259

260

261

262
263
264
265
266
267

268
269
270
271
272
273
274

A Author contribution

Anonymized for the submission

B Training

Training a joint generative model was previously shown to result in a good generator together with a
poor predictor (Lasserre et al.,2006; Nalisnick et al.l 2019). Moreover, storing the gradients for all
the summands of the objective (Eq. [2) is a significant overhead in memory requirements as compared
to decoder and encoder-only Transformers. To overcome both issues, we propose a practical training
procedure for JOINT TRANSFORMER (Alg. [3) that randomly switches between the input generation
and the property prediction (and encoder training) tasks with a hyperparameter piask € [0, 1].

The JOINT TRANSFORMER can be trained in an unsupervised, semi-supervised or supervised setting.
Depending whether a target y €) is sampled from the dataset D or is not available (Step 2] Alg.[3),
one can include the prediction loss In pg 4 (y | x) in the penalized log-likelihood objective £ (Step
Alg.[3), resulting in a supervised setting, or set the prediction loss to zero, resulting in an unsupervised
setting. For the training data where only a small proportion of samples have accompanying target
values, we split the training procedure of the JOINT TRANSFORMER into first training the model in
an unsupervised manner (Alg. [2), then fine-tuning it with supervised data (Alg.[3).

Algorithm 2 Unsupervised training of JOINT TRANSFORMER

Input: A dataset D = {x,,})__;. JOINT TRANSFORMER py_ 4(X, y) with parameters 6, ¢ containing

a decoder py(x), encoder Hle po(Tq | MO X_g).
Task probability prask € [0, 1] and a masking distribution ¢(m).
1: while a stopping criterion is not met do
2: Uniformly sample x from the dataset D
3 Sample an indicator u ~ BERNOULLI(Pyug)
4: if u = 0 then
5: Sample mask m ~ ¢(m)
6 Calculate loss £(0, ¢) = — 25:1 Inpg(zg | MmO x_gq)
7 else
8 Set mask to the causal mask
9: Calculate loss £(0, ¢) = —In py(x)
10: endif
11: Update parameters 6, ¢ using an optimizer w.r.t. loss £
12: end while

Algorithm 3 Training of JOINT TRANSFORMER
Input: A dataset D = {(x,,,¥yn)}5_;. JOINT TRANSFORMER pjp 4(X,y) with parameters 6, ¢

containing a decoder py(x), encoder]_L?:l po(zq | m© x_g) and a predictor pg 4(y | x).
Task probability piasx € [0, 1] and a masking distribution ¢(m).
while a stopping criterion is not met do
Uniformly sample (x, y) from the dataset D
Sample an indicator « ~ BERNOULLI(Pyqsk)
if v = 0 then
Sample mask m ~ ¢(m)
Calculate loss £(0, ¢) = — 25):1 Inpg(zg | MmO x_g) —Inpg ey | x)
else
Set mask to the causal mask
Calculate loss £(6, ¢) = — In pp(x)
10: end if
11: Update parameters 6, ¢ using an optimizer w.r.t. loss ¢
12: end while

A A R ol

R

275

276

277
278
279
280
281
282
283

284

285
286
287
288
289
290
291
292

293
294

295
296

297

298

299
300
301
302

303
304
305

306
307

308
309
310
311

C Sampling
C.1 Unconditional Generation

In the unconditional generation task, we sample from JOINT TRANSFORMER in a two-step manner
that results in an unconditional sample (X, y) ~ pg,¢(x,y). First, since the decoder part pg(x) does
not depend on parameters ¢ and it properly defines an ARM, we sample x ~ py(x). Next, we sample
a target y from the predictive distribution y ~ pg (y | x). The key feature that allows for successful
sampling from the joint model is the ability of the JOINT TRANSFORMER to simultaneously operate
in two separate modes, namely generate novel examples and predict their target values, which is
directly encouraged by training with the penalized log-likelihood objective in Eq.[2]

C.2 Conditional Generation

In the conditional generation task, given a condition Y C), we sample from JOINT TRANSFORMER
Po,4(X,y) to obtain a conditional sample (x,y) ~ pg (X, y), such that y € Y. JOINT TRANS-
FORMER generates conditional samples by first sampling (x, y) ~ pa,(x,y) in the above described
unconditional way and then accepting the sample if 4y € Y. In practical applications, due to a finite
runtime, we sample a batch of B tuples (x,y) ~ pg4(x,y) and choose (x,y) with y ‘closest’ to
Y. Proposition [shows that, despite its conceptual simplicity, the described conditional generation
procedure is equivalent to directly sampling from the conditional distribution p(x | y). Moreover,
Proposition 2] shows conditions under which conditional generation enjoys a finite expected runtime.

Proposition 1. Let p(x,y) be a joint probability distribution over X x). Let y. €) be such that
p(ye) > 0. Then

P [ye) o Ly=y 3} (W)p(y | ¥)p(x)-

Proof. Assume that p(x, y) is a joint probability distribution over X’ x). Choose ymax € Y to be
such that p(y > y.) > 0. Then a simple application of Bayes rule yields

Cp{y > ye)) ey Wy [x)p(x)
Pz =SS T vz w)))

Since p({y > y.}) > 0 and it does not depend on x, we have that

p(x [{y = ye}) < Ly (9)p(y | x)p(x).
O

Proposition 2. Let p(y) be a probability distribution over Y with a corresponding cumulative
distribution function F. Let target y. € Y be such that p(y.) > 0 and let p be the probability of
sampling a target y ~ p(y) such that y > y.. The expected number of trials N until obtaining a
sample y ~ p(y) such that y > y. is equal to 1/p.

Proof. Let p(y) be a probability distribution over) with a corresponding cumulative distribution
function F. Let y. € Y be such that p(y.) > 0. Define r.v. N as the number of trials until obtaining
a sample y > y., where y is distributed as p(y). For each n € N, the distribution of N is given by

P(N =n)=(1-p)""'p,

where p = 1 — F'(y < y.). Hence, the number of trials V follows a geometric distribution with an
expected value equal to E[N] = 1/p. O

Despite its simplicity, the conditional generation of JOINT TRANSFORMER has the advantage of the
predictor pg 4 (y | x), as it is defined in the input space X, indicating whether the newly generated
example enjoys the desired target value. This is in contrast to methods based on LSO and diffusion
models, see (Gomez-Bombarelli et al., 2018 [Hoogeboom et al., 2022).

312

313

314
315
316
317
318
319
320
321

322

324
325
326
327

329
330
331
332
333
334
335
336

338
339
340
341
342
343
344
345
346

D Additional Experiments

D.1 Molecule Generation

Task In the molecule generation task, the goal is to generate valid and novel molecules that follow
the chemical distribution of the training data. Following Brown et al.|(2019), we evaluate all molecule
generation methods on five metrics: validity, a fraction of the generated molecules that are correspond
to a valid SMILES string; uniqueness, a fraction of the generated molecules that are unique; novelty,
a fraction of the generated molecules that are not present in the training data; KL Divergence, a
measure of similarity of the generated molecules to the training set with respect to selected chemical
properties (Brown et al., | 2019), as well as Fréchet ChemNet Distance (FCD; (Preuer et al., [2018))), a
general measure of similarity of the generated molecules to the training set.

Baselines As baselines, we select well-established molecule generation models based on SMILES
representation (Weininger, [1988): LSTM (Ertl et al.,[2018), VAE (Kingma & Welling} 2013} Rezende
et al.,[2014) and AAE (Kadurin et al.|[2016)). Additionally, we consider graph-based models: Junction
Tree VAE (Jin et al.,|2018)), MoLeR (Maziarz et al.,|2021) and MAGNet (Hetzel et al.,2023)). Finally,
we include MolGPT (Bagal et al., [2022)), which is a Transformer-based model and the backbone for
the JOINT TRANSFORMER, sharing the same architecture, but trained differently.

Results In the molecule generation task, JOINT TRANSFORMER successfully generates valid,
unique and novel molecules (Tab. [2). Moreover, JOINT TRANSFORMER generates molecules with
properties that closely follow the training set distribution, making the newly generated molecules
realistic and physio-chemically plausible, as measured by KL Divergence and FCD. Compared to
the backbone MolGPT model, JOINT TRANSFORMER achieves identical performance, showing that
the modified training procedure does not hurt the generative functionality of the model. From the
generative modeling perspective, this result is counterintuitive, as we can include the reconstruction
task to the training procedure of the JOINT TRANSFORMER, without sacrificing its generative
performance.

Overall, none of the molecule generation methods achieves best performance across all metrics.
Graph-based methods outperform others on validity, as they generate always valid molecules by
design. However, the improvement of 3% as compared to Transformer-based models (JOINT TRANS-
FORMER and MolGPT) is negligible. Additionally, it comes at the expense of generating molecules
with decreased (from 12% to 19%) values of the KL Divergence and FCD metrics. On the other
hand, LSTM achieves top performance on KL Divergence and FCD metrics, slightly (1% and 3%,
respectively) outperforming Transformer-based methods, but falls behind in the validity of the gen-
erated molecules. All methods successfully generate unique and novel molecules. Overall, JOINT
TRANSFORMER strikes a good balance between graph-based and SMILES-based LSTM, making it a
viable choice for a go-to molecule generation model.

Table 2: Molecule Generation Task. JOINT TRANSFORMER (JT) matches state-of-the-art performance
of different molecule generation methods. Training the JOINT TRANSFORMER model on generation
and reconstruction tasks simultaneously does not hurt the generation performance of the model.

MODEL S1zE VALIDITY (1) UNIQUENESS (1) NOVELTY (1) FCD (1) KL Div (1)
LSTM - 0.96 1.0 0.91 0.91 0.99
VAE - 0.87 1.0 0.97 0.86 0.98
AAE - 0.82 1.0 1.0 0.53 0.89
JT-VAE - 1.0 N/A N/A 0.76 0.94
MAGNET 6.9M N/A N/A N/A 0.73 0.92
MOLER - 1.0 0.99 0.97 0.78 0.98
MoOLGPT 6M 0.98 1.0 1.0 0.91 0.99
MOLGPT (OURS) 6M 0.97 1.0 0.97 0.89 0.98
JT (OURS) 6M 0.97 1.0 0.98 0.89 0.99
JT (OURS) 50M 0.98 1.0 0.95 0.90 0.99

10

347

348
349
350
351
352

353

354

355
356
357
358
359
360
361
362
363
364
365

366

367
368
369
370
371
372

D.2 Unconditional Generation

Moreover, the jointly trained predictor gp (y | x) of the JOINT TRANSFORMER generalizes well
to data generated with the model py(x). In particular, the prediction error, as measured by mean
absolute error, of the JOINT TRANSFORMER fine-tuned on three properties from the Guacamol task
(Brown et al.} |2019) do not change between the test set and newly generated data (Table EI) This
shows good generalization performance of JOINT TRANSFORMER.

Table 3: Mean absolute prediction error (MAE) for the predictor on three property prediction tasks
on test and generated data. Mean and standard deviation across independent runs.

METHOD DATA PERINDOPRIL MPO SITAGLIPTIN MPO ZALEPLON MPO

TEST 0.014 + 0.004 0.009 + 0.001 0.012 £ 0.001
GENERATED 0.015 + 0.004 0.009 4 0.002 0.012 + 0.001

JOINT TRANSFORMER

E Implementation Details

E.1 Data and Tokenization

We use SMILES (Weininger, |1988)) based representations of molecules across all experiments. In all
experiments we pre-train the JOINT TRANSFORMER in an unsupervised manner using the ChEMBL
database, a manually curated database of molecules with drug-like properties (Mendez et al., 2019).
As opposed to other datasets like ZINC (Irwin et al., 2020), ChREMBL contains only molecules
which have been synthesized. To ensure reproducibility and comparability with molecule generation
baselines we use version 24 of the database that contains 1.8M compounds altogether and apply
standard data processing used in the Guacamol benchmark (Brown et al.,[2019). As for tokenization
of the data, we use a tokenizer based on (Schwaller et al.,[2020). We additionally use an augmentation
method of SMILES representations based on (Tetko et al.||2019) and similar to (Bagal et al., 2022)
across all experiments and methods. This ensures the transferability of results obtained by |Bagal et al.
(2022)) to our experiments.

E.2 Architecture

Our implementation of the JOINT TRANSFORMER follows the implementation provided by (Karpathyl
2023)), which is a re-implementation of a GPT-2 (Radford et al., 2019) used by MolGPT (Bagal
et al.| [2022). The only difference is that during each forward pass, we switch between a causal and a
bidirectional masking, depending on the task we are optimizing for. We additionally stack an MLP
network on the top of the first output token for prediction. The complete list of hyperparameters is
presented in Table[d Our implementation results in a model with 6.5M parameters.

Table 4: Model hyperparameters for the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE
ACTIVATION FN GELU
EMBED DIM 256
NUM LAYERS 6
NUM HEADS 8
FEEDFORWARD DIMENSION 1024
FEEDFORWARD BIAS FALSE
LAYER NORM EPSILON le—5
PREDICTOR HEAD MLP
PREDICTOR NUM LAYERS 1
PREDICTOR HIDDEN DIM 100

11

373

374

376

377

379
380

Target Output
Prediction Probabilities

[Predictor]T[Linear]

le———o
/[Feed Forward]\

I
[Layer Normalization]

—

le————
[Multi-Head Attention]

Bi-Directional Causal
Mask Mask

T
\[Layer Normalization]J
——

[Input Embedding]
I

Positional
Encoding

Input

Figure 2: JOINT TRANSFORMER architecture.

Table 5: Training hyperparameters of the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE
BATCH SIZE 64
TOTAL NUMBER OF TRAINING ITERATIONS 4.2M
OPTIMIZER ADAMW
WEIGHT DECAY le—1
BETA 1 0.9
BETA 2 0.95
MAXIMUM LEARNING RATE 6e—4
MINIMUM LEARNING RATE 6e—>5
DECAY LEARNING RATE TRUE
WARMUP ITERATIONS 2000
NUMBER OF LEARNING RATE DECAY ITERATIONS 4.2 M
VALUE TO CLIP GRADIENTS AT 1.0
DROPOUT 0.1
TASK PROBABILITY Ptask 0.95

E.3 Training
We provide the complete list of hyperparameters used for training JOINT TRANSFORMER in Table 5]

JOINT TRANSFORMER was trained on a single NVIDIA GeForce RTX 2080 TI GPU for 4.2M
iterations that took approximately seven days.

E.4 Fine-tuning
As JOINT TRANSFORMER is a joint model, fine-tuning is achieved by standard training (Alg.[3) on

the supervised part of the dataset. Unless stated otherwise, we use the same set of hyperparameters
for fine-tuning across all tasks, summarized in Table [6] Fine-tuning on a single NVIDIA GeForce

12

381 RTX 2080 TI GPU for 50K iterations takes approximately an hour. Hyperparameters not listed in

ass2 Table[6|are shared with the pre-training task.

Table 6: Fine-tuning hyperparameters for the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE
DECAY LR FALSE
LEARNING RATE 3e—5
NUM OF ITERATION 50K
TASK PROBABILITY Ptask 0.1

13

