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B Training261

Training a joint generative model was previously shown to result in a good generator together with a262

poor predictor (Lasserre et al., 2006; Nalisnick et al., 2019). Moreover, storing the gradients for all263

the summands of the objective (Eq. 2) is a significant overhead in memory requirements as compared264

to decoder and encoder-only Transformers. To overcome both issues, we propose a practical training265

procedure for JOINT TRANSFORMER (Alg. 3) that randomly switches between the input generation266

and the property prediction (and encoder training) tasks with a hyperparameter ptask ∈ [0, 1].267

The JOINT TRANSFORMER can be trained in an unsupervised, semi-supervised or supervised setting.268

Depending whether a target y ∈ Y is sampled from the dataset D or is not available (Step 2, Alg. 3),269

one can include the prediction loss ln pθ,ϕ(y | x) in the penalized log-likelihood objective ℓ (Step 6,270

Alg. 3), resulting in a supervised setting, or set the prediction loss to zero, resulting in an unsupervised271

setting. For the training data where only a small proportion of samples have accompanying target272

values, we split the training procedure of the JOINT TRANSFORMER into first training the model in273

an unsupervised manner (Alg. 2), then fine-tuning it with supervised data (Alg. 3).274

Algorithm 2 Unsupervised training of JOINT TRANSFORMER

Input: A dataset D = {xn}Nn=1. JOINT TRANSFORMER pθ,ϕ(x, y) with parameters θ, ϕ containing
a decoder pθ(x), encoder

∏D
d=1 pθ(xd |m⊙ x−d).

Task probability ptask ∈ [0, 1] and a masking distribution q(m).
1: while a stopping criterion is not met do
2: Uniformly sample x from the dataset D
3: Sample an indicator u ∼ BERNOULLI(ptask)
4: if u = 0 then
5: Sample mask m ∼ q(m)

6: Calculate loss ℓ(θ, ϕ) = −
∑D

d=1 ln pθ(xd |m⊙ x−d)
7: else
8: Set mask to the causal mask
9: Calculate loss ℓ(θ, ϕ) = − ln pθ(x)

10: end if
11: Update parameters θ, ϕ using an optimizer w.r.t. loss ℓ
12: end while

Algorithm 3 Training of JOINT TRANSFORMER

Input: A dataset D = {(xn, yn)}Nn=1. JOINT TRANSFORMER pθ,ϕ(x, y) with parameters θ, ϕ

containing a decoder pθ(x), encoder
∏D

d=1 pθ(xd |m⊙ x−d) and a predictor pθ,ϕ(y | x).
Task probability ptask ∈ [0, 1] and a masking distribution q(m).

1: while a stopping criterion is not met do
2: Uniformly sample (x, y) from the dataset D
3: Sample an indicator u ∼ BERNOULLI(ptask)
4: if u = 0 then
5: Sample mask m ∼ q(m)

6: Calculate loss ℓ(θ, ϕ) = −
∑D

d=1 ln pθ(xd |m⊙ x−d)− ln pθ,ϕ(y | x)
7: else
8: Set mask to the causal mask
9: Calculate loss ℓ(θ, ϕ) = − ln pθ(x)

10: end if
11: Update parameters θ, ϕ using an optimizer w.r.t. loss ℓ
12: end while
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C Sampling275

C.1 Unconditional Generation276

In the unconditional generation task, we sample from JOINT TRANSFORMER in a two-step manner277

that results in an unconditional sample (x, y) ∼ pθ,ϕ(x, y). First, since the decoder part pθ(x) does278

not depend on parameters ϕ and it properly defines an ARM, we sample x ∼ pθ(x). Next, we sample279

a target y from the predictive distribution y ∼ pθ,ϕ(y | x). The key feature that allows for successful280

sampling from the joint model is the ability of the JOINT TRANSFORMER to simultaneously operate281

in two separate modes, namely generate novel examples and predict their target values, which is282

directly encouraged by training with the penalized log-likelihood objective in Eq. 2.283

C.2 Conditional Generation284

In the conditional generation task, given a condition Y ⊆ Y , we sample from JOINT TRANSFORMER285

pθ,ϕ(x, y) to obtain a conditional sample (x, y) ∼ pθ,ϕ(x, y), such that y ∈ Y . JOINT TRANS-286

FORMER generates conditional samples by first sampling (x, y) ∼ pθ,ϕ(x, y) in the above described287

unconditional way and then accepting the sample if y ∈ Y . In practical applications, due to a finite288

runtime, we sample a batch of B tuples (x, y) ∼ pθ,ϕ(x, y) and choose (x, y) with y ‘closest’ to289

Y . Proposition 1 shows that, despite its conceptual simplicity, the described conditional generation290

procedure is equivalent to directly sampling from the conditional distribution p(x | y). Moreover,291

Proposition 2 shows conditions under which conditional generation enjoys a finite expected runtime.292

Proposition 1. Let p(x, y) be a joint probability distribution over X ×Y . Let yc ∈ Y be such that293

p(yc) > 0. Then294

p(x | yc) ∝ 1{y=yc}(y)p(y | x)p(x).

Proof. Assume that p(x, y) is a joint probability distribution over X ×Y . Choose ymax ∈ Y to be295

such that p(y ≥ yc) > 0. Then a simple application of Bayes rule yields296

p(x | {y ≥ yc}) =
p(x, {y ≥ yc})
p({y ≥ yc})

=
1{y≥yc}(y)p(y | x)p(x)

p({y ≥ yc})
. (3)

Since p({y ≥ yc}) > 0 and it does not depend on x, we have that297

p(x | {y ≥ yc}) ∝ 1{y≥yc}(y)p(y | x)p(x).

298

Proposition 2. Let p(y) be a probability distribution over Y with a corresponding cumulative299

distribution function F . Let target yc ∈ Y be such that p(yc) > 0 and let p be the probability of300

sampling a target y ∼ p(y) such that y > yc. The expected number of trials N until obtaining a301

sample y ∼ p(y) such that y > yc is equal to 1/p.302

Proof. Let p(y) be a probability distribution over Y with a corresponding cumulative distribution303

function F . Let yc ∈ Y be such that p(yc) > 0. Define r.v. N as the number of trials until obtaining304

a sample y > yc, where y is distributed as p(y). For each n ∈ N, the distribution of N is given by305

P (N = n) = (1− p)n−1p,

where p = 1− F (y ≤ yc). Hence, the number of trials N follows a geometric distribution with an306

expected value equal to E[N ] = 1/p.307

Despite its simplicity, the conditional generation of JOINT TRANSFORMER has the advantage of the308

predictor pθ,ϕ(y | x), as it is defined in the input space X , indicating whether the newly generated309

example enjoys the desired target value. This is in contrast to methods based on LSO and diffusion310

models, see (Gómez-Bombarelli et al., 2018; Hoogeboom et al., 2022).311
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D Additional Experiments312

D.1 Molecule Generation313

Task In the molecule generation task, the goal is to generate valid and novel molecules that follow314

the chemical distribution of the training data. Following Brown et al. (2019), we evaluate all molecule315

generation methods on five metrics: validity, a fraction of the generated molecules that are correspond316

to a valid SMILES string; uniqueness, a fraction of the generated molecules that are unique; novelty,317

a fraction of the generated molecules that are not present in the training data; KL Divergence, a318

measure of similarity of the generated molecules to the training set with respect to selected chemical319

properties (Brown et al., 2019), as well as Fréchet ChemNet Distance (FCD; (Preuer et al., 2018)), a320

general measure of similarity of the generated molecules to the training set.321

Baselines As baselines, we select well-established molecule generation models based on SMILES322

representation (Weininger, 1988): LSTM (Ertl et al., 2018), VAE (Kingma & Welling, 2013; Rezende323

et al., 2014) and AAE (Kadurin et al., 2016). Additionally, we consider graph-based models: Junction324

Tree VAE (Jin et al., 2018), MoLeR (Maziarz et al., 2021) and MAGNet (Hetzel et al., 2023). Finally,325

we include MolGPT (Bagal et al., 2022), which is a Transformer-based model and the backbone for326

the JOINT TRANSFORMER, sharing the same architecture, but trained differently.327

Results In the molecule generation task, JOINT TRANSFORMER successfully generates valid,328

unique and novel molecules (Tab. 2). Moreover, JOINT TRANSFORMER generates molecules with329

properties that closely follow the training set distribution, making the newly generated molecules330

realistic and physio-chemically plausible, as measured by KL Divergence and FCD. Compared to331

the backbone MolGPT model, JOINT TRANSFORMER achieves identical performance, showing that332

the modified training procedure does not hurt the generative functionality of the model. From the333

generative modeling perspective, this result is counterintuitive, as we can include the reconstruction334

task to the training procedure of the JOINT TRANSFORMER, without sacrificing its generative335

performance.336

Overall, none of the molecule generation methods achieves best performance across all metrics.337

Graph-based methods outperform others on validity, as they generate always valid molecules by338

design. However, the improvement of 3% as compared to Transformer-based models (JOINT TRANS-339

FORMER and MolGPT) is negligible. Additionally, it comes at the expense of generating molecules340

with decreased (from 12% to 19%) values of the KL Divergence and FCD metrics. On the other341

hand, LSTM achieves top performance on KL Divergence and FCD metrics, slightly (1% and 3%,342

respectively) outperforming Transformer-based methods, but falls behind in the validity of the gen-343

erated molecules. All methods successfully generate unique and novel molecules. Overall, JOINT344

TRANSFORMER strikes a good balance between graph-based and SMILES-based LSTM, making it a345

viable choice for a go-to molecule generation model.346

Table 2: Molecule Generation Task. JOINT TRANSFORMER (JT) matches state-of-the-art performance
of different molecule generation methods. Training the JOINT TRANSFORMER model on generation
and reconstruction tasks simultaneously does not hurt the generation performance of the model.

MODEL SIZE VALIDITY (↑) UNIQUENESS (↑) NOVELTY (↑) FCD (↑) KL DIV (↑)
LSTM - 0.96 1.0 0.91 0.91 0.99
VAE - 0.87 1.0 0.97 0.86 0.98
AAE - 0.82 1.0 1.0 0.53 0.89
JT-VAE - 1.0 N/A N/A 0.76 0.94
MAGNET 6.9M N/A N/A N/A 0.73 0.92
MOLER - 1.0 0.99 0.97 0.78 0.98
MOLGPT 6M 0.98 1.0 1.0 0.91 0.99
MOLGPT (OURS) 6M 0.97 1.0 0.97 0.89 0.98

JT (OURS) 6M 0.97 1.0 0.98 0.89 0.99
JT (OURS) 50M 0.98 1.0 0.95 0.90 0.99
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D.2 Unconditional Generation347

Moreover, the jointly trained predictor qθ,ϕ(y | x) of the JOINT TRANSFORMER generalizes well348

to data generated with the model pθ(x). In particular, the prediction error, as measured by mean349

absolute error, of the JOINT TRANSFORMER fine-tuned on three properties from the Guacamol task350

(Brown et al., 2019) do not change between the test set and newly generated data (Table 3). This351

shows good generalization performance of JOINT TRANSFORMER.352

Table 3: Mean absolute prediction error (MAE) for the predictor on three property prediction tasks
on test and generated data. Mean and standard deviation across independent runs.

METHOD DATA PERINDOPRIL MPO SITAGLIPTIN MPO ZALEPLON MPO

JOINT TRANSFORMER
TEST 0.014± 0.004 0.009± 0.001 0.012± 0.001

GENERATED 0.015± 0.004 0.009± 0.002 0.012± 0.001

E Implementation Details353

E.1 Data and Tokenization354

We use SMILES (Weininger, 1988) based representations of molecules across all experiments. In all355

experiments we pre-train the JOINT TRANSFORMER in an unsupervised manner using the ChEMBL356

database, a manually curated database of molecules with drug-like properties (Mendez et al., 2019).357

As opposed to other datasets like ZINC (Irwin et al., 2020), ChEMBL contains only molecules358

which have been synthesized. To ensure reproducibility and comparability with molecule generation359

baselines we use version 24 of the database that contains 1.8M compounds altogether and apply360

standard data processing used in the Guacamol benchmark (Brown et al., 2019). As for tokenization361

of the data, we use a tokenizer based on (Schwaller et al., 2020). We additionally use an augmentation362

method of SMILES representations based on (Tetko et al., 2019) and similar to (Bagal et al., 2022)363

across all experiments and methods. This ensures the transferability of results obtained by Bagal et al.364

(2022) to our experiments.365

E.2 Architecture366

Our implementation of the JOINT TRANSFORMER follows the implementation provided by (Karpathy,367

2023), which is a re-implementation of a GPT-2 (Radford et al., 2019) used by MolGPT (Bagal368

et al., 2022). The only difference is that during each forward pass, we switch between a causal and a369

bidirectional masking, depending on the task we are optimizing for. We additionally stack an MLP370

network on the top of the first output token for prediction. The complete list of hyperparameters is371

presented in Table 4. Our implementation results in a model with 6.5M parameters.372

Table 4: Model hyperparameters for the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

ACTIVATION FN GELU
EMBED DIM 256
NUM LAYERS 6
NUM HEADS 8
FEEDFORWARD DIMENSION 1024
FEEDFORWARD BIAS FALSE
LAYER NORM EPSILON 1e−5
PREDICTOR HEAD MLP
PREDICTOR NUM LAYERS 1
PREDICTOR HIDDEN DIM 100
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Figure 2: JOINT TRANSFORMER architecture.

Table 5: Training hyperparameters of the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

BATCH SIZE 64
TOTAL NUMBER OF TRAINING ITERATIONS 4.2 M
OPTIMIZER ADAMW
WEIGHT DECAY 1e−1
BETA 1 0.9
BETA 2 0.95
MAXIMUM LEARNING RATE 6e−4
MINIMUM LEARNING RATE 6e−5
DECAY LEARNING RATE TRUE
WARMUP ITERATIONS 2000
NUMBER OF LEARNING RATE DECAY ITERATIONS 4.2 M
VALUE TO CLIP GRADIENTS AT 1.0
DROPOUT 0.1
TASK PROBABILITY ptask 0.95

E.3 Training373

We provide the complete list of hyperparameters used for training JOINT TRANSFORMER in Table 5.374

JOINT TRANSFORMER was trained on a single NVIDIA GeForce RTX 2080 TI GPU for 4.2M375

iterations that took approximately seven days.376

E.4 Fine-tuning377

As JOINT TRANSFORMER is a joint model, fine-tuning is achieved by standard training (Alg. 3) on378

the supervised part of the dataset. Unless stated otherwise, we use the same set of hyperparameters379

for fine-tuning across all tasks, summarized in Table 6. Fine-tuning on a single NVIDIA GeForce380
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RTX 2080 TI GPU for 50K iterations takes approximately an hour. Hyperparameters not listed in381

Table 6 are shared with the pre-training task.382

Table 6: Fine-tuning hyperparameters for the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

DECAY LR FALSE
LEARNING RATE 3e−5
NUM OF ITERATION 50K
TASK PROBABILITY ptask 0.1
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