
Appendix for Credit Assignment Through
Broadcasting a Global Error Vector

David G. Clark, L.F. Abbott, SueYeon Chung

Contents
A Supplementary figures 1
B Formulation of VNNs using vector input units 4
C Assumption in GEVB sign match proof 4
D Alternative derivation of GEVB 4
E Gradient alignment angle and relative standard deviation 4
F Concentration of relative standard deviation in wide networks 5
G Architectures 6
H Global error-vector broadcasting in convolutional networks 6
I Training 7
J Direct feedback alignment 7
K t-SNE 7
L Potential negative societal impacts 7
M Summary of mathematical results 7

A Supplementary figures

0 25 50 75 100 125 150 175
0

1

2

3

4

5

6

er
ro

r (
%

)

FC (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
0

1

2

3

4

5

6

er
ro

r (
%

)

Conv (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
0

1

2

3

4

5

6

er
ro

r (
%

)

LC (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
epochs

0

1

2

3

4

5

6

er
ro

r (
%

)

FC (conventional)
DFA+ BP+ DFA BP

0 25 50 75 100 125 150 175
epochs

0

1

2

3

4

5

6

er
ro

r (
%

)

Conv (conventional)
DFA+ BP+ DFA BP

0 25 50 75 100 125 150 175
epochs

0

1

2

3

4

5

6

er
ro

r (
%

)

LC (conventional)
DFA+ BP+ DFA BP

Figure 1: MNIST learning curves. Nonnegative-constrained networks have a “+” in the name of the
learning rule. Thus, “GEVB+” corresponds to GEVB in VNNs. Solid line: test error. Dashed line:
train error. Truncated curves reflect early stopping due to zero train error. Error bars are standard
deviations across five runs.

1



0 25 50 75 100 125 150 175
0

10
20
30
40
50
60
70
80

er
ro

r (
%

)

FC (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
0

10
20
30
40
50
60
70
80

er
ro

r (
%

)

Conv (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
0

10
20
30
40
50
60
70
80

er
ro

r (
%

)

LC (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
epochs

0
10
20
30
40
50
60
70
80

er
ro

r (
%

)

FC (conventional)
DFA+ BP+ DFA BP

0 25 50 75 100 125 150 175
epochs

0
10
20
30
40
50
60
70
80

er
ro

r (
%

)

Conv (conventional)
DFA+ BP+ DFA BP

0 25 50 75 100 125 150 175
epochs

0
10
20
30
40
50
60
70
80

er
ro

r (
%

)
LC (conventional)

DFA+ BP+ DFA BP

Figure 2: CIFAR-10 learning curves. Conventions are the same as in Fig. 1

2



CIFAR-10

MNIST

GEVB in vectorized
mixed-sign network

DFA in conventional
mixed-sign network

A

B

GEVB in VNN

DFA in conventional
nonnegative network

GEVB in vectorized
mixed-sign network

DFA in conventional
mixed-sign network

Figure 3: Alignment angles. (A) Mixed-sign networks trained on CIFAR-10. (B) Nonnegative and
mixed-sign networks trained on MNIST. Truncated curves reflect early stopping due to zero train
error. Conventions are the same as in Fig. 2 of the main text.

3



B Formulation of VNNs using vector input units

We can describe the input layer in a VNN as containing vector units, with vectorized weight-
shared connections to the first hidden layer. In particular, given n0 scalar input components a0i
(i = 0, . . . , n0− 1), we can construct Kn0 vector input units a0iµ (i = 0, . . . ,Kn0− 1) according to

a0iµ = δµνa
0
j , j = i mod n0, ν =

⌊
i

n0

⌋
(A1)

where δµν is the Kronecker delta and b·c is the floor function (note that indices must start at zero for
this formula to apply). This construction mimics the effect of having n0 scalar inputs with all-to-all
connectivity with components of the vector units in the first hidden layer.

C Assumption in GEVB sign match proof

Section 3.3 of the main text proves nonnegativity of δ̂`i . We require one assumption, stated here, to
prove strict positivity of δ̂`i . Let a path refer to an inclusive sequence of units connecting two units
in different layers of a VNN. Let the value of a path be the product of the weights along the path.
We call a path active if all units along the path are in the active regimes of their nonlinearities. We
borrow this terminology from [1]. To guarantee strict positivity of δ̂`i , we assume that, for all training
examples, each hidden unit has at least one active path with nonzero value connecting it to the output
unit.

When training VNNs, this assumption is violated for units in the last hidden layer that have zero
weight onto the output unit, in which case the GEVB weight update is nonzero while the gradient is
zero. This is insignificant in practice as the sign of the GEVB weight update is what the sign of the
gradient would be if the weight were positive.

D Alternative derivation of GEVB

Starting from a general vectorized network, one can derive weight nonnegativity, the required form
of the vector nonlinearity, and the GEVB learning rule itself from the requirement that the gradient
sign is computable using only pre- and postsynaptic activity and the output error vector. Consider a
vectorized network with arbitrary vector-to-vector nonlinearity Φ. We then write down the derivative
of the loss with respect to a particular weight w`ij (i.e., Eq. 10 of the main text but leaving Φ arbitrary).
Using the chain rule, we have

∂L
∂w`ij

=
∑
µ,ν,ρ

eµ
∂aLµ
∂a`iν

Φ′νρ
(
h`i
)
a`−1jρ (A2)

where Φ′νρ is the Jacobian of the vector nonlinearity. We then ask: under what conditions can the
sign of this derivative be computed given only the presynaptic activation a`−1jρ , the local Jacobian
Φ′νρ

(
h`i
)
, and the error vector eµ? As per Eq. A2, this is possible if the global Jacobian, ∂aLµ/∂a

`
iν ,

is a positively scaled identity matrix. We therefore write down the backpropagation equation for the
global Jacobian (i.e., Eq. 11 of the main text but leaving Φ arbitrary),

∂aLµ
∂a`iν

=

n`+1∑
k=1

∑
ρ

∂aLµ

∂a`+1
kρ

Φ′ρν
(
h`+1
k

)
w`+1
ki . (A3)

We see from this recurrence relation that requiring the global Jacobian to be a positively scaled
identity matrix forces w`+1

ki ≥ 0 and forces Φ′ρν to be proportional to a nonnegatively scaled identity
matrix. Having Φ′ρν proportional to a nonnegatively scaled identity matrix forces a nonlinearity of
the form Eq. 7 of the main text. Setting the global Jacobian term in Eq. A2 to a positively scaled
identity matrix yields the GEVB learning rule.

E Gradient alignment angle and relative standard deviation

Throughout this work, when computing the angular alignment of GEVB or DFA weight updates with
the gradient, we do not include the derivative-of-nonlinearity term. Equivalently, these alignment

4



angles are computed with the assumption that all postsynaptic units are in the active regimes of
their nonlinearities. This method follows the recommendations of Launay et al. [2] for measuring
alignment angles in DFA. For a GEVB weight update, the alignment angle is given by

cos θ` =
δ̂` · 1
‖δ̂`‖‖1‖

, (A4)

where δ̂` = {δ̂`i}
n`
i=1 comes from the gradient and the constant vector 1 comes from the GEVB

weight update, which sets δ̂`i = 1. We define the empirical mean, variance, and relative standard
deviation of the distribution of δ̂`i in layer ` as

µδ̂` =
1

n`

n∑̀
i=1

δ̂`i , σ2
δ̂`

=
1

n`

n∑̀
i=1

(
δ̂`i − µδ̂`

)2
, r` =

σδ̂`

µδ̂`
. (A5)

We have δ̂` · 1 = n`µδ̂` , ‖1‖ =
√
n`, and

‖δ̂`‖ =

√√√√ n∑̀
i=1

(
δ̂`i

)2
=

√
n`

(
σ2
δ̂`

+ µ2
δ̂`

)
. (A6)

Thus, Eq. A4 becomes

cos θ` =
1√

1 + (r`)
2
. (A7)

Solving for r`, we obtain (
r`
)2

=
1− cos2 θ`

cos2 θ`
=

sin2 θ`

cos2 θ`
= tan2 θ`. (A8)

For r` > 0, we therefore have the simple relation tan θ` = r`.

F Concentration of relative standard deviation in wide networks

Here we prove the recurrence relation of Eq. 15 in the main text. Given the empirical mean and
variance of the of the distribution of δ̂`+1

i in layer ` + 1, we will compute the expectations of the
empirical mean and variance of the distribution of δ`i in layer ` with respect to the randomness of the
weightsW `+1 and the gating variables G`+1

i = G(h`+1
i ). We assume that the layer-(`+ 1) weights

are sampled i.i.d. from a distribution with mean µw`+1 > 0 and variance σ2
w`+1 . We assume that the

gating variables G`+1
i are zero or one with equal probability.

Using Eq. 13 of the main text, the expected empirical mean is

E
[
µδ̂`
]

= E
[
δ̂`i

]
=
n`+1

2
µw`+1µδ̂`+1 . (A9)

Meanwhile, the expected empirical variance can be written

E
[
σ2
δ̂`

]
= E


δ̂`i − 1

n`

∑
j

δ̂`j

2
 =

(
1− 1

n`

)(
E

[(
δ̂`i

)2]
− E
i 6=j

[
δ̂`i δ̂

`
j

])
. (A10)

Toward evaluating E
[
σ2
δ̂`i

]
, we use Eq. 13 of the main text to compute

E

[(
δ̂`i

)2]
=

1

4
µ2
w`+1

∑
j 6=k

δ̂`+1
j δ̂`+1

k +
n`+1

2

(
µ2
w`+1 + σ2

w`+1

) (
µ2
δ̂`+1 + σ2

δ̂`+1

)
(A11)

and
E
i 6=j

[
δ̂`i δ̂

`
j

]
=

1

4
µ2
w`+1

∑
j 6=k

δ̂`+1
j δ̂`+1

k +
n`+1

2
µ2
w`+1

(
µ2
δ̂`+1 + σ2

δ̂`+1

)
. (A12)

5



Substitution of Eqns. A11 and A12 into Eq. A10 yields

E
[
σ2
δ̂`

]
=

(
1− 1

n`

)
n`+1

2
σ2
w`+1

(
µ2
δ̂`+1 + σ2

δ̂`+1

)
≈ n`+1

2
σ2
w`+1

(
µ2
δ̂`+1 + σ2

δ̂`+1

)
.

(A13)

Altogether, we have √
E
[
σ2
δ̂`

]
E
[
µδ̂`
] =

√
2

n`+1

σw`+1

µw`+1

√
1 + (r`+1)

2
. (A14)

We obtain the recurrence relation in Eq. 15 of the main text by approximating the empirical quantity
r` as the ratio of expectations on the LHS of Eq. A14. This approximation is valid when the relative
standard deviation of the weight distribution σw`+1/µw`+1 is smaller than order

√
n`+1, in which

case the variance of µδ̂` is small compared to its expectation.

G Architectures

Architectural details for MNIST and CIFAR-10 models are shown in Tables 1 and 2, respectively. We
used the same architectures for vectorized and conventional networks. Note, however, that vectorized
networks have a factor of K more weight parameters in the first layer due to the lack of vectorized
weight sharing in this layer. In convolutional networks, we used the same gating vector t for all units
in the same channel.

Table 1: MNIST architectures. FC: fully connected layer. Conv: convolutional layer. LC: locally
connected layer. For fully connected layers, layer_size is shown. For convolutional and locally
connected layers, (num_channels, kernel_size, stride, padding) are shown. The same
architectures are used for conventional and vectorized networks.

Fully connected
FC1 1024
FC2 512

Convolutional
Conv1 64, 3× 3, 1, 1

AvgPool 2× 2
Conv2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Locally connected
LC1 32, 3× 3, 1, 1

AvgPool 2× 2
LC2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Table 2: CIFAR-10 architectures. Conventions are the same as in Table 1.

Fully connected
FC1 1024
FC2 512
FC3 512

Convolutional
Conv1 128, 5× 5, 1, 2

AvgPool 2× 2
Conv2 64, 5× 5, 1, 2

AvgPool 2× 2
Conv3 64, 2× 2, 2, 0
FC1 1024

Locally connected
LC1 64, 5× 5, 1, 2

AvgPool 2× 2
LC2 32, 5× 5, 1, 2

AvgPool 2× 2
LC3 32, 2× 2, 2, 0
FC1 512

H Global error-vector broadcasting in convolutional networks

Convolutional networks use shared weights. When we apply GEVB in convolutional networks, we
update each weight by the sum of all GEVB updates involving that weight. An equivalent description
is the following. In a conventional convolutional network, weight updates are obtained by performing
a convolution of the presynaptic activations with the postsynaptic backpropagated signal. When
using GEVB, we replace the presynaptic signal with the inner product of the presynaptic vector
activations and the output error vector; and the postsynaptic signal with the binary activation mask of
the postsynaptic units.

6



I Training

Models were trained on an in-house GPU cluster. Running all 48 experiments in Tables 1 and 2 of the
main text took ∼10 days using a single GPU, and we ran all experiments five times in parallel using
five GPUs. We used the Adam optimizer with hyperparameters β1 = 0.9, β2 = 0.999, and ε = 10−8

[3]. We used a constant learning rate of α = 3× 10−4. Models were trained for 190 epochs or until
the train error was zero at a checkpoint. Checkpoints were performed every 10 epochs. We used a
mini-batch size of 128 for both datasets. We used the usual train/test splits for these datasets (60,000
and 50,000 training examples for MNIST and CIFAR-10, respectively; 10,000 test examples for
each). In nonnegative networks, negative weights were set to zero following each update for layers
` > 1.

J Direct feedback alignment

We used a PyTorch implementation of DFA from Launay et al. [4], modifying the code in the
“TinyDFA” directory of their codebase.1 To perform DFA in a multilayered network, this code
samples one large random matrix, then uses submatrices of this matrix for the feedback to each
layer. For mixed-sign networks, we sampled this matrix i.i.d. uniform over [−1, 1]. For nonnegative
networks, we sampled this matrix i.i.d. uniform over [0, 1], similar to Lechner [5].

K t-SNE

Before applying t-SNE, we projected the convolutional representations down to 600 dimensions using
PCA. As the vectorized representations were higher dimensional than the conventional representations
by a factor of K = 10, this projection put the dimensionalities on the same scale. We used a fast
GPU implementation of t-SNE from Chan et al. [6]. We used the same hyperparameters as Launay
et al. [4], namely, perplexity = 20, learning_rate = 100, and n_iter = 5, 000.

L Potential negative societal impacts

The computational complexity of the forward pass in VNNs is larger by a factor of K than in
conventional networks. Thus, widespread adoption of VNNs in large-scale applications, however
unlikely, could result in significant energy consumption.

M Summary of mathematical results

• Equivalence of scalar and vector VNN input formats (statement at the end of Section 3.1;
proof in Appendix B)

• GEVB matches the sign of the gradient (statement and proof in Section 3.3; relies on a
technical condition regarding "active paths" in Appendix C)

• Relationship between gradient alignment angle and relative standard deviation (statement in
Section 4; proof in Appendix E)

• Exact agreement of GEVB updates with gradient in the infinite-width limit (statement in
Section 4; proof in Appendix F)

• ON/OFF initialization results in a subnetwork with the same activations as a network of half
the size with i.i.d. mixed-sign weights (statement in Section 5; proof is straightforward)

• Eigenvalues and eigenvectors of the ON/OFF matrices (statement in Section 5; proof is
straightforward)

1https://github.com/lightonai/dfa-scales-to-modern-deep-learning

7

https://github.com/lightonai/dfa-scales-to-modern-deep-learning


References
[1] Chandrashekar Lakshminarayanan and Amit Vikram Singh. Neural path features and neural path

kernel : Understanding the role of gates in deep learning. In Advances in Neural Information
Processing Systems, volume 33, 2020.

[2] Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with
direct feedback alignment. arXiv preprint arXiv:1906.04554, 2019.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[4] Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. In Advances in Neural Information
Processing Systems, volume 33, 2020.

[5] Mathias Lechner. Learning representations for binary-classification without backpropagation. In
International Conference on Learning Representations, 2019.

[6] David M Chan, Roshan Rao, Forrest Huang, and John F Canny. t-sne-cuda: Gpu-accelerated
t-sne and its applications to modern data. In 2018 30th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pages 330–338. IEEE, 2018.

8


	Supplementary figures
	Formulation of VNNs using vector input units
	Assumption in GEVB sign match proof
	Alternative derivation of GEVB
	Gradient alignment angle and relative standard deviation
	Concentration of relative standard deviation in wide networks
	Architectures
	Global error-vector broadcasting in convolutional networks
	Training
	Direct feedback alignment
	t-SNE
	Potential negative societal impacts
	Summary of mathematical results

