectives with sufficient theoretical guarantees and
detailed analysis of the convergence behavior in both online and offline settings. Our approach can
leverage classifier-guided reward models, compression rate, and text-image similarity score with
CLIP models (Radford et al., 2021b), eliminating the need for time-consuming likelihood calculations
that involve the integration of the model divergence across the entire continuous trajectory. Our novel
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framework significantly reduces computational costs and enhances the feasibility of using RL to
fine-tune continuous flow-based generative models. The main contributions of our paper are:

• A Novel RL-Based Fine-Tuning Framework for CNFs: We propose the Online Reward-
Weighted Conditional Flow Matching (ORW-CFM) method, a novel RL approach for
fine-tuning continuous flow-based generative models. Our method enables optimization
with user-defined reward functions without the need for likelihood calculation (Black et al.,
2024), filtered dataset (Rafailov et al., 2023) or differentiable reward (Clark et al., 2024),
expanding the applicability of flow-based models in various downstream generative tasks.

• Tractable Wasserstein Regularization: To prevent policy collapse and maintain the di-
versity of the fine-tuned models, we introduce Wasserstein-2 (W2) distance regularization
into our online method, and derive a tractable upper bound of it in flow matching. This
regularization effectively balances exploration and exploitation by bounding the distance
between the fine-tuned model and the pre-trained reference model, inducing a theoretically
and empirically controllable convergent behavior of fine-tuning flow matching models.

• Theoretical Analysis and RL Connections: We provide comprehensive theoretical anal-
yses of our method, including convergence properties and the induced data distributions.
We establish connections between our approach and traditional RL algorithms with KL
regularization, offering new insights into fine-tuning flow matching generative models.

• Empirical Validation: Through extensive experiments on tasks such as target image
generation, image compression, and text-image alignment, we empirically demonstrate the
effectiveness of our method. Our approach achieves optimal policy convergence, allowing
controllable trade-offs between reward maximization and generative diversity.

2 RELATED WORKS

Conditional Flow Matching Conditional Flow Matching (CFM) (Lipman et al., 2023; Tong et al.,
2024a) and related methods have been pivotal in transforming simple data distributions into complex,
task-specific ones. Lipman et al. (2023) and Tong et al. (2024a) focus on training flow-based models
by conditioning the generative flow on known distributions, allowing for more precise control over
the generative process. However, while these models achieve great success in generation tasks, how
to fine-tune FM models to fit arbitrary user-defined objectives has not yet been widely studied.

Fine-tuning From Human Feedback Recent works typically leverage DPO (Rafailov et al., 2023)
or policy gradient RL methods (Black et al., 2024; Fan et al., 2023) to achieve RLHF (Ouyang
et al., 2022a). However, since the likelihood of the generative policy cannot be easily calculated
in continuous-time flow models, none of these approaches can be easily adapted to fine-tune flow
matching models. Additionally, DPO (Rafailov et al., 2023) relies heavily on a filtered dataset, which
does not work with a general reward model, while DPOK (Fan et al., 2023) relies on KL divergence,
which is computationally inefficient and lacks effective evidence lower bound (ELBO) in FM.

Fine-Tuning Generative Models with RL RL has been increasingly adopted to fine-tune generative
models, allowing them to adapt to specific downstream tasks by optimizing for user-defined reward
objectives. Black et al. (2024); Fan et al. (2023); Lee et al. (2023) used RL to fine-tune diffusion
models to align generated data with task-specific rewards. Lee et al. (2023) proposed an offline
reward-weighted method, while Black et al. (2024) proposed an online version without divergence
regularization, which either failed to converge into optimal policy or collapsed into an extremely
greedy policy without diversity (Black et al., 2024). Other reward-weighted methods like ReFT,
ReST (Huguet et al., 2024; Gülçehre et al., 2023) are almost limited to the offline settings with given
datasets and lack theoretical analysis of the convergent behavior. Importantly, how to adopt online
RL methods to fine-tune FM models has not yet been widely studied in both theory and practice.
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3 PRELIMINARIES

3.1 FLOW MATCHING MODELS

Flow Matching (FM) is a promising technique for training generative models by transforming a
simple initial distribution p (x0) like Gaussian noises, into a complex target distribution p (x1),
which represents real-world data (Esser et al., 2024). This transformation works continuously over
time, governed by a time-dependent vector field ut(x) and the flow ordinary differential equation
(ODE):dxdt = ut(x). The goal of FM is to learn a vector field that transports samples from the base
distribution to the target distribution by minimizing the difference between the learned vector field
and the true dynamics of the probability flow. This process can be formalized by the Flow Matching
loss: LFM(θ) = Et∼U(0,1),x∼pt(x)[∥vθ(t, x) − ut(x)∥2]. However, the original FM objective is
generally intractable because the time-varying distribution pt(x) and the true vector field ut(x) are
often intractable. To address this, Conditional Flow Matching (CFM) has been proposed (Lipman
et al., 2023), which simplifies the task by conditioning the flow on target samples to derive a tractable
objective. The CFM loss is defined as follows:

LCFM(θ) = Et∼U(0,1),x1∼q(x1),x∼pt(x|x1) [∥vθ(t, x)− ut (x | x1)∥]
2 (1)

wherein ut (x | x1) becomes tractable by defining explicit conditional probability paths from x0 to
x1, such as OT-paths (Tong et al., 2024a) or linear interpolation paths (Lipman et al., 2023). In this
paper, we adopt OT-paths for all experiments based on TorchCFM (Tong et al., 2024b) and Diffusers
(von Platen et al., 2022).

3.2 REWARD WEIGHTED REGRESSION

Reward Weighted Regression (RWR) (Peters & Schaal, 2007; Black et al., 2024) is an approach
used in RL for policy optimization. In this framework, actions that yield higher rewards are assigned
greater importance, and the policy is updated by re-weighting actions based on the rewards they
produce. The key idea behind RWR is to adjust the probability of selecting actions proportionally to
their associated rewards, encouraging the agent to focus on high-reward actions.

Specifically, the policy π(a | s) is updated by re-weighting the actions via πnew(a | s) ∝ πold(a |
s) · exp(τ ∗ r(s, a)), where r(s, a) is the reward for taking action a in state s, and τ is a temperature
parameter that controls the trade-off between exploration and exploitation. Higher rewards lead to
higher probabilities for the corresponding actions, allowing the agent to improve its policy over time
by favoring actions that maximize cumulative rewards: π∗ = argmaxπ Eπ[

∑T
t=0 γ

tr(st, at)].

4 METHODS

4.1 PROBLEM STATEMENT

In this paper, we aim to fine-tune continuous flow-based models using a reward-weighted RL
method (Peters & Schaal, 2007; Peng et al., 2019) to optimize a user-defined reward function r (x1).
Specifically, our objective is to find the optimal generative policy model, denoted as π∗, which
maximizes the expected reward throughout data generation:

π∗ = argmax
π

J(π) = argmax
π

Ex1∼π(x1) [r (x1)] (2)

where the policy π refers to the parameterized flow matching data generative model pθ(x1), deter-
mining how data points (e.g., images) are generated, which is learned solely from scalar rewards,
without ground-truth labels or filtered dataset. In fine-tuning tasks, we may also consider constrained
optimization, where the distance between the pre-trained model and fine-tuned model will be con-
strained (Ouyang et al., 2022a). Considering the computational inefficiency of KL in continuous flow
models, we instead propose a Wasserstein-2 distance to achieve that.

4.2 FINE-TUNING FLOW MATCHING MODELS WITH OFFLINE REWARD-WEIGHTING

To find the optimal data generation policy in equation 2, in this section, we extend the standard CFM
framework by introducing a reward-weighting mechanism to focus the model’s learning on more
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important or highly rewarded regions of the data space, which thus improve its performance towards
user-defined reward objectives r(x1).

Let X ⊆ Rd be the data space, and let q(x1) be the probability density function (pdf) of the random
variable x1 ∈ X . We consider a continuous-time flow over t ∈ [0, 1], where t is sampled from the
uniform distribution U [0, 1]. The conditional pdf of x at time t, given x1, is denoted by pt(x | x1).
The true conditional vector field is ut(x | x1), and the model’s learned vector field is vt(x; θ), where
θ represents the model parameters. In CFM (Tong et al., 2024a), the goal is to learn vt(x; θ) such that
it closely approximates ut(x | x1) with equal importance via equation 1. Based on that, we introduce
a weighting function w(x1) ∝ r(x1) : X → [0,∞) into CFM loss, inducing a reward-weighted
CFM method (RW-CFM) as equation 3. Then, we can have the Theorem 1 (Proof in App. C.2):

Theorem 1. Let w : X → [0,∞) be a measurable weighting function such that 0 < Z =∫
X w (x1) q (x1) dx1 <∞ and w(x1) ∝ r(x1). Define the reward weighted CFM loss function:

LRW−CFM(θ) = Et∼U [0,1],x1∼q(x1),x∼pt(x|x1)

[
w (x1) ∥vt(x; θ)− ut (x | x1)∥2

]
(3)

where w (x1) is a weighting function, q (x1) is the original data distribution (e.g., data distribution
induced by well-learned pre-trained models), pt (x | x1) is the conditional distribution at time
t, vt(x; θ) is the model’s vector field, and ut (x | x1) is the true vector field conditioned on x1. Then,
training the model using this RW-CFM loss leads the model to learn a new data distribution:

pnew (x1) =
w (x1) q (x1)

Z
(4)

where Z =
∫
w (x1) q (x1) dx1 is the normalization constant.

Based on Theorem 1, it is obvious that the model trained with the RW-CFM loss will focus on
high-reward regions compared to the original data distribution q(x1). However, since the training
data is sampled from a static dataset q(x1), which is equivalent to an offline RL setting (Black et al.,
2024), the model may not find the optimal data distribution p∗ (i.e., optimal policy π∗) that maximizes
the expected reward (i.e., online and offline gap, see Fig. 2). To address this, we propose using the
fine-tuned flow matching models as the data sampling policy (i.e., q(x1) = pθ(x1)), enabling an
online generation of training data and thereby inducing an online RW-CFM method.

4.3 FINE-TUNING FLOW MATCHING MODELS WITH ONLINE REWARD-WEIGHTING

As discussed, to mitigate the online-offline gap and achieve better performance, we can instead adopt
an online RL algorithm, where the fine-tuned FM models are used as a data generation/sampling
policy to continuously generate new training data and explore high-value regions, inducing what we
call the Online Reward-Weighted Conditional Flow Matching (ORW-CFM) method:

LORW-CFM(θ) = Et∼U [0,1],x1∼pθ(x1),x∼pt(x|x1)

[
w (x1) ∥vt(x; θ)− ut (x | x1)∥2

]
, (5)

In the online setting, the model can adaptively sample from the current learned data distribution,
and fine-tune itself based on the newly generated samples, inducing an online policy iteration that
promotes more efficient exploration of the high-reward areas in the data space. In general, the data
distribution learned by the ORW-CFM method follows Theorem 2 (Proof in App. C.3):

Theorem 2 (Online Reward Weighted CFM). Let q (x1) be the initial data distribution, andw (x1) be
a non-negative weighting function integrable with respect to q (x1), and proportional to user-defined
reward r(x1). Assume that at each epoch n, the model vθ perfectly learns the distribution implied by
the ORW-CFM loss in equation 5. Then, the learned data distribution after N epochs is given by:

qNθ (x1) =
w (x1)

N
q (x1)

ZN
(6)

where ZN =
∫
X w (x1)

N
q (x1) dx1 is the normalization constant ensuring qNθ (x1) is a valid

probability distribution.
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Based on Theorem 2, we can easily derive the limiting behavior of ORW-CFM method (Proof in
App. C.3) as the training converges (i.e., the learned generative policy collapses into an extremely
exploitative/greedy policy without diversity as the case where α = 0 in Fig. 3):
Lemma 1 (Limiting Case). We now consider the limiting cases where N →∞:

If w (x1) ∝ r(x1) > 0 for all x1 ∈ X and attains its maximum rewards at x∗1, then as N →∞, the
learned data distribution qNθ (x1) converges to a Dirac delta function centered at x∗1 :

lim
N→∞

qNθ (x1) = δ (x1 − x∗1) (7)

From Lemma 1, in the online setting, as training progresses, the ORW-CFM method may converge to
the optimal policy that yields maximum reward without any diversity, potentially leading to a policy
collapse problem (See Figs. 3, 6 and 11 where α = 0):
Corollary 1 (Policy Collapse/Overoptimization). Overemphasizing high-reward regions can lead
to a lack of diversity in generated samples, similar to mode collapse in GANs (Goodfellow et al.,
2014), overoptimization in fine-tuning diffusion models (Black et al., 2024), or policy collapse in RL
(Haarnoja et al., 2018; Sutton & Barto, 1998).

Based on Lemma 1 and Theorem 2, assuming an exponential weighting function w(x1) =

exp(τ ∗ r(x1)) case, we can have w (x1)
N

= exp(N ∗ τ ∗ r(x1)), where τ can control the conver-
gence/collapse speed of learned policy, and τ → ∞ also induces a policy collapse problem (See
Fig. 2). To mitigate the policy collapse problem, we introduce Wasserstein-2 regularization into our
method, which can bound the distance between the current learned model and the pre-trained model.
This helps maintain diversity and prevents the model from collapsing into an extremely greedy policy,
inducing an exploration-exploitation trade-off in fine-tuning flow matching models.

4.4 WASSERSTEIN-2 REGULARIZATION IN FLOW MATCHING

To address the policy collapse problem in the ORW-CFM method, we introduce Wasserstein-2 (W2)
regularization, which helps maintain diversity by bounding the distance between the current learned
model and a pre-trained reference model. This regularization induces an exploration-exploitation
trade-off, allowing the model to avoid focusing solely on high-reward regions at the expense of
diversity. In general, we can write the Wasserstein-2 Distance as follows (Arjovsky et al., 2017):
Definition 4.1 (Wasserstein-2 Distance). Given two probability measures µ and ν on Rn, the squared
Wasserstein- 2 distance between µ and ν is defined as:

W 2
2 (µ, ν) = inf

γ∈Π(µ,ν)

∫
Rn×Rn

∥x− y∥2dγ(x, y) (8)

where Π(µ, ν) denotes the set of all couplings of µ and ν; that is, all joint distributions γ on Rn×Rn

with marginals µ and ν.

However, it is intractable to directly introduce W2 distance into our loss function. Therefore, we
instead derive and introduce its upper bound as our distance regularizer (Proof in App. C.4):
Theorem 3 (W2 Bound for Flow Matching). We consider two flow matching models parameterized
by θ1 and θ2, inducing time-evolving data distributions pθ1t (x) and pθ2t (x), respectively. The models
define vector fields vθ1(t, x) and vθ2(t, x) that transport an initial distribution p0(x) to final distri-
butions pθ11 (x) and pθ21 (x) at time t = 1. Assume that vθ2(t, x) is Lipschitz continuous in x with
Lipschitz constant L. Then, the squared Wasserstein-2 distance between the distributions pθ11 and pθ21
induced by the flow matching models at time t = 1 satisfies:

W 2
2

(
pθ11 , p

θ2
1

)
≤ e2L

∫ 1

0

E
x∼p

θ1
s

[∥∥vθ1(s, x)− vθ2(s, x)∥∥2] ds (9)

Since the integral can be approximated by Monte Carlo sampling, this bound allows us to constrain
the discrepancy between the learned and reference models, effectively preventing the model from
collapsing into a greedy policy. By controlling the Wasserstein-2 distance, the model maintains a
balance between exploring new areas of the data space and exploiting known high-reward regions in
a constrained neighborhood from the pre-trained model, thus preserving diversity.

6



Published as a conference paper at ICLR 2025

4.5 FINE-TUNING FLOW MATCHING MODELS WITH W2 REGULARIZATION

The offline version of the reward-weighted method can be considered as the first step of the online
version (Black et al., 2024). For simplicity, we only derive the ORW-CFM method with W2 distance
regularization (i.e., ORW-CFM-W2 method) in this section, and left the offline version (i.e., RW-CFM
with W2 distance regularization, namely RW-CFM-W2 method) in App. C.5 for ease of reading.

To further improve the stability of the ORW-CFM method and prevent policy collapse, we incorporate
W2 regularization into our method, which has not been widely studied (Black et al., 2024). This
regularization introduces a balance between exploration and exploitation by penalizing divergence
from the reference model, thus maintaining diversity in the learned model. The W2 distance bound
can be directly incorporated into the ORW-CFM loss, inducing an ORW-CFM-W2 method:

LORW-CFM-W2 = Et∼U(0,1),x1∼q(x1;θft),x∼pt(x|x1)[w (x1)
∥∥vθft(x, t)− ut (x | x1)

∥∥2
+ α ∗

∥∥vθft(x, t)− vθref(x, t)
∥∥2], (10)

wherein α is a trade-off coefficient, vθft(x, t) = vt(x; θft) and vθref(x, t) is the reference model. Then,
the learned data distribution after n epochs follows the Theorem 4 (Proof in App. C.6):
Theorem 4. Under the online RL setup with ORW-CFM-W2 loss, the data distribution after n epochs
evolves according to the following rules:

qnθ (x1) ∝
[
w (x1) q

n−1
θ (x1) exp

(
−βDn−1 (x1)

)]
, (11)

where, Dn−1 (x1) = Et,x∼pt(x|x1)

[∥∥∥vθn−1

(t, x)− vθref(t, x)
∥∥∥2], β = γα, γ > 0 is a scaling

constant, θn−1 denotes the fine-tuned model parameters after epoch n− 1.

The W2 regularization term prevents the model from solely collapsing into high-reward regions and
ensures diversity in the learned policy (See cases where α > 0 in Figs.3, 4 and 11), also inducing the
exploration-exploitation trade-off.

In practice, we often use an exponential function or Boltzmann distribution to formulate the weighting
function as w(x1) = exp(τ ∗ r(x1)), where τ is an entropy coefficient that controls the entropy of
the induced policy (Haarnoja et al., 2018). Thus, we can derive the induced data distribution for the
exponential case under the ORW-CFM-W2 loss (Proof in App. C.7):
Theorem 5. Given w (x1) = exp (τ ∗ r (x1)), the induced data distribution after N epochs of
training under ORW-CFM-W2 Loss as equation 10 is:

qNθ (x1) ∝ exp

(
τNr (x1)− β

N∑
n=1

Dn−1 (x1)

)
q (x1) (12)

where, Dn−1 (x1) = Et,x∼pt(x|x1)

[∥∥∥vθn−1

(t, x)− vθref (t, x)
∥∥∥2], β = γα, γ > 0 is a scaling

constant, θn−1 denotes the model parameters after epoch n− 1.

Based on this, we can derive the learning behavior of ORW-CFM-W2 under two limiting cases:
Case 1 (Dominant Regularization Term: α→∞ or τ = 0). If Dn−1 (x1) grows rapidly with N or
α is large, since β ∝ α, the regularization term dominates, namely β

∑N
n=1D

n−1 (x1)≫ τ ∗ r (x1).
The induced distribution is heavily penalized for deviations from the reference model, potentially
leading to a distribution similar to the initial distribution q (x1) (See τ = 0 in Fig. 2).
Case 2 (Dominant Reward Term: α = 0 or τ → ∞). If Dn−1 (x1) grows slowly with N or α
is small, since β ∝ α, the reward term dominates the regularization term, namely τ ∗ r (x1) ≫
β
∑N

n=1D
n−1 (x1). The induced distribution qNθ (x1) concentrates on the x1 maximizing r (x1),

similar to the case without considering Dn−1 (x1) as Lemma 1 (See α = 0 in Fig. 3).

Though the Boltzmann distribution is commonly used for the weighting function to handle the
normalization constant Z, the derivation is similar to the exponential form. For completeness, we
provide the derivation of the Boltzmann form weighting function in App. C.8 for ease of reading.

Interestingly, we can interpret our ORW-CFM-W2 method from the perspective of policy iteration in
RL (Sutton & Barto, 1998), which can connect our method to KL-constrained policy optimization
(Ouyang et al., 2022a; Peng et al., 2019). See App. C.9 for more detailed discussion.
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5 EXPERIMENTS

We empirically evaluate our ORW-CFM-W2 method in equation 10 by fine-tuning small-scale FM
models with a U-net architecture from TorchCFM (Tong et al., 2024a) and large-scale FM models like
Stable Diffusion 3 (SD3) (Esser et al., 2024) from diffusers (von Platen et al., 2022) for reproducibility.
In all experiments, we use the exponential weighting function described in Theorem 5. We also
explore the impact of each component of our method and conducted detailed analyses of convergent
behavior in various hyperparameter settings. More experimental details can be found in App. D and
E with our Pseudocode in App. H. In general, we focus on the following questions:

• Optimal Policy Convergence: Can our online RL methods converge to an optimal genera-
tive data distribution that maximizes various user-defined reward objectives as we derived in
Theorem 2 and Lemma 1 while the offline baseline method converges to a sub-optimal?

• Reward-Diversity Trade-off: Does W2 regularization effectively prevent policy collapse
by maintaining a balance between reward maximization and diversity as Theorem 5?

• Stable and Controllable Policy Optimization: Can our method achieve a stable and con-
trollable fine-tuning process of FM models in different settings, and control the convergent
behavior of learned policy by adjusting entropy coefficient τ and W2 coefficient α?

0 2000 4000 6000 8000 10000
Training Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
wa

rd
s

online offline gap

= 0
= 0.01
= 10

RW-CFM
optimal

(a) Reward Curve (b) τ = 0 (c) τ = 0.01 (d) τ = 10

Figure 2: Learning curve and generated images in target image generation task with different τ
while α = 0. As τ increases, the convergent policy becomes increasingly greedy, and the diversity
decreases. τ = 0 remains the similar distribution as pre-trained model (See Theorem 5).
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Figure 3: Learning curve and generated images in target image generation task with different α while
τ = 10. From α = 0 to α = 0.8, the diversity of the convergent generative distribution increases
without sacrificing too much performance. α = 0 collapse to a Delta Distribution as Lemma 1.

5.1 TARGET IMAGE GENERATION

At first, we evaluate our ORW-CFM method, with and without W2 regularization, by fine-tuning a
pre-trained model of MNIST (LeCun et al., 1998) to generate only even numbers using reward signals.
The reward function is defined as r (x1) = peven (x1)− podd (x1), calculated by a pre-trained binary
classifier. An optimal expected return of 1 indicates the model exclusively generates even numbers.

Figs. 2 and 3 demonstrate that our method quickly reaches near-optimal performance across different
settings of the entropy coefficient τ and regularization coefficient α. From Fig. 2, increasing τ leads to
a more greedy, reward-maximizing policy at the cost of diversity, consistent with the theoretical limits
in Theorem 5 and Lemma 1, while τ = 0 remains a similar performance as the pre-trained model.
Besides, from Fig. 3, W2 regularization controlled by α remains diverse by controlling how far the
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fine-tuned model diverges from the pre-trained model, enabling a balance between exploration and
exploitation. In general, ORW-CFM, especially with W2 regularization, achieves a stable fine-tuning
process via maximizing the rewards in a constrained neighborhood of the pre-trained model, inducing
a flexible balance between reward and diversity, avoiding extremely exploitative policies.

5.2 IMAGE COMPRESSION

(a) α = 0 (b) α = 0.5 (c) α = 10 (d) pre-trained model
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Figure 4: Reward-Diversity Trade-off and W2 Distance Control via α in Image Compression Task
(Black et al., 2024) of CIFAR-10 (Krizhevsky & Hinton, 2009) with τ = 1. W2 distance is estimated
by its upper bound (see App. C.4). Each point in (e) and (f) corresponds to one group of experiments
with α varying from 0 to 1. As α increases, the final reward decays while distance between the
fine-tuned model and the reference model become closer, inducing a controllable fine-tuning process.

The effect of W2 regularization and exploration-exploitation trade-off is particularly evident in the
image compression task using the model pre-trained in CIFAR-10, as shown in Figs. 4. In Fig.
4, we see that the introduction of W2 regularization prevents the policy from collapsing into an
extremely greedy solution. As α increases, the model explores optimal solutions within a constrained
neighborhood of the pre-trained model, preserving diversity while still optimizing the reward.

The reward-distance trade-off curve in Fig. 4 further highlights this balance. Varying α provides an
explicit trade-off between maximizing the reward and minimizing the divergence from the pre-trained
model. As α decreases, the policy becomes more exploitative, potentially collapsing into a Delta
distribution, as described in Lemma 1. Conversely, increasing α encourages broader exploration
of the data space, ensuring a more diverse generative policy. Therefore, proper W2 regularization
effectively balances exploration and exploitation, avoiding policy collapse.

5.3 TEXT-IMAGE ALIGNMENT

Aligning Large-Scale Flow Matching Models To further validate our method’s effectiveness, we
evaluate our ORW-CFM-W2 method on fine-tuning Stable Diffusion 3 (SD3) (Esser et al., 2024).
Besides, we adopt LoRA (Hu et al., 2022) for efficient fine-tuning. As shown in Figure 5, we compare
our method against RAFT (Dong et al., 2023) and ReFT (Huguet et al., 2024) on spatial relationship
prompts used in DPOK (Fan et al., 2023). Our approach demonstrates better positional relationship
control while maintaining image quality and semantic coherence. On challenging prompts like "a
banana on the left of an apple" and "a cat on the left of a dog", our method consistently generates
images with correct object placement and natural appearances, outperforming previous approaches in
terms of both alignment accuracy and generation quality. Results on these complex compositional
prompts further demonstrate our approach’s capability in handling multiple semantic constraints
while maintaining generation diversity. See App. A for more details and additional results.
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Figure 5: General Comparison of Different Fine-tuning Methods on SD3 via CLIP Rewards.

Figure 6: Ablation Studies on Text-Image Alignment Tasks of SD3. All use CLIP rewards.

Ablation Results The ablation studies in Figure 6 demonstrate several key findings that align
with our theoretical predictions. Our ORW-CFM method, even without W2 regularization (α = 0),
achieves better semantic alignment than other online methods like RAFT and ReFT, though all
methods without W2 regularization exhibit clear signs of policy collapse, generating nearly identical
images despite achieving high rewards - empirically validating our theoretical prediction in Lemma
1. The introduction of W2 regularization (RAFT+W2, ReFT+W2, and our ORW-CFM-W2 method,
α = 1) successfully prevents this collapse while maintaining performance, validating our tractable
W2 distance bound in Theorem 3. Our method achieves the best balance between reward optimization
and diversity preservation, with generated images showing consistent semantic understanding of "cat
in sky" while maintaining natural variations in compositions. See App. A.2 for more details.

6 CONCLUSION

In this paper, we present the first theoretically-grounded online RL framework for fine-tuning
flow matching models - Online Reward-Weighted Conditional Flow Matching with Wasserstein-
2 Regularization (ORW-CFM-W2) without requiring calculations of ELBO, exact likelihood or
KL divergence, which are intractable in ODE-based flow matching models. Our work provides
the first theoretical analysis of convergent behavior in flow matching online fine-tuning, proving
that unregularized methods inevitably converge to a Delta distribution (Lemma 1), inducing policy
collapse that maximizes rewards at the cost of diversity. This theoretical discovery motivates our
second major contribution - the derivation of a tractable Wasserstein-2 regularization that can be
directly computed from vector fields, providing an efficient way to prevent collapse while maintaining
diversity. Extensive experiments across target image generation, image compression, and text-image
alignment demonstrate that our method achieves optimal convergence while maintaining stable
learning, with ablation studies validating both the online reward-weighting mechanism for optimal
convergence and W2 regularization for diversity preservation. See App. I for more discussions.
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A TEXT-IMAGE ALIGNMENT EXPERIMENTS OF STABLE DIFFUSION 3

In this section, to further empirically demonstrate our performance on fine-tuning large-scale genera-
tive models like the stable diffusion series (Esser et al., 2024), we conduct extensive experiments on
fine-tuning Stable Diffusion 3 (SD3) (Esser et al., 2024), which adopts a flow matching architecture
(Lipman et al., 2023; Esser et al., 2024). For reproducibility, we built our code on the open-sourced
diffuser codebase (von Platen et al., 2022), and adopted LoRA (Hu et al., 2022) and fp16 precision
to reduce GPU memory requirements. Unless otherwise specified, we use α = 1, τ = 0.1 for all
experiments in this section.

To verify the effectiveness of our method, we primarily use the raw CLIP score (i.e., logit) (Radford
et al., 2021a) as our rewards for text-image alignment for SD3 fine-tuning. We also demonstrate our
method’s adaptability by extending it to various other text-image alignment reward models, including
HPS-V2 (Wu et al., 2023), Pick Score (Kirstain et al., 2023), and Alpha Clip (Sun et al., 2024).
Notably, our method learns entirely from self-generated data (Dong et al., 2023; Shumailov et al.,
2024) without requiring manually collected (Ouyang et al., 2022a) or filtered datasets (Rafailov
et al., 2023), while effectively preventing policy collapse through our theoretically-derived W2
regularization (See App. C.4).

A.1 TEXT-IMAGE ALIGNMENT WITH SPATIAL UNDERSTANDING

Figure 7: General comparison of positional relationship understanding between different fine-tuning
methods on SD3 (Esser et al., 2024). We compare our proposed ORW-CFM-W2 method against
RAFT (Dong et al., 2023), ReFT (online variants, training on self-generated data) (Huguet et al., 2024),
and the original SD3 model (Esser et al., 2024) across various positional relationship prompts from
DrawBench (Saharia et al., 2022) used in DPOK (Fan et al., 2023). Each column shows generations
for a specific prompt testing spatial understanding (e.g., “left of”, “on top of”, “underneath”). The
results demonstrate that our method achieves better positional relationship control while maintaining
image quality and semantic coherence. This suggests that our Wasserstein-2 regularized online
reward-weighted approach effectively fine-tunes flow-based models to better understand and generate
complex spatial relationships between objects. Model generations shown are sampled with the same
random seeds across methods for fair comparison.

In the first experiments, we aim to improve the model’s understanding of spatial relationships between
objects, a challenging task that requires both semantic understanding and precise positional control.

To demonstrate the effectiveness of our method, we use the raw CLIP score (i.e., logits) (Radford
et al., 2021a; Xu et al., 2023; Dong et al., 2023) directly as our text-image alignment reward model,
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eliminating the need for probability conversion or complex reward shaping (Kapturowski et al., 2019).
This straightforward approach further demonstrates our method’s ability to optimize directly from
raw similarity scores, making it more practical for real-world applications (Dong et al., 2023; Radford
et al., 2021a).

Figure 7 (i.e., Same as Figure 5, but with more detailed discussion for ease of reading.) compares
our method against several baselines: RAFT (Dong et al., 2023), ReFT (online variants, training
on self-generated data) (Huguet et al., 2024), and the original SD3 model. The results demonstrate
several key advantages of our approach:

1. Spatial Semantic Coherence/Alignment: Our method shows superior understanding of
spatial relationships (“left of”, “on top of”, “underneath”) while maintaining high image
quality. This validates our theoretical analysis that ORW-CFM-W2 can effectively optimize
arbitrary reward functions without compromising generation quality.

2. Controlled Optimization: As shown in Figure 3 and Figure 7, online RL methods trained on
self-generated data (Dong et al., 2023; Huguet et al., 2024; Black et al., 2024; Shumailov
et al., 2024) normally face great challenges of policy collapse, where models converge to
limited, homogeneous outputs that maximize rewards but lack diversity - a phenomenon
theoretically characterized in Lemma 1. To address this challenge, we introduce W2
regularization, which effectively prevents over-optimization and policy collapse (Lemma
1). Our theoretical analysis in Theorem 5 demonstrates that this regularization enables a
controlled trade-off between reward maximization and output diversity (See Figure 4). The
experimental results validate this prediction, showing consistent spatial relationships while
maintaining natural variations in object appearances, styles, and compositions.

3. Easy-to-Use and Stable Fine-tuning Method: Our method achieves these improvements
without requiring filtered datasets (Rafailov et al., 2023), likelihood calculations (Black
et al., 2024) or differentiable rewards (Domingo-Enrich et al., 2024), demonstrating the
practical advantages of our reward-weighted flow matching framework. This aligns with our
theoretical framework that bypasses the computational challenges of likelihood estimation
in continuous flow models.

In general, these results further validate our theoretical contributions in a practical, large-scale
setting. The successful fine-tuning of SD3 demonstrates that our method can effectively balance
between reward maximization and diversity preservation, as predicted by our reward-distance trade-
off analysis (Theorem 4 and 5). Furthermore, the stable learning behavior supports our theoretical
analysis of the convergence properties under W2 regularization. These experiments also highlight
the practical significance of our two key innovations: the online reward-weighting mechanism and
the W2 regularization. The online approach allows the model to continuously explore and improve
spatial understanding, while the W2 regularization prevents the collapse into simplistic or degenerate
solutions - a common challenge in fine-tuning large generative models (Dong et al., 2023; Black
et al., 2024; Shumailov et al., 2024).

A.2 ABLATION STUDIES AND POLICY COLLAPSE ANALYSIS

In the second part of SD3 fine-tuning experiments, to empirically validate our theoretical analysis
of policy collapse in online RL fine-tuning as Lemma 1 and demonstrate the effectiveness of our
W2 regularization via ablation, we further fine-tune SD3 models to align out-of-distribution (OOD)
prompt "a cat in the sky". This setup provides an ideal test case for examining both the policy collapse
phenomenon and our method’s ability to maintain diversity while optimizing rewards in different
online methods. The ablation results have been concluded in Figure 8.

Effectiveness of Online Reward Weighting (ORW-CFM) The ablation studies in Figure 8
demonstrate that our ORW-CFM method, even without W2 regularization (α = 0), achieves better
semantic alignment than other online methods like RAFT (Dong et al., 2023) and ReFT (Huguet et al.,
2024). This superior performance validates our theoretical framework for online reward-weighted
fine-tuning of flow matching models (See Lemma Optimal Convergent Behavior in Lemma 1). The
method successfully optimizes for the desired semantic content, achieving higher-quality generations
that better match the prompt "cat in sky" compared to baseline approaches.
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Figure 8: Comparison of different fine-tuning methods on fine-tuning SD3 for the prompt “a cat in the
sky” (reward is also the CLIP score Radford et al. (2021a); Xu et al. (2023); Dong et al. (2023)). The
results demonstrate that policy collapse frequently occurs during online RL fine-tuning (Black et al.,
2024; Dong et al., 2023; Shumailov et al., 2024). The baseline SD3 Esser et al. (2024) shows limited
spatial/semantic understanding for unusual prompts (i.e., hard to see in our normal life). While RAFT
(Dong et al., 2023) and ReFT (Huguet et al., 2024) without W2 regularization achieve high rewards
(e.g., successful cat placement), they exhibit clear signs of policy collapse, generating nearly identical
images with limited diversity. Our method without W2 regularization (Ours no W2) similarly suffers
from policy collapse (also see Figure 2), aligning with our theoretical prediction of the convergent
behavior in Lemma 1. In contrast, methods incorporating W2 regularization (RAFT+W2, ReFT+W2,
and Ours) maintain generation diversity while successfully positioning cats in the sky. Our approach
is particularly good at balancing reward optimization with diversity preservation, demonstrating the
effectiveness of our theoretically-derived W2 regularization bound (Theorem 3) in preventing policy
collapse while maintaining high-quality generations. The results empirically validate our theoretical
analysis of the reward-diversity trade-off in Theorem 5.

Policy Collapse Phenomenon However, in Figure 8, all methods without W2 regularization (RAFT,
ReFT, and Ours without W2) exhibit clear signs of policy collapse (Shumailov et al., 2024; Black
et al., 2024), generating nearly identical images despite achieving high rewards. This empirically
validates our theoretical prediction in Lemma 1 that unregularized online reward-weighted methods
naturally converge to a delta distribution at the maximum reward point, sacrificing diversity for
reward maximization.

Effectiveness of W2 Regularization Based on Figure 8 and Table 1, the introduction of W2
regularization (RAFT+W2, ReFT+W2, and our ORW-CFM-W2 method, α = 1) demonstrates
the effectiveness of our theoretically-derived tractable W2 distance bound from Theorem 3. This
regularization successfully prevents policy collapse while maintaining performance across all methods,
enabling controlled divergence from the reference model. The consistent improvement in output
diversity across different baseline methods validates our theoretical framework for controlling model
behavior through W2 regularization in flow matching architectures.

Optimal Balance Through ORW-CFM-W2 In Figure 8, our ORW-CFM-W2 method achieves
the best balance between reward optimization and diversity preservation - generated images show
consistent high-level semantic understanding of "cat in sky" while maintaining natural variations in
cat appearances, sky conditions, and overall compositions. While both RAFT+W2 and ReFT+W2
show diversity improvements from W2 regularization, their outputs still exhibit less variation in style
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and composition compared to ORW-CFM-W2. This improved performance aligns with our theoretical
analysis in Theorem 5 regarding the reward-diversity trade-off in the exponential weighting case.
The results also validate our optimization framework’s ability to achieve stable convergence without
collapsing into extreme exploitation.

Theoretical and Practical Validation These experimental results in Figure 8 provide strong
empirical validation of both key components of our approach. First, they demonstrate the ORW-
CFM method’s ability to achieve optimal policy convergence, though with potential collapse if
unregularized (as predicted by our theoretical analysis of online reward-weighted learning). Second,
they show how W2 regularization effectively prevents this collapse while preserving output quality
and diversity - a capability derived from our tractable W2 distance bound for flow matching. The
comprehensive improvement across different baseline methods (Dong et al., 2023; Huguet et al.,
2024) illustrates how our theoretical framework enables stable fine-tuning that maximizes rewards
while maintaining the rich generative capabilities of flow-based models (Lipman et al., 2023; Esser
et al., 2024).

Table 1: Performance and Diversity comparison of different fine-tuning methods on text-image
alignment using SD3. ’CLIP Score’ measures alignment with the text prompt using the CLIP model’s
similarity score (higher is better). ’Diversity Score’ quantifies the diversity of generated images
by measuring the mean pairwise distance between CLIP embeddings of generated samples (higher
indicates more diverse outputs). We use Euclidean distance to calculate the distance between any
two embeddings when calculating mean pairwise distance. Our method achieves the highest CLIP
score while maintaining strong diversity comparable to the base SD3 model. The addition of W2
regularization (’+W2’ variants) helps preserve generation diversity across all methods, with our full
approach (Ours) achieving the best balance between alignment (35.46) and diversity (4.21) compared
to baseline methods RAFT and ReFT. All scores are calculated by averaging across 64 samples.

Method CLIP Score ↑ Diversity Score ↑
Effectiveness of ORW-CFM without W2

SD3 (Baseline) 28.69 4.78
ORW-CFM (Ours w/o W2) 33.63 3.47
RAFT 29.30 2.05
ReFT 29.32 3.26

Effectiveness of W2 regularization
ORW-CFM-W2 (Ours) 35.46 4.21
RAFT + W2 30.88 2.81
ReFT + W2 32.03 3.63

A.3 ADAPTABILITY ACROSS DIFFERENT REWARD MODELS

In addition to the three reward functions in Section 5, to demonstrate the broad applicability and
reward-agnostic nature/property of our methods, we further evaluate our performance using three
different text-image alignment reward models: HPS-V2 (Wu et al., 2023), Pick Score (Kirstain et al.,
2023), and Alpha Clip (Sun et al., 2024). Using the challenging Spatial prompt “a train on top of a
surfboard,” we examine how our method adapts to different reward signals/models while maintaining
generation quality and semantics coherence.

In general, the results shown in Figure 9 demonstrate several key strengths of our approach:

Reward Adaptability: Our method shows consistent performance improvement across all three
reward models, successfully positioning trains on surfboards while maintaining realistic scene com-
position. This empirically validates our theoretical framework’s ability to optimize arbitrary reward
functions without requiring reward-specific modifications (Dong et al., 2023) or filtered datasets
(Rafailov et al., 2023). The high-quality generations across different reward models demonstrate
that our W2 regularization (Theorem 3) provides effective stabilization regardless of the underlying
reward mechanism (It is worth mentioning that appropriately increasing the α value can be used to
adjust the distance from the reference model, which is also demonstrated in Figure 4).
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Figure 9: Comparison of fine-tuning methods for the prompt “a train on top of a surfboard”, demon-
strating our method’s adaptability across different reward models (HPS-V2 Wu et al. (2023), Pick
Score Kirstain et al. (2023), and Alpha Clip scores Sun et al. (2024)). The results validate our
theoretical analysis that ORW-CFM-W2 can effectively optimize diverse reward functions while
maintaining generation quality through W2 regularization. 1) Top row: Using HPS-V2 reward shows
our method successfully aligns locomotive placement while preserving realistic wave interactions.
2) Middle row: Pick Score reward further demonstrates robust spatial understanding across varying
train models and surfboard configurations. 3) Bottom row: Alpha Clip reward showcases consis-
tent performance even with different text-image alignment rewards, validating the reward-agnostic
nature/property of our approach. This comprehensive evaluation across multiple reward models
empirically confirms our theoretical prediction that the W2 regularization (Theorem 3) enables stable
fine-tuning regardless of the underlying reward mechanism. The consistent high-quality generations
across all three reward models demonstrate the practical advantages of our reward-weighted flow
matching framework, which achieves strong performance without requiring filtered datasets (Rafailov
et al., 2023), likelihood calculations (Black et al., 2024), reward-specific optimizations (Dong et al.,
2023; Huguet et al., 2024), or differentiable rewards (Domingo-Enrich et al., 2024). These results
particularly highlight how our method’s reward-diversity trade-off (Theorem 5) generalizes effectively
across different reward models while preventing policy collapse (Lemma 1).

Spatial Understanding: Across all reward models, our method demonstrates robust spatial under-
standing:

1. HPS-V2: Achieves precise locomotive placement while capturing realistic wave interac-
tions.

2. Pick Score: Maintains consistent spatial relationships across varying train models and
surfboard configurations.

3. Alpha Clip: Shows stable performance even with a different similarity metric framework.

Diversity Preservation: Consistent with our theoretical analysis in Theorem 5, the generated images
maintain natural variations in train appearances, surfboard designs, and ocean conditions while
adhering to the spatial constraints. This demonstrates how our W2 regularization effectively prevents
policy collapse (Lemma 1) regardless of the reward models used.

Stable Fine-tuning: The consistent quality/alignment improvement across reward models validates
our theoretical contribution regarding the convergence behavior of ORW-CFM-W2 (See App. C.6).
As predicted by our analysis of the exponential weighting case (Theorem 5), the method achieves
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stable learning without collapsing into extreme exploitation, even when faced with different reward
scales and architectures. It is also worth mentioning that the reward model is very important for the
success of the fine-tuning task (Dong et al., 2023; Black et al., 2024; Rafailov et al., 2023; Xu et al.,
2023), so how to select the best reward model still needs further exploration.

All in all, the successful adaptation across multiple reward models showcases how our online reward-
weighting mechanism and W2 regularization work together to enable robust, stable fine-tuning
without requiring reward-specific optimizations. This generality makes our method particularly
valuable for real-world applications where different reward models might be needed for different
tasks or domains (Black et al., 2024; Shumailov et al., 2024).

Furthermore, these results address a key challenge in flow matching fine-tuning: the ability to
optimize diverse reward objectives without compromising generation quality or diversity while
training on self-generated data. Our method’s consistent performance improvement across reward
models demonstrates that the reward-distance trade-off formulation (See Theorem 5) provides a
easy-to-use and theoretically-grounded approach to balancing task-specific optimization with output
diversity, regardless of how the reward is computed.

A.4 COMPOSITIONAL AND COMPLEX SEMANTIC UNDERSTANDING

Figure 10: Additional evaluation of ORW-CFM-W2’s semantic understanding and compositional
generation capabilities on complex structured prompts from DrawBench (Saharia et al., 2022) used
in DPOK (Fan et al., 2023). Each column demonstrates our method’s ability to handle multi-faceted
requirements including spatial relationships, color specifications (red, green), and detailed object
attributes. The figure compares baseline SD3 (Esser et al., 2024) samples with our ORW-CFM-W2
results across three challenging compositional prompts: stacked colored cubes, stacked colored
plates, and a customized panda emoji. Our method shows consistently better semantic alignment
while maintaining generation diversity, validating our theoretical framework’s ability to prevent mode
collapse (Shumailov et al., 2024) through W2 regularization.

In the fourth experiments of fine-tuning SD3 models (Esser et al., 2024), to further validate our
method’s capability in handling complex semantic relationships and demonstrate the practical benefits
of our theoretical framework, we evaluate ORW-CFM-W2 on a set of challenging compositional
prompts that test multiple aspects of semantic understanding. These experiments not only demonstrate
our method’s effectiveness on large-scale flow matching models like SD3, but also empirically validate
our theoretical predictions about controlled optimization and diversity preservation. We use CLIP
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score as our text-image alignment reward model (Radford et al., 2021a; Xu et al., 2023; Dong et al.,
2023).

Compositional Attribute Control: As shown in Figure 10, our method successfully handles prompts
with multiple interleaved requirements spanning spatial relationships, color specifications, and
object attributes. In the cube-stacking example, the model demonstrates precise control over
both spatial ("on top", "in the middle", "on the bottom") and color attributes (two red cubes on
a green cube), while maintaining physically plausible stacking arrangements. This validates that
our ORW-CFM-W2 can effectively achieve fine-grained fine-tuning without falling into degenerate
solutions.

Spatial Color Relationships: The stacked plates example particularly highlights our method’s ability
to jointly optimize multiple constraints - positional relationships (top, middle, bottom) and color
attributes (blue plates on top/middle, green plate on bottom). The consistent high-quality results
validate our theoretical prediction that our methods enables stable fine-tuning even when dealing with
complex, spatially-dependent color constraints.

Multi-attribute Character Specification: The panda emoji example demonstrates fine-grained con-
trol over multiple clothing attributes (red hat, green gloves, red shirt, green pants) while maintaining
the core semantic concept and cartoon-style consistency. This success in handling detailed attribute
specifications without semantic drift empirically supports our analysis of the reward-diversity trade-off
(Theorem 4), showing how our method balances attribute-level precision with overall coherence.

In general, across all test cases, our method achieves notably better semantic alignment compared to
the baseline SD3 samples while maintaining image quality and stylistic diversity. This improvement
is particularly evident in cases requiring precise attribute combinations or spatial relationships, where
baseline samples often exhibit attribute mixing or spatial inconsistencies. The results demonstrate that
our theoretically-grounded approach effectively addresses the policy collapse problem (Lemma 1)
through W2 regularization, enabling precise semantic control without sacrificing generation diversity.
These results offer strong empirical validation of our theoretical framework. The successful handling
of complex compositional prompts demonstrates that our online reward-weighting mechanism and W2
regularization work together to enable robust, stable fine-tuning of large-scale flow matching models.
This generality makes our method particularly valuable for real-world applications requiring precise
semantic control and attribute specification while maintaining natural variations in the generated
outputs. All in all, the consistent performance across diverse prompt types demonstrates our ability
to optimize multiple semantic objectives without compromising generation quality or diversity.
Our method’s success in handling complex compositional prompts (Saharia et al., 2022; Fan et al.,
2023) while maintaining coherent generations provides strong empirical support for our theoretical
contributions while demonstrating the practical utility of our approach in real-world applications.
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B BACKGROUND

B.1 REINFORCEMENT LEARNING

B.1.1 RL FORMULATION

In RL (Sutton & Barto, 1998), an agent interacts with an environment by taking actions a ∈ A in
states s ∈ S , aiming to maximize cumulative rewards over time. The agent’s behavior is governed by
a policy π(a | s), which represents the probability of taking action a given state s. The main goal of
RL is to optimize the policy to maximize the expected return:

J(π) = Eπ

[
T∑

t=0

γtr (st, at)

]
(13)

where γ ∈ [0, 1] is the discount factor that prioritizes early rewards, T is the time horizon (which
could be infinite), r (st, at) is the reward at time step t.

The core problem in RL is how to learn the optimal policy π∗(a | s) that maximizes the expected
return J(π). A special case of RL, where there is no states but only actions for each agent, is known
as the multi-armed bandit problem (Sutton & Barto, 1998).

B.1.2 REWARD-WEIGHTED REGRESSION

In Reward-Weighted Regression (RWR), the policy update is done by re-weighting the probability of
actions based on the rewards they produce. The updated policy is given by:

πnew (a | s) ∝ πold (a | s) · exp(τ ∗ r(s, a)) (14)

where τ is a temperature parameter controlling the trade-off between exploration and exploitation.

B.1.3 ADVANTAGE-WEIGHTED REGRESSION

Advantage-Weighted Regression (AWR) refines RWR by weighting actions based on their advantage,
which measures how much better an action is compared to the expected value of other actions:

πnew (a | s) ∝ πold (a | s) · exp(τA(s, a)) (15)

where A(s, a) = r(s, a)− V (s) is the advantage function.

In practice, we can also call the data-collection policy, the behavior policy µ (Sutton & Barto, 1998;
Schulman et al., 2017; Peng et al., 2019), and the optimal target policy π⋆.

Then, the update rules of AWR becomes:

πnew (a | s) ∝ µ(a | s) · exp(τA(s, a)) (16)

And the optimal policy is therefore given by (Peng et al., 2019),

π∗(a | s) = 1

Z(s)
µ(a | s) exp (τ ∗Aµ (st,at)) (17)

where Z(s) is the partition function that normalizes the conditional action distribution.

B.2 FLOW MATCHING

B.2.1 FLOW MATCHING FORMULATION

Flow Matching (Lipman et al., 2023) is a methodology for training continuous normalizing flows,
which are generative models that transform a simple base distribution into a complex target distribution
through a continuous, invertible mapping. The core idea of FM is to define a continuous flow that
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gradually transports samples from an initial distribution p0(x) (usually a simple distribution like a
standard Gaussian) to a target distribution p1(x) (the data distribution we aim to model).

This transformation is governed by an ordinary differential equation:

dx

dt
= ut(x) (18)

where x ∈ Rd is a data point in d-dimensional space, t ∈ [0, 1] is the time parameter, and ut(x) is a
time-dependent vector field that dictates the dynamics of the flow at each point in time and space.

The solution to this ODE defines a flow ϕt(x) that maps a point x at time t to another point at
time t+ δt. The transformation over the entire time interval [0, 1] effectively transports the entire
distribution p0(x) to p1(x).

The evolution of the probability density pt(x) over time is described by the continuity equation:

∂pt(x)

∂t
+∇ · (pt(x)ut(x)) = 0 (19)

where∇. denotes the divergence operator. The goal in FM is to learn the vector field ut(x) such that
the flow induced by ut(x) transforms p0(x) into p1(x) as t progresses from 0 to 1.

B.2.2 CONDITIONAL FLOW MATCHING

Conditional Flow Matching (Lipman et al., 2023) is an extension of FM that introduces conditioning
to simplify the learning process. Instead of modeling the entire distribution transformation directly,
CFM focuses on modeling the conditional dynamics of the flow given a target sample x1 from the
data distribution.

In CFM, we consider pairs (x0, x1), where x0 ∼ p0(x) and x1 ∼ p1(x). The conditional flow
transports x0 to x1 over time t ∈ [0, 1] using a vector field ut (x | x1) that depends on x1 :

dx

dt
= ut (x | x1) (20)

The objective in CFM is to learn a parametric model vθ(t, x) that approximates ut (x | x1). The loss
function used to train the model is:

LCFM(θ) = Et,x1,x

[
∥vθ(t, x)− ut (x | x1)∥2

]
(21)

where the expectation is taken over t ∼ U(0, 1), x1 ∼ p1(x), and x ∼ pt (x | x1), the conditional
distribution at time t given x1.

By conditioning on x1, CFM reduces the complexity of the learning problem, as the model only needs
to learn how to transform x0 to x1 for given pairs, rather than modeling the entire joint distribution.

B.2.3 OT-CFM

Our baseline code is built upon torchcfm (Tong et al., 2024a), where we use OT-CFM loss to learn
flow matching models (i.e., OT-paths). Optimal Transport theory provides a framework for finding the
most efficient way to transport one probability distribution to another (Tong et al., 2024a). OT-CFM
integrates optimal transport into the conditional flow matching framework to define vector fields
based on optimal transport maps.

In OT-CFM (Tong et al., 2024a), the vector field ut (x | x1) is derived from the optimal transport
plan that minimizes the cost of transporting p0(x) to p1(x). The cost is typically defined in terms of
the expected squared Euclidean distance between transported points.

By using optimal transport, OT-CFM ensures that the flow from x0 to x1 follows the most efficient
path, which can improve the convergence and quality of the generative model. The OT-CFM loss
function remains similar to the CFM loss but incorporates the optimal transport-based vector field:
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LOT−CFM(θ) = Et,x1,x

[∥∥vθ(t, x)− uOT
t (x | x1)

∥∥2] (22)

where uOT
t (x | x1) represents the optimal transport vector field.

B.2.4 LIKELIHOOD CALCULATION

As a special case of CNF, flow matching models share the benefit of exact likelihood calculation.
Specifically, the learned vector field induces a probability path induced by the pushforward:

pt := (ψt)∗p0 (23)

where p0 is the initial noise distribution and ψt(x) := xt is the flow governed by the learned vector
field and the flow ODE as dxt

dt = vt(xt). The continuity equation in equation 19 allows us to calculate
such change-of-probability term with the estimation of the model divergence as (Lipman et al., 2023):

log p1(x1) = log p0(x0) +

∫ 0

1

div(vt)(xt)dt (24)

The trajectory is generated reverse through time from t = 1 (arbitrary data) to t = 0 via the learned
vector field. Direct calculation of the model divergence div(vt) is prohibitively expensive. Instead,
Hutchinson’s trace estimator is used to efficiently approximate the model divergence as (Hutchinson,
1989):

div(vt)(x) = Eε∼N (0,I)[ε
⊤∇vt(x)ε] (25)

In contrast to diffusion models that rely on variational bounds that can be calculated in closed
form as the summation of KL divergence (Ho et al., 2020), the likelihood for flow-based models
requires expensive simulation and the calculation of vector-Jacobian product to estimate the
model divergence. Therefore, the likelihood-based RL formulation for diffusion models in Black
et al. (2024); Schulman et al. (2017); Rafailov et al. (2023); Fan et al. (2023) is non-trivial and
computationally expensive for flow models.
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C PROOFS

C.1 INDUCED DATA DISTRIBUTION

In practice, in generative model, we are normally very interested in the induced data distribution
pnew(x1) after learning under a design loss function L. In order to facilitate the subsequent derivation,
in this section, we first derive a general Theorem of Induced Data Distribution.
Theorem 6 (Induced Data Distribution). Given the loss function:

Ltotal (θ) = Ex1∼q(x1)

[
L̃ (x1)

]
(26)

where L̃ (x1) is any per-sample loss function, the induced data distribution over x1 is:

pnew (x1) ∝ q (x1) exp
(
−γL̃ (x1)

)
(27)

with γ > 0 being a positive constant.

Proof of Theorem 6, from RL Perspective. In fact, most previous RLHF (Ziegler et al., 2019; Stien-
non et al., 2020; Ouyang et al., 2022b) and RL works (Peng et al., 2019) have found that assume a
reward model r(x) that captures human preferences, with the goal of modifying the base generative
model q(x) such that it generates the following tilted distribution:

pnew(x1) = p∗(x1) ∝ q(x1) exp(τ ∗ r(x1)) (28)

just set the reward model as the negative of per-sample loss L̃ (x1), namely:

r(x1) = −L̃ (x1) (29)

and set τ = γ, which is a constant, and we can obtain:

pnew (x1) = p∗ (x1) ∝ q (x1) exp
(
−γL̃ (x1)

)
(30)

Then, the proof concludes.

Proof of Theorem 6, from Energy Function Perspective. In standard EBMs, the probability density
over x1 is defined using an energy function E (x1) :

pEBM (x1) =
1

Z
exp (−βE (x1)) (31)

where β > 0 is the inverse temperature, and Z is the partition function ensuring normalization:

Z =

∫
exp (−βE (x1)) dx1 (32)

This formulation assumes a uniform base measure over x1.

We consider the per-sample loss L̃ (x1) with the energy function E (x1), and set β = γ. Therefore:

pnew (x1) =
1

Z
exp

(
−γL̃ (x1)

)
(33)

When the data distribution q (x1) is not uniform, or when we have prior knowledge about x1 like
q(x1), it is appropriate to include q (x1) in the model (LeCun et al., 2006). This leads to a modified
probability density:
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pnew (x1) =
1

Z
q (x1) exp

(
−γL̃ (x1)

)
(34)

Here, q (x1) acts as a base measure or prior distribution, and L̃ (x1) corresponds to the energy function
E (x1). The inclusion of q (x1) is necessary to accurately represent the underlying distribution of the
data when it is not uniform.

Remark. The total loss function is:

Ltotal (θ) =

∫
q (x1) L̃ (x1) dx1 (35)

Minimizing Ltotal (θ) with respect to θ corresponds to adjusting the model parameters to reduce the
expected loss over the data distribution q (x1).

We can interpret this minimization as seeking a distribution pnew (x1) that places higher probability
on samples with lower L̃ (x1). This aligns with the principle of maximum likelihood estimation in
EBMs, where we aim to maximize the likelihood of observed data under the model.

Then, the proof concludes.

Proof of Theorem 6, from Bayesian Inference Perspective. In Bayesian inference, the posterior dis-
tribution pnew (x1 | D) over a latent variable x1 given data D is proportional to the product of the
prior q (x1) and the likelihood p (D | x1) :

pnew (x1 | D) =
1

Z
q (x1) p (D | x1) (36)

where Z is the normalization constant:

Z =

∫
q (x1) p (D | x1) dx1 (37)

In statistical modeling and machine learning, the loss function L̃ (x1) quantifies the discrepancy
between the model’s predictions and the observed data. It is common to relate the loss function to the
likelihood function through the negative log-likelihood:

L̃ (x1) = −
1

γ
log p (D | x1) (38)

Rearranging this equation gives:

p (D | x1) = exp
(
−γL̃ (x1)

)
(39)

The posterior distribution becomes:

pnew (x1) =
1

Z
q (x1) exp

(
−γL̃ (x1)

)
(40)

where:

Z =

∫
q (x1) exp

(
−γL̃ (x1)

)
dx1 (41)

which ensures that pnew (x1) integrates to one.

Then, the proof concludes.
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Corollary 2 (Limiting Behavior of Well Learned Model). As L̃ (x1) → 0, the exponential term
approaches 1 :

lim
L̃(x1)→0

exp
(
−γL̃ (x1)

)
= 1 (42)

Thus, pnew (x1) ∝ q (x1), meaning the induced distribution is the same as the data sampling
distribution q(x1).

Corollary 3 (Weighted Prior Distribution). Considering a weighed prior sampling distribution
peff (x1) = w(x1)q(x1), given the loss function:

Ltotal (θ) = Ex1∼peff (x1)

[
L̃ (x1)

]
(43)

where L̃ (x1) is any per-sample loss function, the induced data distribution over x1 is:

pnew (x1) ∝ peff (x1) exp
(
−γL̃ (x1)

)
∝ w(x1)q (x1) exp

(
−γL̃ (x1)

) (44)

with γ > 0 being a positive constant.

Proof of Corollary 3. Substituting q(x1) = peff (x1) into the Theorem 6, we can have the induced
data distribution:

pnew (x1) ∝ peff (x1) exp
(
−γL̃ (x1)

)
∝ w(x1)q (x1) exp

(
−γL̃ (x1)

) (45)

then, the proof concludes.

Corollary 4 (Constant Loss). If L̃ (x1) = c for all x1, then:

pnew (x1) ∝ q (x1) exp(−γc) = q (x1)× constant. (46)

Thus, pnew (x1) is proportional to q (x1), and the induced distribution remains unchanged.
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C.2 REWARD WEIGHTED CONDITIONAL FLOW MATCHING

We start from a conditional flow matching setting, where a model parameterized by θ defines a vector
field vθ(t, x) that transports samples from a base distribution to a target distribution over time t
∈ [0, 1]. The standard CFM loss function is as follows:

LCFM(θ) = Et∼U(0,1),q(x1),pt(x|x1) ∥vθ(t, x)− ut (x | x1)∥
2
, (47)

which aims to align vθ(t, x) with the true conditional vector field ut(x|x1) by minimizing the
expected squared error over the data distribution q(x1).

In practical applications, it is often desirable to focus the model’s learning capacity on specific regions
of the data space. This can be achieved by incorporating a weighting function w (x1) into the loss
function, effectively reweighting the data distribution. However, the theoretical implications of this
modification on the learned distribution have not been fully studied.

In this part, we rigorously analyze the impact of using a weighted regression loss in CFM training.
We prove that incorporating a weighting function into the CFM loss leads the model to learn a new
distribution over x1, given by pnew (x1) =

w(x1)q(x1)
Z , where q (x1) is the original data distribution

and Z is a normalization constant. Our analysis provides theoretical support for the use of weighting
functions to control the focus of generative models, with implications for target data generation,
RLHF (Ouyang et al., 2022a) and RL fine-tuning (Black et al., 2024; Rafailov et al., 2023).

Let X ⊆ Rd denote the data space, and let q (x1) be the probability density function (pdf) of the
random variable x1 ∈ X . We consider a continuous-time flow over t ∈ [0, 1], where t is sampled
from the uniform distribution U [0, 1]. The conditional pdf of x at time t given x1 is denoted by
pt (x | x1).
The true conditional vector field is ut (x | x1), and the model’s vector field is vt(x; θ), where θ
represents the model parameters. The goal is to learn vt(x; θ) such that it approximates ut(x | x1)
We introduce a weighting function w : X → [0,∞), which is measurable and integrable with respect
to q (x1).

Then, we can have the following Theorem (For ease of reading, we rewrite the Theorem 1 to be
proved in this section as follows):
Theorem. Let w : X → [0,∞) be a measurable weighting function such that 0 < Z =∫
X w (x1) q (x1) dx1 <∞. Define the reward weighted CFM loss function:

LRW−CFM(θ) = Et∼U [0,1],x1∼q(x1),x∼pt(x|x1)

[
w (x1) ∥vt(x; θ)− ut (x | x1)∥2

]
(48)

where w (x1) is a weighting function, q (x1) is the original data distribution, pt (x | x1) is the
conditional distribution at time t, vt(x; θ) is the model’s vector field, and ut (x | x1) is the true vector
field conditioned on x1. Then, training the model using this weighted loss function leads the model to
learn a new data distribution:

pnew (x1) =
w (x1) q (x1)

Z
(49)

where Z =
∫
w (x1) q (x1) dx1 is the normalization constant.

Proof of Theorem 1. We first aim to show that incorporating the weighting function w (x1) into the
loss function effectively changes the distribution over x1 from q (x1) to pnew (x1).

Lemma 2. The weighting function modifies the data distribution over x1 from q(x1) to:

pnew (x1) =
w (x1) q (x1)

Z
(50)

Proof of Lemma 2. The weighted loss function can be explicitly written as:

LRW−CFM(θ) =

∫ 1

0

∫
X
w (x1) q (x1)

∫
X
∥vt(x; θ)− ut (x | x1)∥2 pt (x | x1) dxdx1dt (51)
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Then, we can define the reweighted distribution pnew (x1) as:

pnew (x1) =
w (x1) q (x1)

Z
, where Z =

∫
X
w (x1) q (x1) dx1 (52)

Since w (x1) ≥ 0 and Z <∞, pnew (x1) is a valid pdf over X .

Substituting pnew (x1) into the loss function, we have:

LRW−CFM(θ) = Z

∫ 1

0

∫
X
pnew (x1)

∫
X
∥vt(x; θ)− ut (x | x1)∥2 pt (x | x1) dxdx1dt (53)

This can be expressed as an expectation:

LRW−CFM(θ) = ZEt∼U [0,1],x1∼pnew(x1),x∼pt(x|x1)

[
∥vt(x; θ)− ut (x | x1)∥2

]
(54)

The gradient of LRW−CFM(θ) is:

∇θLRW−CFM(θ) = ZEt∼U [0,1],x1∼pnew(x1),x∼pt(x|x1)

[
∇θ ∥vt(x; θ)− ut (x | x1)∥2

]
(55)

Since Z is constant with respect to θ, it does not affect the optimization process. Therefore, minimiz-
ing LRW−CFM(θ) is equivalent to minimizing the expected loss under the distribution pnew (x1)

Remark. According to Corollary 3, set peff (x1) =
w(x1)q(x1)

Z , we have:

pnew (x1) ∝ peff (x1) exp
(
−γL̃ (x1)

)
∝ w (x1) q (x1) exp

(
−γL̃ (x1)

) (56)

When the model fits the data well (i.e., attain convergence), and L̃ (x1) → 0, then according to
Corollary 2, we have:

pnew (x1) ∝ w (x1) q (x1) exp
(
−γL̃ (x1)

)
∝ w (x1) q (x1)

(57)

Remark. During optimization, the model minimizes the expected squared difference between the
model’s vector field and the true vector field, but crucially, this expectation is now taken with respect
to the reweighted distribution pnew(x1). As a result, the model prioritizes accurately modeling the
flow dynamics in regions of higher weight, effectively learning to generate data according to pnew(x1).

The proof concludes.

Based on Lemma 2, it’s obvious that Theorem 1 holds.

Based on equation 55, the reward weighted conditional flow matching loss in equation 48 actually
learn a weighted distribution pnew(x1):

pnew (x1) =
w (x1) q (x1)

Z
(58)

Remark (Normalization Constant Z ). Z is a finite normalization constant ensuring pnew (x1) is a
valid probability distribution (i.e., integrates to 1). In practice, during training, the normalization
constant can be ignored because it does not affect the optimization process since it is constant with
respect to θ.
Lemma 3 (Finite Normalization Constant Z). The normalization constant Z is finite if w (x1) is
integrable with respect to q (x1).
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Proof of Lemma 3. Since w (x1) is a weighting function and q (x1) is a probability density function,
the integral:

Z =

∫
X
w (x1) q (x1) dx1 (59)

is finite if w (x1) does not introduce singularities and is integrable over X .

Remark (Data Traversal). In fact, to optimize the reward weighted CFM loss in equation 48 requires
the agent to nearly traverse almost possible samples x1, which may also similar to the exploration
problem in RL, namely how to explore the data space X . Therefore, maintaining the ability to
continuously explore the data space is important for RL method (Ecoffet et al., 2021; Haarnoja et al.,
2018).
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C.3 ONLINE REWARD WEIGHTED CONDITIONAL FLOW MATCHING

In App. C.2 we have discussed offline version of Reward Weighted Conditional Flow Matching,
which is learned by optimizing the following loss:

LRW−CFM(θ) = Et∼U [0,1],x1∼q(x1),x∼pt(x|x1)

[
w (x1) ∥vt(x; θ)− ut (x | x1)∥2

]
, (60)

wherein q (x1) is the data distribution approximated by the training dataset or sampled from pre-
trained model, pt (x | x1) is the conditional pdf of x at time t given x1 (Tong et al., 2024a).

We consider a N epoch online fine-tuning scenario, where our vector field model vθft is initialized by a
pre-trained model vθref that can capture the origin data distribution q(x1), namely the data distribution
pref (x1) induced by pre-trained model vθref can meet pθref(x1) ≈ q(x1). At each epoch of training,
the agent will sample data from reweighted data distribution pθft(x1) induced by vθft , and use the
newly sampled data to train the model under the Reward Weighted CFM Loss, then the online reward
weighted CFM loss can be writen as:

LORW−CFM(θ) = Et∼U [0,1],x1∼pθft (x1),x∼pt(x|x1)

[
w (x1) ∥vt(x; θ)− ut (x | x1)∥2

]
, (61)

wherein pθft (x1) is the re-weighted data distribution given by fine-tuned vector fields vθft . Then, we
can have the following (For ease of reading, we rewrite the Theorem 2 as follows):
Theorem (Online Reward Weighted CFM). Let q (x1) be the initial data distribution, and w (x1) be
a non-negative weighting function integrable with respect to q (x1). Assume that at each epoch n, the
model vθ perfectly learns the distribution implied by the Online Reward-Weighted CFM loss. Then,
the data distribution after N epochs is given by:

qNθ (x1) =
w (x1)

N
q (x1)

ZN
(62)

where ZN =
∫
X w (x1)

N
q (x1) dx1 is the normalization constant ensuring qNθ (x1) is a valid

probability distribution.

Proof of Theorem 2. We can use induction to present the proof.

Example 1 (Base Case N = 1). We first consider the basic case, where N = 1, namely single epoch
of learning, which equals to offline RW-CFM. Then, The initial data distribution is q0θ (x1) = q (x1).

According to Theorem 1, after applying the online reward weighted CFM loss, we can obtain the new
distribution is:

q1θ (x1) =
w (x1) q (x1)

Z1
(63)

where Z1 =
∫
X w (x1) q (x1) dx1

Assume that after n− 1 epochs, the distribution is:

qn−1
θ (x1) =

w (x1)
n−1

q (x1)

Zn−1
(64)

with Zn−1 =
∫
X w (x1)

n−1
q (x1) dx1.

According to Theorem 1, at epoch n, the weighted loss leads to an effective distribution:

qnθ (x1) =
w (x1) q

n−1
θ (x1)

Zn
(65)

where Zn =
∫
X w (x1) q

n−1
θ (x1) dx1. Substituting qn−1

θ (x1) :
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qnθ (x1) =
w (x1)

(
w(x1)

n−1q(x1)
Zn−1

)
Zn

=
w (x1)

n
q (x1)

Zn−1Zn
(66)

Define Z̃n = Zn−1Zn, then:

qnθ (x1) =
w (x1)

n
q (x1)

Z̃n

(67)

By induction, Z̃n =
∏n

k=1 Zk, and we can write:

qnθ (x1) =
w (x1)

n
q (x1)∏n

k=1 Zk
(68)

Then, the proof concludes.

Corollary 5 (Normalization Constant of ORW-CFM). The normalization constant after N epochs is:

ZN =

∫
X
w (x1)

N
q (x1) dx1 (69)

Proof of Corollary 5. By induction on the normalization constants Zn and the fact that qnθ (x1) must
integrate to 1 , we have:

ZN =

N∏
k=1

Zk =

∫
X
w (x1)

N
q (x1) dx1 (70)

Remark (RL Perspective of ORW-CFM). From a RL perspective, this iterative reweighting process
can be interpreted as an analog to policy iteration:

• Policy Representation: The data distribution qnθ (x1) represents the policy at epoch n.

• Policy Improvement: The application of the weighting function w (x1) ∝ r(x1) corresponds
to evaluating and improving the policy based on the rewards.

• Value Estimation: The weighting function can be seen as the expected return or value
function guiding the policy update.

• Exploration Exploitation Trade-off: Similar to the exploration-exploitation trade-off, there
is a balance between focusing on high-reward regions and maintaining diversity.

This process also aligns with the concept of importance sampling in RL, where the probability of
selecting certain actions (data points) is adjusted based on their estimated value, and enhance the
high-rewarded probability area and reduce the low-rewarded probability area.
Corollary 6 (Convergence Behavior). According to 2, as N → ∞, the distribution qNθ (x1) may
become increasingly concentrated on the subset of X where w (x1) is maximized.
Corollary 7 (Mode Collapse Risk/Overoptimization). Overemphasis on high-reward regions can
lead to a lack of diversity in generated samples, similar to mode collapse in GANs (Goodfellow et al.,
2014) or overoptimization in fine-tuning diffusion models (Black et al., 2024).

In this paper, we introduce two methods to handle the Overoptimization and ease the mode collapse
risk in online RW-CFM algorithms. The first is to introduce a W2 distance bound between fine-
tuned model θft and reference model θref, which works similar to the KL bound in previous RL
(Schulman et al., 2017) and RLHF methods (Black et al., 2024; Rafailov et al., 2023). The second
is to incorporate a entropy regularization (i.e., w(x1) = exp(τ ∗ x1)) or smoothing the weighting
function (i.e., w(x1) = Softmax(τ ∗ x1)) can mitigate excessive concentration or extremely greedy
policy.
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Lemma 4 (Limiting Case). We now consider the limiting cases where N →∞:

If w (x1) > 0 for all x1 ∈ X and attains its maximum at x∗1, then as N → ∞, the distribution
qNθ (x1) converges to a Dirac delta function centered at x∗1 :

lim
N→∞

qNθ (x1) = δ (x1 − x∗1) (71)

Proof of Lemma 1. Given that w (x1) > 0 for all x1 ∈ X and attains its maximum at x∗1, we define:

ϵ (x1) =
w (x1)

w (x∗1)
(72)

which means, ϵ (x∗1) = 1 since w (x∗1) /w (x∗1) = 1, and 0 ≤ ϵ (x1) < 1 for x1 ̸= x∗1, since
w (x1) < w (x∗1).

Then, we can rewrite qNθ (x1) using ϵ(x1) as:

qNθ (x1) =
[w (x∗1)]

N
ϵ (x1)

N
q (x1)

ZN
(73)

Then for x1 ̸= x∗1, we can have: ϵ(x1)N → 0 as N → ∞ since ϵ(x1) < 1. Thus qNθ (x1) →
0,∀x1 ̸= x∗1.

And for x1 = x∗1, we can have ϵ(x∗1)
N = 1, and qNθ (x∗1) =

[w(x∗
1)]

Nq(x1)
ZN

.

And we can have the normalization constant as follows:

ZN =

∫
X
w (x1)

N
q (x1) dx1 = [w (x∗1)]

N
∫
X
ϵ (x1)

N
q (x1) dx1. (74)

Similarly, we can obtain ZN ≈ [w (x∗1)]
N
q (x∗1) as N →∞.

Then, we can have the limit behavior:

For x1 ̸= x∗1 :

qNθ (x1) =
[w (x∗1)]

N
ϵ (x1)

N
q (x1)

[w (x∗1)]
N
q (x∗1)

=
ϵ (x1)

N
q (x1)

q (x∗1)
→ 0. (75)

For x1 = x∗1 :

qNθ (x∗1) =
[w (x∗1)]

N
q (x∗1)

[w (x∗1)]
N
q (x∗1)

= 1 (76)

Then, we can have:
lim

N→∞
qNθ (x1) = δ (x1 − x∗1) . (77)

According to Lemma 1, iteratively utilize the ORW-CFM loss to fine-tune the flow matching model
without bounding the distance between reference model and fine-tuned model may lead us to a greedy
policy over x1, which may induce the overoptimization problem (Black et al., 2024). In this paper we
introduce W2 Distance into the ORW-CFM training to bound the distance between reference model
and fine-tuned model.
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C.4 WASSERSTEIN-2 DISTANCE FOR FLOW MATCHING

We consider two flow matching models parameterized by θ1 and θ2, inducing time-evolving data
distributions pθ1t (x) and pθ2t (x), respectively. The models define vector fields vθ1(t, x) and vθ2(t, x)
that transport an initial distribution p0(x) to final distributions pθ11 (x) and pθ21 (x) at time t = 1.

We aim to bound the Wasserstein-2 distance between pθ11 (x) and pθ21 (x) in terms of the difference
between vθ1 and vθ2 .

First, we can write down the Wasserstein-2 Distance as follows (For ease of reading, we rewrite the
Theorem 3 to be proved in this section as follows):
Definition C.1 (Wasserstein-2 Distance). Given two probability measures µ and ν on Rn, the squared
Wasserstein- 2 distance between µ and ν is defined as:

W 2
2 (µ, ν) = inf

γ∈Π(µ,ν)

∫
Rn×Rn

∥x− y∥2dγ(x, y) (78)

where Π(µ, ν) denotes the set of all couplings of µ and ν; that is, all joint distributions γ on Rn×Rn

with marginals µ and ν.
Theorem (W2 Bound for Flow Matching). Assume that vθ2(t, x) is Lipschitz continuous in x with
Lipschitz constant L. Then, the squared Wasserstein-2 distance between the distributions pθ11 and pθ21
induced by the flow matching models at time t = 1 satisfies:

W 2
2

(
pθ11 , p

θ2
1

)
≤ e2L

∫ 1

0

E
x∼p

θ1
s

[∥∥vθ1(s, x)− vθ2(s, x)∥∥2] ds (79)

Before providing the full proof of Theorem 3, we first want to prove the Differential Flow Discrepancy
Lemma:
Lemma 5 (Differential Flow Discrepancy Lemma). Let ϕθit (x0) be the flow map induced by vθi

starting from x0. The difference ∆t (x0) = ϕθ1t (x0)− ϕθ2t (x0) satisfies the differential inequality:

d

dt
∥∆t (x0)∥ ≤

∥∥∥vθ1 (t, ϕθ1t (x0)
)
− vθ2

(
t, ϕθ1t (x0)

)∥∥∥+ L ∥∆t (x0)∥ (80)

Proof of Lemma 5. Let ∆t (x0) = ϕθ1t (x0)− ϕθ2t (x0). Then:

d

dt
∆t (x0) = vθ1

(
t, ϕθ1t (x0)

)
− vθ2

(
t, ϕθ2t (x0)

)
(81)

Adding and subtracting vθ2
(
t, ϕθ1t (x0)

)
:

d

dt
∆t (x0) = vθ1

(
t, ϕθ1t (x0)

)
− vθ2

(
t, ϕθ1t (x0)

)
︸ ︷︷ ︸

δv(t)

+ vθ2
(
t, ϕθ1t (x0)

)
− vθ2

(
t, ϕθ2t (x0)

)
︸ ︷︷ ︸

δϕ(t)

. (82)

Assumption 1 (Lipschitz Continuity). Assume that vθ2(t, x) is Lipschitz continuous in x with
Lipschitz constant Lv : ∥∥vθ2(t, x)− vθ2(t, y)∥∥ ≤ Lv∥x− y∥ (83)

By the Lipschitz continuity of vθ2 :

∥δϕ(t)∥ ≤ L ∥∆t (x0)∥ (84)

Thus: ∥∥∥∥ ddt∆t (x0)

∥∥∥∥ ≤ ∥δv(t)∥+ L ∥∆t (x0)∥ (85)

35



Published as a conference paper at ICLR 2025

Then, the proof of Lemma 5 concludes.

Proof of Theorem 3. Using Lemma 5, define f(t) = ∥∆t (x0)∥. Then:

d

dt
f(t) ≤ ∥δv(t)∥+ Lf(t) (86)

Multiplying both sides by e−Lt :

d

dt

(
e−Ltf(t)

)
≤ e−Lt ∥δv(t)∥ (87)

Integrating from 0 to t :

e−Ltf(t)− f(0) ≤
∫ t

0

e−Ls ∥δv(s)∥ ds (88)

Assumption 2. Assume that the initial noise distribution x0 ∼ p(x0) are shared in two flow matching
models, as thus f(0) = ∥∆0 (x0)∥ = 0

Since f(0) = 0 :

f(t) ≤ eLt

∫ t

0

e−Ls ∥δv(s)∥ ds (89)

At t = 1 :

f(1) ≤ eL
∫ 1

0

e−Ls
∥∥vθ1 (s, ϕθ1s (x0)

)
− vθ2

(
s, ϕθ1s (x0)

)∥∥ ds (90)

Taking the expectation over x0 ∼ p0 and applying Jensen’s inequality:

Ex0

[
f(1)2

]
≤ e2L

(∫ 1

0

E
x∼p

θ1
s

[∥∥vθ1(s, x)− vθ2(s, x)∥∥2] ds) (91)

Lemma 6. Let ϕθit (x0) be the flow map induced by vθi starting from x0. The flow matching
models define vector fields vθ1(t, x) and vθ2(t, x) that transport an initial distribution p0(x) to final
distributions pθ11 (x) and pθ21 (x) at time t = 1. Let ∆t (x0) = ϕθ1t (x0) − ϕθ2t (x0) and f(t) =

∥∆t (x0)∥. Then, the squared Wasserstein-2 distance between the distributions pθ11 and pθ21 induced
by the flow matching models at time t = 1 satisfies:

W 2
2

(
pθ11 , p

θ2
1

)
≤ Ex0

[
f(1)2

]
(92)

According to Lemma 6, we have:

W 2
2

(
pθ11 , p

θ2
1

)
≤ Ex0

[
f(1)2

]
≤ e2L

∫ 1

0

E
x∼p

θ1
s

[∥∥vθ1(s, x)− vθ2(s, x)∥∥2] ds (93)

Then, the proof of Theorem 3 concludes.

Proof of Lemma 6. Recall the definition of the Wasserstein-2 distance:

W 2
2

(
pθ11 , p

θ2
1

)
= inf

γ∈Π
(
p
θ1
1 ,p

θ2
1

)
∫
Rn×Rn

∥x− y∥2dγ(x, y) (94)

We construct a specific coupling γ between pθ11 and pθ21 by mapping the same initial sample x0 ∼ p0
through both flow maps:

• xθ11 = ϕθ11 (x0).
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• xθ21 = ϕθ21 (x0).

This coupling γ is defined via the joint distribution of
(
xθ11 , x

θ2
1

)
.

By the definition of the Wasserstein-2 distance, for any coupling γ :

W 2
2

(
pθ11 , p

θ2
1

)
≤
∫
Rn×Rn

∥x− y∥2dγ(x, y) (95)

Using our constructed coupling:

∫
Rn×Rn

∥x− y∥2dγ(x, y) = Ex0

[∥∥∥ϕθ11 (x0)− ϕθ21 (x0)
∥∥∥2] = Ex0

[
f(1)2

]
(96)

Thus, we have:

W 2
2

(
pθ11 , p

θ2
1

)
≤ Ex0

[
f(1)2

]
(97)

Then, the Proof concludes.

Corollary 8 (Uniform Vector Field Deviation Bound). If there exists a constant ε > 0 such that for
all s ∈ [0, 1] :

E
x∼p

θ1
s

[∥∥vθ1(s, x)− vθ2(s, x)∥∥2] ≤ ε2 (98)

then the Wasserstein-2 distance between the induced distributions is bounded by:

W2

(
pθ11 , p

θ2
1

)
≤ εeL (99)

Proof of Corollary 8. Given the assumption in Corollary 8, from Theorem 3:

W 2
2

(
pθ11 , p

θ2
1

)
≤ e2L

∫ 1

0

ε2ds = ε2e2L (100)

Thus:

W2

(
pθ11 , p

θ2
1

)
≤ εeL (101)

Corollary 9 (W2 Bound for Flow Matching Fine-tuning). Considering we have two flow matching
models, the fine-tuned model vθft and the reference/pre-trained model vθref . According to Theorem
3, we can bound the Wasserstein-2 (W2) distance between the distributions pθft (x1) and pθref (x1)
induced by these two flow matching models:

Ex0

[
∥∆1 (x0)∥2

]
≤ e2Lv

∫ 1

0

Ex∼ps(x;θft)

[∥∥vθft(s, x)− vθref (s, x)∥∥2] ds (102)

Proof of Corollary 9. Set θ1 = θft and θ2 = θref, according to the Theorem 3, the proof concludes.

37



Published as a conference paper at ICLR 2025

Corollary 10 (Monte Carlo Sampling for W2 Bound in Flow Matching). However, the integral of
time t in Theorem 3 is normally intractable and hard to obtain. In practice, we can use Monte Carlo
sampling to approximate the integral:∫ 1

0

Ex∼ps(x;θ1)

[∥∥vθ1(s, x)− vθ2(s, x)∥∥2] ds
=Et∼U(0,1),x1∼q(x1;θ1),x∼pt(x|x1)

[∥∥vθ1(t, x)− vθ2(t, x)∥∥2]
According to Corollary 10, we can obtain the W2 bound RW-CFM loss as follows:

LRW−CFM−W2 = Et∼U(0,1),x1∼q(x1),x∼pt(x|x1)[w (x1) ∥vt(x; θ)− ut (x | x1)∥2

+ α ∗ ∥vθft(t, x)− vθref(t, x)∥
2
],

wherein θft = θ is our fine-tuned model, and θref is reference/pre-trained model, α is the trade-off
coefficient, indicates how close we want the final convergence point to be to the reference model.

Also, according to Corollary 10, we can obtain the W2 bound ORW-CFM loss as follows:

LORW−CFM−W2 = Et∼U(0,1),x1∼q(x1;θft),x∼pt(x|x1)[w (x1) ∥vt(x; θ)− ut (x | x1)∥2

+ α ∗ ∥vθft(t, x)− vθref(t, x)∥
2
],

wherein α is the trade-off coefficient, indicates how close we want the final convergence point to be
to the reference model (See the Divergence Controlled by α in 4).
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C.5 RW-CFM WITH W2 DISTANCE BOUND

In this section, we provide a detailed analysis of how the inclusion of a Wasserstein regularization
term in the Reward-Weighted Conditional Flow Matching (RW-CFM) loss affects the induced data
distribution pnew (x1). Specifically, we prove that the new distribution becomes proportional to
w (x1) q (x1) exp (−αD (x1)), where D (x1) is a divergence measure between the fine-tuned model
and the reference model.

Theorem 7 (Learned Distribution Induced by RW-CFM-W2 Loss). Let w : X → [0,∞) be a
measurable weighting function, q (x1) be the original data distribution, and θref be a fixed reference
model. Consider the loss function:

LRW-CFM-W2 (θ) = Et∼U [0,1],x1∼q(x1),x∼pt(x|x1)[w (x1) ∥vt(x; θ)− ut (x | x1)∥2

+α ∥vt(x; θ)− vt (x; θref )∥2]
(103)

where ut (x | x1) is the true vector field conditioned on x1, vt(x; θ) is the model’s vector field, and
α > 0 is the regularization coefficient. Then, minimizing LRW-CFM-W2 (θ) over θ induces a new data
distribution:

pnew (x1) ∝ w (x1) q (x1) exp (−βD (x1)) (104)

where D (x1) = Et,x∼pt(x|x1)

[∥∥vθ(t, x)− vθref (t, x)
∥∥2], β = γα, γ > 0 is a scaling constant.

Proof of Theorem 7. We can re-write the RW-CFM-W2 Loss as follows:

LRW-CFM-W2 (θ) = Et,x1,x

[
w (x1) ∥vt(x; θ)− ut (x | x1)∥2 + α

∥∥vθ(t, x)− vθref (t, x)
∥∥2] , (105)

where α controls the regularization strength.

Furthermore, we can write the loss function as an expectation over x1 :

Ltotal (θ) =

∫
q (x1) [w (x1)Lcfm (x1) + αLreg (x1)] dx1 (106)

where the first term gives Lcfm (x1) = Et,x∼pt(x|x1)

[
∥vt(x; θ)− ut (x | x1)∥2

]
, and the second

term gives Lreg (x1) = Et,x∼pt(x|x1)

[∥∥vθ(t, x)− vθref (t, x)∥∥2].
Assumption 3. Assuming that the expectation Lreg (x1) has an upper bound ε :

Lreg (x1) ≤ ε, ∀x1 (107)

Since we’re interested in how Lreg (x1) varies with x1, we can let D (x1) = Lreg (x1).

Then, our total loss is:

Ltotal (θ) =

∫
q (x1) [w (x1)Lcfm (x1) + αD (x1)] dx1 (108)

We consider the optimization over θ, which indirectly affects the distribution pnew (x1) that the model
learns.

Then, consider the model as implicitly assigning higher importance to values of x1 that minimize the
total loss per x1 :

L̃ (x1) = w (x1)Lcfm (x1) + αD (x1) (109)
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Remark (Probabilistic Perspective). In optimization, samples x1 with lower L̃ (x1) have a higher
impact on training. To make this explicit, consider a probabilistic model where the likelihood of x1 is
proportional to exp

(
−γL̃ (x1)

)
, where γ is a positive constant (Hinton, 2002).

Therefore, the induced distribution over x1 becomes (detailed proof can see App. C.1):

pnew (x1) ∝ q (x1) exp (−γ [w (x1)Lcfm (x1) + αD (x1)]) (110)

We can also induce the similar results from the perspective of energy function (LeCun et al., 2006).

Lemma 7 (Energy Function Perspective). The per-sample loss contribution L̃ (x1) can be interpreted
as an energy function E (x1), and the induced distribution follows a Boltzmann distribution (LeCun
et al., 2006):

pnew (x1) ∝ q (x1) exp (−E (x1))

∝ q (x1) exp (−γ [w (x1)Lcfm (x1) + αD (x1)])
(111)

Proof of Lemma 7. By interpreting the per-sample loss as an energy E (x1), we have:

E (x1) = L̃ (x1)

= w (x1)Lcfm (x1) + αD (x1)
(112)

The induced distribution is then:

pnew (x1) ∝ q (x1) exp (−E (x1))

∝ q (x1) exp (−γ [w (x1)Lcfm (x1) + αD (x1)])
(113)

This aligns with the Boltzmann distribution in statistical mechanics, where higher energy states
(higher loss) are less probable.

Besides, based on Theorem 6, we can have:

pnew (x1) ∝ q (x1) exp
(
−γ ∗ L̃ (x1)

)
∝ q (x1) exp (−γ [w (x1)Lcfm (x1) + αD (x1)])

(114)

Assumption 4. Assuming Lcfm (x1) is approximately constant or negligible compared to D (x1),
namely:

• When the model fits the data well, Lcfm (x1) is small. (i.e., w (x1) dominates)

• The term w (x1)Lcfm (x1) becomes proportional to w (x1).

Remark. Generally speaking, if we fine-tune from a well-learned pre-trained model, the model can
usually fit the data well, so Lcfm (x1) is rather small. In practice, w (x1) can generally dominates.

Thus, we can write:

pnew (x1) ∝ q (x1)w (x1) exp (−βD (x1)) (115)

where β = γα absorbs the constants. Then the proof concludes.
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Remark (Importance Sampling Perspective). We can also derive similar results from the perspective
of importance sampling. We start from the total loss function:

Ltotal (θ) =

∫
w (x1) q (x1)

[
Lcfm (x1) +

α

w (x1)
D (x1)

]
dx1

= Ex∼w(x1)q(x1)

[[
Lcfm (x1) +

α

w (x1)
D (x1)

]] (116)

We denote the reward weighted distribution as pw(x):

pw(x) = w (x1) q (x1) (117)

Then the loss function can be re-write as follows:

Ltotal (θ) = Ex∼pw(x)

[[
Lcfm (x1) +

α

w (x1)
D (x1)

]]
(118)

Then the induced data distribution pnew(x) becomes:

pnew (x1) ∝ pw (x1) exp

(
−γ
[
Lcfm (x1) +

α

w (x1)
D (x1)

])
(119)

Under Assumption 4, we can obtain:

pnew (x1) ∝ pw (x1) exp

(
− γ ∗ α
w (x1)

D (x1)

)
∝ pw (x1) exp

(
− β

w (x1)
D (x1)

)
∝ w(x1)q (x1) exp

(
− β

w (x1)
D (x1)

) (120)

In practice, we can assume that ∀x1, β ≫ w(x1), then β dominates, and we can obtain:

pnew (x1) ∝ w(x1)q (x1) exp (−βD (x1)) (121)

Also, we can set α = α0 ∗ w(x1), then:

exp

(
− β

w (x1)
D (x1)

)
= exp (−β0D (x1)) (122)

wherein β0 = α0 ∗ γ.

Corollary 11. As α→ 0, β → 0, the induced distribution pnew (x1) approaches w (x1) q (x1) /Z,
recovering the standard RW-CFM result.

Proof of Corollary 11. When α→ 0, β → 0, the exponential term exp (−βD (x1))→ 1, so:

pnew (x1)→
w (x1) q (x1)

Z
(123)

where Z is the normalization constant ensuring that pnew (x1) integrates to 1.

Corollary 12. As α→∞, β →∞, the induced distribution pnew (x1) concentrates on minimizing
D (x1), effectively aligning with the reference model’s distribution (See cases with increased α, such
as α = 10, in Fig. 4).

Proof of Corollary 12. When α → ∞, β → ∞, the exponential term exp (−βD (x1)) approaches
zero unlessD (x1) = 0. Therefore, pnew (x1) concentrates on the set of x1 where vt (x; θref ) matches
ut (x | x1). Namely, the fine-tuned model remains unchanged from the reference model.
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Remark. The theorem 7 demonstrates that incorporating the Wasserstein regularization term into the
RW-CFM loss results in an induced data distribution that not only depends on the reward weighting
w (x1) but also exponentially penalizes data points based on their divergence D (x1) from the
reference model (See Trade-off curve via traversing α Fig. 4). This provides a mechanism to control
the trade-off between fitting the reward weighted data and adhering to the behavior of a pre-trained
or reference model (i.e., reward-diversity trade-off).

The divergence D (x1) acts as a measure of how much the true dynamics ut (x | x1) differ from
the reference model’s dynamics vt (x; θref ) along trajectories starting from x1. By adjusting α, we
can control the extent to which the model prioritizes matching the reference model versus fitting the
reward-weighted data.
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C.6 ORW-CFM WITH W2 DISTANCE BOUND

Similar to Theorem 7, we can also derive the induced data distribution learned under the online
reward weighted CFM loss and W2 Distance Bound.

According to Theorem 3, We can directly introduce the W2 Distance Bound into ORW-CFM loss
equation 5:

LORW−CFM−W2 = Et∼U(0,1),x1∼q(x1;θft),x∼pt(x|x1)[w (x1) ∥vt(x; θft)− ut (x | x1)∥2

+ α ∗ ∥vθft(t, x)− vθref(t, x)∥
2
],

(124)

wherein α is a trade-off coefficient.

For ease of reading, we rewrite the Theorem 4 to be proved in this section as follows:

Theorem. Under the online reinforcement learning setup with ORW-CFM-W2 loss, the data distri-
bution after n epochs evolves according to:

qnθ (x1) ∝
[
w (x1) q

n−1
θ (x1) exp

(
−βDn−1 (x1)

)]
, (125)

where, Dn−1 (x1) = Et,x∼pt(x|x1)

[∥∥∥vθn−1

(t, x)− vθref (t, x)
∥∥∥2], β = γα, θn−1 denotes the model

parameters after epoch n− 1.

Proof of Theorem 4. Similar to the proof of 2, we also proceed by induction.

Case 3 (Base Case (n = 1)). At n = 1, q1θ (x1) is obtained by training on data sampled from q (x1).
From previous analysis, we have:

q1θ (x1) ∝ w (x1) q (x1) exp
(
−βD0 (x1)

)
(126)

whereD0 (x1) measures the discrepancy between the initial model (before training) and the reference
model.

Assume that at epoch n− 1, the data distribution is qn−1
θ (x1). During epoch n, the model is trained

using data sampled from qn−1
θ (x1). By applying ORW-CFM-W2 Loss, compared to RW-CFM-W2

Loss, the loss function remains the same, but the data distribution changes to qn−1
θ (x1).

The total loss associated with x1 at epoch n is:

L̃n (x1) = w (x1)L
n
cfm (x1) + αDn−1 (x1) (127)

where Ln
cfm (x1) is the data fitting loss of CFM at epoch n, and Dn−1 (x1) is the discrepancy from

the reference model using parameters θn−1.

Similarly, we can assume that the probability of x1 being selected for training at epoch n is propor-
tional to exp

(
−γL̃n (x1)

)
. Therefore:

qnθ (x1) ∝ qn−1
θ (x1) exp

(
−γL̃n (x1)

)
(128)

Substituting L̃n (x1) :

qnθ (x1) ∝ qn−1
θ (x1) exp

(
−γ
[
w (x1)L

n
cfm (x1) + αDn−1 (x1)

])
. (129)

Assuming Ln
cfm (x1) is approximately constant or negligible compared to αDn−1 (x1) (i.e., well

learned), we simplify:

qnθ (x1) ∝ w (x1) q
n−1
θ (x1) exp

(
−βDn−1 (x1)

)
(130)
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Then, the induction step completes. This concludes the proof.

Besides, we can also derive the proof via the Importance Sampling Perspective as equation 116. The
process is very similar to the offline cases. We just need to substitute L̃n (x1) into equation 116, take
out the weights w(x) to form w(x)qn−1

θ (x1) and reuse Theorem 6.

Corollary 13 (Recursive Formulation). The data distribution after N epochs training under
LORW−CFM−W2 is given by:

qNθ (x1) ∝ [w (x1)]
N
q (x1) exp

(
−β

N∑
n=1

Dn−1 (x1)

)
(131)

Proof of Corollary 13. By recursively applying Theorem 4, we have:

qNθ (x1) ∝ w (x1) q
N−1
θ (x1) exp

(
−βDN−1 (x1)

)
∝ w (x1)

(
w (x1) q

N−2
θ (x1) exp

(
−βDN−2 (x1)

))
exp

(
−βDN−1 (x1)

)
∝ [w (x1)]

N
q (x1) exp

(
−β

N∑
n=1

Dn−1 (x1)

) (132)

Corollary 14 (Convergence Behavior). If Dn (x1) decreases with each epoch and w (x1) is constant
(i.e., w (x1) = w ), then qNθ (x1) converges towards a distribution that places higher probability on
data points where the model aligns closely with the reference model (See τ = 0 cases in Fig. 2).

Proof of Corollary 14. As Dn (x1) decreases, the exponential term exp
(
−β
∑N

n=1D
n−1 (x1)

)
increases for those x1 where the model aligns better with the reference model. With w (x1) constant,
the weighting does not favor any specific x1, so the distribution qNθ (x1) is increasingly influenced
by the cumulative discrepancy term, leading to higher probabilities for data points where the model
matches the reference model.
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C.7 EXPONENTIAL WEIGHT FUNCTION

As we discussed, normally we can have w(x1) ∝ r(x1) and w(x1) ∝ F(r(x1)). In practice, we
normally have several form of the weighting function F to enable w(x1) > 0 (Peng et al., 2019;
Peters & Schaal, 2007; Black et al., 2024), which maps from reward function to weight. In this
section, based on the previous derivation, we focus on a special cases of fine-tuning flow matching
model with ORW-CFM-W2 loss, where w(x1) ∝ exp(τ ∗ r(x1)), wherein τ is the temperature
coefficient.

Then we can simply have the following Theorem (For ease of reading, we rewrite the Theorem 5 to
be proved in this section as follows):

Theorem. Given w (x1) = exp (τr (x1)), the induced data distribution after N epochs of training
under ORW-CFM-W2 Loss is:

qNθ (x1) ∝ exp

(
τNr (x1)− β

N∑
n=1

Dn−1 (x1)

)
q (x1) (133)

Proof of Theorem 5. According to Corollary 13, we can re-write the final induced data distribution
learned under ORW-CFM-W2 loss function as:

qNθ (x1) ∝ [w (x1)]
N
q (x1) exp

(
−β

N∑
n=1

Dn−1 (x1)

)
(134)

Let r (x1) be a reward function, and τ > 0 a temperature coefficient. The weighting function
becomes:

w (x1) = exp (τ ∗ r (x1)) (135)

Substituting into equation 134:

qNθ (x1) ∝ q (x1) exp

(
τNr (x1)− β

N∑
n=1

Dn−1 (x1)

)
(136)

Then, the proof concludes.

Corollary 15 (Limiting Behavior). If β
∑N

n=1D
n−1 (x1) grows proportionally with N , i.e.,

β
∑N

n=1D
n−1 (x1) = Nδ (x1), the induced data distribution becomes:

qNθ (x1) ∝ exp (N (τr (x1)− δ (x1))) q (x1) (137)

This suggests that the effective reward is adjusted by −δ (x1) due to the W2 distance bound.

Proof of Corollary 15. Given the proportional growth, we can write:

β

N∑
n=1

Dn−1 (x1) = Nδ (x1) (138)

Substituting into the expression for qNθ (x1) :

qNθ (x1) ∝ exp (Nτ ∗ r (x1)−Nδ (x1)) q (x1) = exp (N (τ ∗ r (x1)− δ (x1))) q (x1) (139)
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Corollary 16 (The Effect of W2 Discrepancy). The W2 distance bound Dn−1 (x1) serves as a
regularization term that penalizes the discrepancy between the current model vθ

n−1

and a reference
model vθref . This term affects the induced data distribution by effectively adjusting the reward:
r̃ (x1) = r (x1)− δ(x1)

τ .

The induced distribution then becomes:

qNθ (x1) ∝ exp (τNr̃ (x1)) q (x1) (140)

This adjustment means that the W2 distance bound reduces the attractiveness of certain samples
based on how much the model deviates from the reference model when conditioned on those samples
(See reward-distance reward-off in Figs. 4).

According to different hyper-parameter settings, we discuss the limiting behavior of the method of
the following cases:
Case 4 (Dominant Reward Term). If Dn−1 (x1) grows slowly with N or β is small, the reward term
dominates the regularization term, namely τ∗r (x1)≫ β

∑N
n=1D

n−1 (x1). The induced distribution
qNθ (x1) concentrates on the x1 maximizing r (x1), similar to the case without consideringDn−1 (x1)
(See τ = 10 in Fig. 2).
Case 5 (Dominant Regularization Term). If Dn−1 (x1) grows rapidly with N or β is large, the
regularization term dominates, namely β

∑N
n=1D

n−1 (x1)≫ τ ∗ r (x1). The induced distribution
is heavily penalized for deviations from the reference model, potentially leading to a distribution
similar to the initial distribution q (x1) (See α = 10 in Fig. 3).

Case 6 (Balanced Terms). When both terms are balanced, namely τ ∗ r (x1) ≈ β
∑N

n=1D
n−1 (x1),

the induced distribution reflects a trade-off between maximizing rewards and staying close to the
reference model. The model achieves a compromise, focusing on high-reward samples that do not
deviate significantly from the reference.
Lemma 8 (Growth Rate of Dn−1 (x1)). Assuming that Dn−1 (x1) ≤ Dmax for all n and x1, the
total W2 distance bound over N epochs satisfies:

β

N∑
n=1

Dn−1 (x1) ≤ NβDmax (141)

Proof of Lemma 8. Since Dn−1 (x1) ≤ Dmax , summing over n :

β

N∑
n=1

Dn−1 (x1) ≤ βNDmax (142)

Based on the above derivation, we can discuss the regularization effect of Dn−1 (x1) and how to tune
the trade-off coefficient β. The W2 distance bound term acts as a regularizer that:

• Penalizes Model Drift: Prevents the model from deviating excessively from the reference
model vθref .

• Encourages Smooth Updates: Ensures that updates to the model parameters are gradual,
promoting stability during training.

• Balances Exploration and Exploitation: Mitigates the risk of overoptimization to high-reward
samples by considering the model’s consistency.

Besides, the parameter β controls the strength of the regularization:

• Large β : Strong regularization, the model remains close to the reference, potentially
underexploiting high-reward regions and inducing more diversity/exploration (See τ = 1 in
Fig. 11.).
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• Small β : Weak regularization, the model prioritizes reward maximization, possibly at the
cost of stability and induce the over-optimization problem (Black et al., 2024) (See τ = 0 in
Fig. 11. )

Corollary 17 (Optimal β for Exploration-Exploitation Trade-off). An optimal β∗ exists that balances
the influence of the reward term and the W2 distance bound, satisfying:

β∗ =
τ r̄

D̄
(143)

where r̄ is the average reward and D̄ is the average W2 distance bound.

Proof. Setting the magnitudes of the reward and regularization terms equal, we have:

Nτr̄ = Nβ∗D̄ =⇒ β∗ =
τ r̄

D̄
(144)

where r̄ is the average reward and D̄ is the average W2 distance bound.

Remark. The regularization terms are crucial for ensuring stable learning dynamics, preventing
catastrophic forgetting (Kirkpatrick et al., 2016). Besides, Regularization terms also offer a trust
region constraint like TRPO (Schulman et al., 2015) or policy update in proximal area like PPO
(Schulman et al., 2017).
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C.8 BOLTZMANN WEIGHT FUNCTION

In this section, based on the previous derivation, we focus on a special cases of fine-tuning flow
matching model with ORW-CFM-W2 loss, where w(x1) ∝ Softmax(τ ∗ r(x1)), wherein τ is the
temperature coefficient.

According to Corollary 13, we can also re-write the final induced data distribution learned under
ORW-CFM-W2 loss function as:

qNθ (x1) ∝ [w (x1)]
N
q (x1) exp

(
−β

N∑
n=1

Dn−1 (x1)

)
(145)

Definition C.2 (Boltzmann Weighting Function). The Boltzmann weighting function over the set of
all possible x1 is defined as:

w (x1) = softmax (τr (x1)) =
exp (τr (x1))

Z
(146)

where τ ∈ R is the temperature parameter, Z =
∑

x′
1
exp (τr (x′1)) is the partition function ensuring

that
∑

x1
w (x1) = 1.

Then, we can have the following:

Theorem 8. With w (x1) = softmax (τr (x1)), the induced data distribution after N epochs is:

qNθ (x1) ∝
(
exp (τr (x1))

Z

)N

q (x1) exp

(
−β

N∑
n=1

Dn−1 (x1)

)
(147)

Proof of Theorem 8. Starting from the recursive formulation:

qNθ (x1) ∝ w (x1) q
N−1
θ (x1) exp

(
−βDN−1 (x1)

)
(148)

By induction, assume the expression holds for N − 1 :

qN−1
θ (x1) ∝

(
exp (τr (x1))

Z

)N−1

q (x1) exp

(
−β

N−1∑
n=1

Dn−1 (x1)

)
. (149)

At epoch N :

qNθ (x1) ∝ w (x1) q
N−1
θ (x1) exp

(
−βDN−1 (x1)

)
∝
(
exp (τr (x1))

Z

)(
exp (τr (x1))

Z

)N−1

q (x1) exp

(
−β

N∑
n=1

Dn−1 (x1)

)

=

(
exp (τr (x1))

Z

)N

q (x1) exp

(
−β

N∑
n=1

Dn−1 (x1)

) (150)

Thus, the expression holds for N . Then, the proof concludes.

Corollary 18 (Simplifying Induced Distribution). The induced data distribution can be expressed as:

qNθ (x1) ∝ exp

(
Nτr (x1)− β

N∑
n=1

Dn−1 (x1)

)
q (x1) (151)

up to a normalization constant independent of x1.

48



Published as a conference paper at ICLR 2025

Proof of Corollary 18. Since Z is constant with respect to x1, we can absorb ZN into the propor-
tionality constant:

qNθ (x1) ∝
exp (Nτr (x1))

ZN
q (x1) exp

(
−β

N∑
n=1

Dn−1 (x1)

)

∝ exp

(
Nτr (x1)− β

N∑
n=1

Dn−1 (x1)

)
q (x1) .

(152)

Despite the presence of the partition function Z, the induced data distribution qNθ (x1) under softmax
weighting ultimately depends on the unnormalized exponentiated rewards, similar to the exponential
weighting case. The key difference lies in the normalization:

• Exponential Weighting: Does not normalize w (x1), leading to potential numerical instabil-
ity.

• Softmax Weighting: Normalizes w (x1) at each epoch, ensuring
∑

x1
w (x1) = 1.

However, when considering the evolution over multiple epochs, the normalization constants ZN

accumulate but do not affect the proportionality of qNθ (x1) with respect to x1. And, in practice,
softmax weighting normally requires a large batch size for efficient learning.
Corollary 19 (Exploration Exploitation Trade-Off). Proper tuning of τ and β is essential to balance
exploration (sampling diverse x1 ) and exploitation (focusing on high-reward x1 ):

• High τ : Increases emphasis on high-reward samples.

• High β : Increases the penalty for deviations from the reference model.

Remark. In practice, the Boltzmann Weight Function can help stabilize the learning process and
keep numerical stability. However, in practice, when the batch size is smaller, the Boltzmann Weight
Function methods normally fail to learn a optimal results in similar training steps as Exponential
weighting function methods.
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C.9 RL PERSPECTIVES OF ORW-CFM-W2

In this section, we start to offer a different perspective of the learning behavior of models under
ORW-CFM-W2 loss from the perspective of RL.

We first do the following parallels: 1) Data Points x1 as Actions: In our setup, each data point
x1 corresponds to an action a in RL. 2) Discrepancy Term as Regularizer: The discrepancy term
Dn−1 (x1) acts as a regularizer, similar to entropy regularization or KL divergence penalties in RL.

Then, we define the objective that our RL agents want to optimize:

Definition C.3 (RL Objective of ORW-CFM).

J (θ) = Ex1∼qnθ (x1) [r (x1)]−
1

λ
DKL

(
qnθ (x1) ∥qn−1

θ (x1)
)

(153)

where qnθ (x1) is the data distribution at epoch n. qn−1
θ (x1) is the data distribution at epoch n− 1.

DKL acts as a regularizer to keep the new distribution close to the previous one. λ controls the
strength of the regularization.

We can obtain the following Theorem (For ease of reading, we rewrite the Theorem C.9 to be proved
in this section as follows):

Theorem. In RL settings, We aim to find qnθ (x1) that maximizes J (θ). This involves solving:

qnθ (x1) = argmax
q

Ex1∼q [r (x1)]−
1

λ
DKL

(
q (x1) ∥qn−1

θ (x1)
)

(154)

And the optimal data distribution (policy) qnθ (x1) can be obtained as:

qnθ (x1) ∝ qn−1
θ (x1) exp (λr (x1)) (155)

Proof of Theorem C.9. The optimization problem can be solved using variational methods. The KL
divergence between q (x1) and qn−1

θ (x1) is:

DKL

(
q (x1) ∥qn−1

θ (x1)
)
=

∫
q (x1) log

q (x1)

qn−1
θ (x1)

dx1 (156)

Introducing a Lagrangian to enforce the normalization constraint
∫
q (x1) dx1 = 1 :

L =

∫
q (x1)

[
r (x1)−

1

λ
log

q (x1)

qn−1
θ (x1)

]
dx1 − η

(∫
q (x1) dx1 − 1

)
. (157)

Then, we take the functional derivative of L with respect to q (x1) and set it to zero:

δL
δq (x1)

= r (x1)−
1

λ

(
log

q (x1)

qn−1
θ (x1)

+ 1

)
− η = 0 (158)

Simplifying:

r (x1)−
1

λ
log

q (x1)

qn−1
θ (x1)

−
(
1

λ
+ η

)
= 0 (159)

Rewriting the equation:

log
q (x1)

qn−1
θ (x1)

= λ (r (x1)− C) (160)

where C = 1
λ + η is a constant independent of x1.
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Exponentiating both sides:

q (x1)

qn−1
θ (x1)

= exp (λr (x1)− λC) (161)

Thus:

qnθ (x1) = qn−1
θ (x1) exp (λr (x1)) e

−λC (162)

Since e−λC is a normalization constant, we have:

qnθ (x1) ∝ qn−1
θ (x1) exp (λr (x1)) (163)

Then, the proof concludes.

Similarly, if we introduce the Regularization Term Dn−1 (x1), we can have the following Theorem
(For ease of reading, we rewrite the Theorem C.9 to be proved in this section as follows):

Theorem. Considering an additional discrepancy term Dn−1 (x1) that acts as a regularizer. We can
include this term in the objective function:

J (θ) = Ex1∼q

[
r (x1)− βDn−1 (x1)

]
− 1

λ
DKL

(
q (x1) ∥qn−1

θ (x1)
)

(164)

Then, the RL agents aim to find qnθ (x1) that maximizes J (θ). This involves solving:

qnθ (x1) = argmax
q

Ex1∼q

[
r (x1)− βDn−1 (x1)

]
− 1

λ
DKL

(
q (x1) ∥qn−1

θ (x1)
)

(165)

And the optimal data distribution (policy) qnθ (x1) can be obtained as:

qnθ (x1) ∝ qn−1
θ (x1) exp

(
λr (x1)− λβDn−1 (x1)

)
. (166)

Proof of Theorem C.9. Following similar steps, the functional derivative becomes:

δL
δq (x1)

= r (x1)− βDn−1 (x1)−
1

λ

(
log

q (x1)

qn−1
θ (x1)

+ 1

)
− η = 0 (167)

Simplifying:

log
q (x1)

qn−1
θ (x1)

= λ
(
r (x1)− βDn−1 (x1)− C

)
(168)

Exponentiating:

qnθ (x1) = qn−1
θ (x1) exp

(
λr (x1)− λβDn−1 (x1)

)
e−λC (169)

Therefore, the updated data distribution is:

qnθ (x1) ∝ qn−1
θ (x1) exp

(
λr (x1)− λβDn−1 (x1)

)
(170)

Then, the proof concludes.

Corollary 20 (ORW-CFM-W2 As Reinforcement Learning). Based on Theorem C.9, we can rewrite
the induced optimal policy in equation 164 as follows:

qnθ (x1) ∝ qn−1
θ (x1) exp

(
λr (x1)− λβDn−1 (x1)

)
(171)
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By setting β′ = λ ∗ β, w(x1) = exp(λr(x1)), we can obtain:

qnθ (x1) ∝ w(x1)qn−1
θ (x1) exp

(
−β′Dn−1 (x1)

)
(172)

which is the same form of induced data distribution over x1 in Theorem 4.

Therefore, ORW-CFM with W2 Distance Regularization is actually solving a Reinforcement Learning
Problem, where the objective is a trade-off between reward and discrepancy.

The update rule for qnθ (x1) mirrors the policy update in RL methods like AWR, where the new policy
is proportional to the old policy multiplied by the exponentiated advantage.

The discrepancy Dn−1 (x1) acts as a penalty term, discouraging the model from deviating too far
from the reference model, similar to how KL divergence or entropy regularization is used in RL
(Peng et al., 2019; Schulman et al., 2017) or RLHF (Black et al., 2024; Rafailov et al., 2023) to
maintain policy stability and keep the fine-tuned model close to pre-trained model.
Remark (Connection to AWR). AWR (Peng et al., 2019) also updates the policy by weighting actions
according to the exponentiated advantage. Similarly, our update rule similarly weights data points
x1 according to exp (λ ∗ r (x1)).
Remark (Connection to PPO). PPO (Schulman et al., 2017) uses a clipped objective to prevent large
policy updates. In our setup, the regularization term Dn−1 (x1) prevents the data distribution from
changing too drastically. Besides, Dn−1 (x1) can also used to limit the distance between ref model
and fine-tuned model.

Remark (Exploration and Exploitation Trade-Off). The term exp (λ ∗ r (x1)) encourages the model
to prioritize data points with higher rewards. While the regularization term exp

(
−β′Dn−1 (x1)

)
ensures the model does not deviate excessively from the reference, promoting stability and diversity
(e.g., avoid the policy collapses (Haarnoja et al., 2018))

Corollary 21 (Learning Flow Matching as Reinforcement Learning). In general, by adopting a
reinforcement learning perspective, we have derived the evolution of the data distribution qnθ (x1)
under self-training with the RW-CFM-W2 loss. The derivation shows that:

qnθ (x1) ∝ qn−1
θ (x1) exp

(
λ ∗ r (x1)− β′Dn−1 (x1)

)
(173)

This update rule mirrors policy updates in RL methods like Advantage Weighted Regression, where
the new policy is updated based on the exponentiated advantage while incorporating a regularization
term to ensure stability.
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D EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION DETAILS

To ensure reproducibility, we built our code upon the open-source flow matching code base called
TorchCFM (Tong et al., 2024a;b) to demonstrate that our method is general enough to be applied to
fine-tuning existing flow matching based methods, which provides efficient and theoretical sound
tools for training continuous normalizing flow models. TorchCFM offers a simulation-free training
objective for Conditional Flow Matching (CFM), enabling conditional generative modeling and
accelerating both training and inference processes.

We utilized the existing unconditional flow matching training baselines provided by TorchCFM on
datasets such as MNIST and CIFAR-10. Our implementations of the RW-CFM, ORW-CFM, and
ORW-CFM-W2 methods are based on the TorchCFM codebase, and we adopt the same network archi-
tecture—a U-Net (Ronneberger et al., 2015)—for the image generation tasks. The pre-trained models
used in our experiments are trained with the standard CFM loss as defined in Equation equation 1 on
CIFAR-10 and MNIST datasets.

For the image compression task, we directly adopt the reward function from DDPO (Black et al.,
2024). In the even-number generation task, we trained a binary classifier to distinguish between even
and odd digits, which serves as the reward signal. For the text-image alignment task, we employ the
CLIP model from OpenAI (Radford et al., 2021a) to calculate the similarity between text and images;
the CLIP model is pre-trained and provides a probability score representing the alignment between
the generated image and the given text prompt.

The reward functions for each task can be found in App. F. And the hyper-parameters can be found
in App. E.

D.2 RESOURCES USED

All experiments were conducted on a system with one worker equipped with an 8-core CPU and, an
NVIDIA A10 GPU, and memory of 32 GB. The MNIST task cost about 4-8 hours for training, while
image compression and text-image alignment task costs about 2-3 days for training.
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E HYPER-PARAMETERS

In general, in this paper, we propose a general and easy-to-use RL method for fine-tuning flow
matching generative models. Our algorithm is directly built upon the flow matching training code in
TorchCFM (Tong et al., 2024a). To facilitate reproducibility and highlight the effectiveness of our
proposed RL fine-tuning algorithm, we maintain the same flow matching training parameters and the
calculation of ut in OT paths as in the TorchCFM examples. We have conducted detailed ablation
experiments in the main text and appendix on the two most important hyperparameters in our method:
the entropy control parameter τ and the W2 distance regularization parameter α.

ORW-CFM-W2 method involves only a few hyperparameters, and we have carefully ablated those
that affect the convergence behavior in our experiments of Sec. 5, namely τ and α. Specifically, τ
controls the convergence speed of the fine-tuning method, while α has a significant impact on the
convergence point.

Massive experiments demonstrate that the parameter τ effectively controls the convergence speed
of the policy model. In the absence of W2 regularization, τ directly influences the rate at which
the policy collapses to a delta distribution, as clearly demonstrated in the theoretical analysis of our
exponential form weighting form as 5.

Interestingly, previous methods such as DDPO (Black et al., 2024) did not include KL regularization
terms or other explicit distance constraints, making it difficult to control the divergence between the
optimized policy and the pre-trained reference model. As a result, these methods often struggle to
avoid over-optimization and policy collapse. Therefore, when employing our method, we strongly
recommend setting α > 0 to provide sufficient W2 regularization and prevent policy collapse.
Remark. In practice, we encourage users/readers to first use a small α to fine-tune the model with
our ORW-CFM-W2 method, along with a relatively large τ . Then, different values of α can be tried
to customize the optimal generative models that fit the user’s needs for reward and diversity.

For all experiments, we use a batch size of 64 and employ a separate test process to evaluate our
performance.

In general, the proposed ORW-CFM-W2 method effectively fine-tunes flow matching models. We
can control the convergence speed through τ and adjust the diversity of convergence points and the
final reward through α. This provides sufficient flexibility for customizing the convergence policy to
meet user needs in various scenarios and enables us to achieve stable and efficient RL fine-tuning
using a simple reward-weighted method.
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F REWARD FUNCTIONS

In this section, we will describe the reward function we used in our experiments to demonstrate the
effectiveness and generality of our method.

F.1 TARGET IMAGE GENERATION

In the MNIST target image generation task, our objective is to fine-tune the model to generate images
of even numbers. We used a pre-trained binary classifier C(x), where x is the generated image,
to determine whether the image corresponds to an even or odd number. The classifier outputs the
probability of the image being even or odd:

Ceven (x) = p(even | x), Codd (x) = p( odd | x) (174)

The reward function is then defined as the difference between the classifier’s probabilities of the
image being even versus odd:

r(x) = p( even | x)− p(odd | x) (175)

Where p( even | x) = Ceven (x) is the probability that the generated image x is classified as an even
digit (i.e., digits {0, 2, 4, 6, 8} ), and p( odd | x) = Codd (x) is the probability that the generated
image x is classified as an odd digit (i.e., digits {1, 3, 5, 7, 9} ).

This reward encourages the model to maximize p(even | x) while minimizing p(odd | x), guiding
the model to generate even digits more frequently. The fine-tuning objective can be formalized as:

max
θ

Ex∼qθ(x)[r(x)] = Ex∼qθ(x) [Ceven (x)− Codd (x)] (176)

This reward function enables the model to be fine-tuned to produce even numbers without needing
explicit labels or a dataset directly composed of even digits.

Furthermore, it is worth noting that for this type of binary classifier-guided reward, we can easily
modify the task to generate the opposite class of images by simply using the negative of the reward
function. For example, to generate odd digits, we define the reward as r(x) = p (odd | x)− p( even
| x). The results for generating odd digits are provided in App. G.2.

F.2 IMAGE COMPRESSION

For the image compression task, we followed the reward function from DDPO (Black et al., 2024),
where the goal was to either minimize the file size of the images after JPEG compression. The reward
r(x) is proportional to the compression rate. We controlled the balance between compression and
diversity using the regularization parameter α, which induces varying degrees of divergence between
the fine-tuned model and the reference model. A lower α prioritizes compressibility, leading the
model to generate images that occupy minimal storage space after compression, while higher α
increases diversity in the generated outputs.

F.3 TEXT-IMAGE ALIGNMENT USING CLIP

For the text-image alignment task, we utilized the CLIP model, which computes the similarity
between text prompts and generated images. The reward function in this case was based on the
probability score generated by the CLIP model. Given an image x and a text description t, the CLIP
model outputs a probability pclip (x, t), which indicates the alignment between the image and the text.
The reward function for this task was defined as:

r(x, t) = pclip (x, t) (177)

This reward allows the model to fine-tune its output images to better match the provided text
prompts, optimizing for higher similarity as measured by the CLIP model. In practice, we will use
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a difference form in probability to promote training like r(x, "cat") = pclip (x, "an image of cat")−
pclip (x, "not an image of cat").

56



Published as a conference paper at ICLR 2025

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ALIGNING SMALL-SCALE FLOW MATCHING MODELS

We first evaluate by guiding an unconditional generative model pre-trained on CIFAR-10 (Tong
et al., 2024b) to maximize the text-image similarity score based on CLIP (Radford et al., 2021a),
specifically aligning the generated images with a given text prompt via reward (e.g., "an image of
cat"). As shown in Figure 11, without W2 regularization (i.e., α = 0), the ORW-CFM method
tends to fall into a greedy policy that maximizes reward but sacrifices diversity. However, with W2
regularization, our agent achieves a more diverse convergent optimal policy while maintaining similar
final performance.
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Figure 11: Diversity Control with different α while τ = 1 and reward is Text-Image Similarity
Probability Score (e.g., pclip (x, "an image of cat") for a cat image). W2 distance is estimated by its
upper bound (see App. C.4). In practice, we will use a difference form in probability to promote
training like r(x, "cat") = pclip (x, "an image of cat")− pclip (x, "not an image of cat").

G.2 REWARD SHAPING

To demonstrate the adaptability of our model to various reward objectives, we can directly modify
the reward function to change the fine-tuning target. For instance, we transformed the original
even-preference reward function, r = p(even)− p(odd), into r = p(odd)− p(even) to generate odd
numbers instead. The results show that our method successfully fine-tunes the flow model according
to the new reward objective, leading to the generation of only odd numbers.

We set w(x) as w(x) = exp(τ · r(x)) with τ = 1 (except for the last one with τ = 0 as control
group), and experimented with different values of α to control the divergence between the fine-tuned
model and the reference model, which induces diversity in the convergent fine-tuned model. As
illustrated in Fig. G.2, without W2 regularization, our method converges to the optimal generative
policy, though with limited diversity. However, as the W2 regularization increases with higher
values of α, our model still performs the odd-number generation task effectively, while also showing
increased diversity in the generated samples.

G.3 MORE TEXT-IMAGE ALIGNMENT RESULTS

In this section, we provide more text-image alignment results:
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(a) α = 0 (b) α = 0.1 (c) α = 0.2 (d) α = 0.3

(e) α = 0.4 (f) α = 0.5 (g) α = 0.6 (h) α = 0.7

(i) α = 0.8 (j) α = 0.9 (k) α = 1 (l) τ = 0

Figure 12: Odd Number Generation in MNIST.

(a) α = 0 (b) α = 1

Figure 13: Diversity Control with different α while τ = 1 and reward is Text-Image Similarity
Probability Score (e.g., pclip (x, "an image of dog") for a dog image). In practice, we will use a
difference form in probability to promote training like r(x, "dog") = pclip (x, "an image of dog")−
pclip (x, "not an image of dog").
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(a) α = 0 (b) α = 1

Figure 14: Diversity Control with different α while τ = 1 and reward is Text-Image Similarity
Probability Score (e.g., pclip (x, "an image of bird") for a bird image). In practice, we will use a
difference form in probability to promote training like r(x, "bird") = pclip (x, "an image of bird")−
pclip (x, "not an image of bird").

59



Published as a conference paper at ICLR 2025

H ALGORITHM PSEUDOCODE

In fact, we can implement the proposed fine-tuning algorithm by making minor changes based on
the conditional flow matching implementation in OT-CFM (Tong et al., 2024a). In this section, we
will demonstrate the Pseudocode of each fine-tuning algorithm proposed in this paper. For the origin
CFM pipeline we refer the readers to (Tong et al., 2024a).

Algorithm 1 Reward Weighted Conditional Flow Matching (RW-CFM in Theorem 1)
Require: Pre-trained model vθref and induced sample distribution qθref(x1), efficiently samplable
pt(x|x1), computable ut(x|x1), initial network vθ, reward function r(x1), weighting function
w(x1) = F(r(x1)) where w(x1) ∝ r(x1), entropy hyper-parameter τ , F can be exp or Softmax
θ ← θref
while Training do
x1 ∼ qθref(x1); t ∼ U(0, 1); x ∼ pt(x|x1)
r ← r(x1) ; w = F(τ ∗ r)
LRW-CFM(θ)← equation 3
θ ← Update(θ,∇θLRW-CFM(θ))

end while
return vθ

Algorithm 2 Online Reward Weighted Conditional Flow Matching (ORW-CFM in Theorem 2)
Require: Parameterized efficiently samplable qθ(x1), pt(x|x1), computable ut(x|x1), initial net-

work vθ, reward function r(x1), weighting function w(x1) = F(r(x1)) where w(x1) ∝ r(x1),
entropy hyper-parameter τ , F can be exp or Softmax, pre-trained model vθref and induced sample
distribution qθref(x1)
θ ← θref; qθ(x1)← qθref(x1)
while Training do
x1 ∼ qθ(x1); t ∼ U(0, 1); x ∼ pt(x|x1)
r ← r(x1) ; w = F(τ ∗ r)
LORW-CFM(θ)← equation 5
θ ← Update(θ,∇θLORW-CFM(θ))

end while
return vθ

Algorithm 3 Online Reward Weighted Conditional Flow Matching with Wasserstein-2 Regularization
(ORW-CFM-W2 in Theorem 4)
Require: Parameterized efficiently samplable qθ(x1), pt(x|x1), computable ut(x|x1), initial net-

work vθ, reward function r(x1), weighting function w(x1) = F(r(x1)) where w(x1) ∝ r(x1),
entropy hyper-parameter τ and W2 hyper-parameter α, F can be exp or Softmax, pre-trained
model vθref and induced sample distribution qθref(x1)
θ ← θref; qθ(x1)← qθref(x1)
while Training do
x1 ∼ qθ(x1); t ∼ U(0, 1); x ∼ pt(x|x1)
r ← r(x1) ; w = F(τ ∗ r)
LORW-CFM-W2(θ)← equation 10
θ ← Update(θ,∇θLORW-CFM-W2(θ))

end while
return vθ
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I DISCUSSION AND LIMITATION

Current RL fine-tuning methods, like DPO (Rafailov et al., 2023) or many reward-based RLHF
methods for large language models (LLM) (Lee et al., 2023; Huguet et al., 2024; Gülçehre et al.,
2023) normally rely on a well-collected or filtered offline dataset, requiring massive manual assistance
and high costs, which is far from automated fine-tuning. However, traditional online fine-tuning
methods are usually too complicated, with too many hyper-parameters, and it is difficult for us to find
the relationship between each hyperparameter and the convergent policy, making the overoptimization
problem hard to handle.

In fact, the existing LLM model and large text-image generative models has a very strong data
sampling capability, but traditional online RL fine-tuning methods may easily cause the model to
forget old knowledge, completely collapse to a local greedy policy, and fail to jump out of the local
optimum. However, if we can control the collapse speed of the policy (via τ ) and the distance between
the converged policy and the reference policy (via α), then the online RL fine-tuning method can not
only converge to a good and diverse policy without the need for additional manually labeled/filtered
data, but also avoid over-optimization (Black et al., 2024).

In general, one of the primary motivations of our paper is to propose an easy-to-use and controllable
reinforcement learning algorithm for fine-tuning continuous flow matching generative models toward
arbitrary reward objectives. Although flow matching has demonstrated powerful generative capa-
bilities in models like Stable Diffusion 3 (Esser et al., 2024, SD3), an easy-to-use and theoretically
comprehensive RL fine-tuning method for continuous flow matching models has not been widely
studied. Previous methods are either offline (Lee et al., 2023), rely on filtered datasets and cannot
be applied to arbitrary reward models (Rafailov et al., 2023), or lack an explicit divergence bound
between the learned policy and the reference model, which may be incapable of addressing over-
optimization and policy collapse issues (Black et al., 2024). Furthermore, most methods have not
been extensively applied or studied in continuous flow matching fine-tuning tasks. To address these
limitations, we propose an online reward-weighted conditional flow matching with the Wasserstein-2
regularization (ORW-CFM-W2) method based on reward-weighted RL (Peters & Schaal, 2007; Peng
et al., 2019). Our goal is to achieve a controllable RL fine-tuning algorithm that allows us to control
both the convergence speed and the convergence point (e.g., managing the trade-off between reward
and diversity, see Fig. 4).

To this end, we conducted a detailed analysis of the optimal policy distribution induced by our
algorithm and experimentally verified the influence of the entropy coefficient τ and the regularization
coefficient α on the convergence speed and convergence point.

Interestingly, we established the similarity between our method and traditional RL methods with
KL regularization in policy updates. We found that τ effectively controls the speed (or range) of the
policy updates, thereby affecting the convergence speed, and when the W2 regularization is absent,
it influences the rate of policy collapse. The coefficient α directly affects the diversity of the final
convergent policy by controlling the divergence from the reference model—assuming, of course, that
the pre-trained model is not a purely greedy policy.

In practice, we recommend using the ORW-CFM-W2 method with at least α > 0 during fine-tuning
to effectively avoid issues such as policy collapse.

Additionally, since our method does not make any assumptions about the reward function, it can
readily adapt to new tasks by simply adjusting the reward, without the need to modify other
hyper-parameters or collect new datasets manually. For example, in the MNIST dataset, we can
encourage the generation of images of odd digits by defining the reward as −(p(even) − p(odd)),
thereby penalizing even digits and rewarding odd ones (See App. G.2). In other words, our method
shifts the focus from fine-tuning tasks to designing more interesting reward functions, enabling the
creation of various flow matching generative models that meet specific user needs without carefully
designed offline dataset.

It is important to mention that there are still many unresolved issues in RL for flow matching
fine-tuning tasks, such as data efficiency, more general reward shaping methods, off-policy online
fine-tuning methods, and online fine-tuning of large text-image generative models like SD3 (Esser
et al., 2024). These topics warrant further investigation in future work.
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