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Table 1: The statistics of three real-world graphs. Note that
‘#’ means ‘the number of’. ‘Attr.’ refer to ‘Attributes’. ‘Avg.’
represents ‘Average’.

Graph #Nodes #Edges #Attr. Avg. Degree Label Proportion (%)
ACMv9 (A) 9,360 15,602 5,571 1.667 20.5/29.6/22.5/8.6/18.8

Citationv1 (C) 8,935 15,113 5,379 1.691 25.3/26.0/22.5/7.7/18.5
DBLPv7 (D) 5,484 8,130 4,412 1.482 21.7/33.0/23.8/6.0/15.5

1 EXPERIMENTS
1.1 Datasets
Our experiments involves three real-world graphs: ACMv9 (A),
Citationv1 (C), and DBLPv7 (D). Table 1 displays various statisti-
cal information of three graphs, including graph scale, attributes,
average degree, and label proportion. We can observe substantial
intrinsic discrepancy among these graphs. In this paper, we adopt
an alternating approach where we select one of these graphs as the
source domain, while considering the remaining two as the target
domains.

1.2 Implementation Details
We conduct our experiments using the PyTorch library and follow
the standard protocols [2] for SGDA in all experiments. We em-
ploy a two-layer GCN as the feature extractor F of our HOGDA
model following [2]. We perform each random experiment five
times record the average accuracy along with standard deviation.

To achieve stable network optimization, we employ Adam op-
timizer with a weight decay of 0.001 and an initial learning rate
of 0.001 during training. In terms of the trade-off coefficients 𝜂
and 𝛽 , we choose 𝜂 = 1 and 𝛽 = 0.5 for all transfer tasks. Notably,
instead of fixing the parameter 𝜂, we adopt a progressive schedule
to dynamically adjust 𝜂 from 0 to 1 by multiplying by 1−exp(−10𝜚 )

1+exp(−10𝜚 )
to more stably train the domain discriminator D, where 𝜚 is the
training progress. We set the training epoch to 200 across all exper-
iments. Furthermore, the hyper-parameter 𝐾 (i.e., order of moment
feature) in the HSIM module is set to 3 (see Figure X for further
analysis). Note that it is also simple to change the prior 𝑢 in TNC
strategy from the uniform distribution to any arbitrary distribution
in the objective functionI if there is any extra knowledge about the
frequency of clusters. Additionally, the dimension of node features
𝑒 is consistently set to 512 for all methods, including the compared
methods.

2 MORE EXPERIMENTS AND ANALYSIS
2.1 More Ablation Study
7) Effect of Mixed Entropy-aware Weighted Mechanism 𝑤 :
To show the effectiveness of the node weighted mechanism𝑤 in
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Figure 1: Transfer performance (%) with nodeweighted strate-
gies on tasks A→C and A→D. Source Graph Label Rate: 5%.

our AWDA strategy, we compare HOGDA-A with its three variants
on two typical transfer tasks: A→C and A→D. The variants of
HOGDA-A are as follows: (1) HOGDA-A (w/o E𝐷 ), the variant
only utilizes the entropy of classifier output E𝐶 to estimate node
transferability, i.e.,𝑤 (𝑛𝑖 ) = 1 + 𝑒−E𝐶 . (2) HOGDA-A (w/o E𝐶 ),
the variant simply utilizes the entropy of discriminator output to
estimate node transferability, i.e.,𝑤 (𝑛𝑖 ) = 1 + 𝑒E𝐷 . (3) HOGDA-A
(w/o E𝐶 ,E𝐷 ), the variant assigns equal weight to different nodes,
i.e.,𝑤 (𝑛𝑖 ) = 1.

The results shows in Figure 1 reflect the following observations:
(1) HOGDA-A (w/o E𝐷 ) greatly outperforms HOGDA-A (w/o E𝐶 )
on both tasks, as the entropy of classifier output E𝐶 can provide
better guidance for the model to achieve the fine-grained alignment
of category distributions. (2)HOGDA-Aworks better than HOGDA-
A (w/o E𝐶 ) and HOGDA-A (w/o E𝐷 ), indicating that dynamically
combining E𝐶 and E𝐷 to re-weight nodes during the adversarial
domain alignment can facilitate the model to learn more transfer-
able features. (3) Compared to HOGDA-A (w/o E𝐶 ,E𝐷 ), HOGDA
and the remaining two variants achieve significant performance
gains on both tasks, indicating the effectiveness of re-weighting
nodes based on their transferability during the adversarial domain
adaptation process.
8) Effect of Trustworthy Weighted Mechanism Ω: To demon-
strate the superiority of the trustworthy weighted mechanism Ω
in our TNC strategy, we compare HOGDA-T with its two variants
on tasks A→C and A→D. The variants of HOGDA-T are as fol-
lows: (1) HOGDA-T (w/oW), the variant simply utilize the spatial
prototype information S to estimate cluster assignment for each
node, i.e., Ω(𝑖, 𝑐) = S(𝑖, 𝑐). (2) HOGDA-T (w/o S), the variant only
utilizes the classifier prediction information W to assign cluster
assignment for each node, i.e., Ω(𝑖, 𝑐) =W(𝑖, 𝑐).

As reported in Table 2, compared to variants HOGDA-T (w/oW)
and HOGDA-T (w/o S) that solely employ S orWn to estimate clus-
tering assignments for each node, our HOGDA-T achieves higher
and more stable transfer performance, as it adaptively combine
S andW to predict the cluster assignment. The improved results



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 2: Transfer performance (%) with different cluster
assignment mechanisms on tasks A→C and A→D. Source
Graph Label Rate: 5%.

Methods A→C A→D
Micro-F1 Macro-F1 Micro-F1 Macro-F1

HOGDA-T (w/oW) 71.5±0.69 68.3±0.88 64.7±0.62 61.1±1.15
HOGDA-T (w/o S) 71.8±0.83 68.7±0.95 64.4±0.81 60.6±1.29
HOGDA-T 74.9±0.42 70.8±0.71 69.0±0.49 64.5±0.92
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Figure 2: Flexibility of HSIM Module. Source Graph Label
Rate: 5%.

Table 3: Detailed training time analysis on task A→C.

Transfer Task Method Training Time
HOGDA-A (Baseline) 62.1167 s

A→C SGDA 76.6956 s
HOGDA 79.7512 s

suggest that our trustworthy weighted mechanism can effectively
guide the discriminative clustering of unlabeled nodes. Additionally,
the results with a smaller fluctuation range also imply the stability
of our trustworthy weighted mechanism Ω.

2.2 More Analysis
9) Flexibility of HSIM Module: Other GTL methods can also
achieve performance improvements by leveraging theHSIMmodule
H . Two typical GTL methods, UDA-GCN [4] and AdaGCN [1], are
used as baselines. We compare the Baseline and its variant Baseline
+ HSIM in terms of transfer performance on two transfer tasks
A→C and D→A.

The results illustrated in Figure 2 demonstrate the addition of
HSIM module can help the module capture more domain-invariant
node features and greatly boost generalization performance, par-
ticularly on difficult transfer tasks (e.g., D→A). There improved
results also imply the importance of graph structure information
in GTL task.
10) Training Time: Table 3 shows the training time of HOGDA-
A (baseline), SGDA [2] and our proposed HOGDA on A→C task.
HOGDA-A simply use the source domain classification loss L𝑐𝑙𝑠

and AWDA strategy to optimize the model, resulting in the shortest
training time. Because SGDA utilizes posterior scores-based pseudo-
labeling strategy to guide the clustering of unlabeled nodes, its
training time will be somewhat greater than that of HOGDA-A.
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Figure 3: Parameter sensitivity analysis of hyper-parameter
𝐾 in the HSIM module on tasks A→C and A→D.
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Figure 4: Parameter sensitivity analysis of trade-off coeffi-
cients 𝜂 and 𝛽 on two transfer tasks A→C and A→D.

Due to the introduction of HSIM module and TNC strategy, our
HOGDA models require longer training time (1.28x) than baseline
HOGDA-A, which does not significantly increase the training time
but brings a large performance gain.

2.3 Parameter Sensitivity
11) Effect of Number of Mixed Order Moment Features 𝐾 : As
depicted in Figure 3, we investigate the effect of hyper-parameter
𝐾 (i.e., the number of mixed order moment features) in the HSIM
module on transfer tasks A→C and A→D. It can be observed that
as 𝐾 increase, the model’s transfer performance first improves and
then declines. It suggests that incorporating a broader range of
high-order moments information can boost the model’s generaliza-
tion ability. However, including an excessive number of high-order
moment features can lead to a decline in the model’s performance.
This is because excessively high-order moments may cause more
instability during the training process [3], resulting in performance
degradation.
12) Effect of Trade-off Coefficient: Figure 4 illustrates our eval-
uation of the sensitivity of several hyper-parameters on transfer
tasks A→C and A→D. The evaluated hyper-parameters include
two trade-off parameters, namely 𝜂 and 𝛽 . As 𝜂 grows, the model’s
transfer ability first rises and then falls, implying that selecting an
appropriate value to adjust the AWDA loss L𝑎𝑤𝑑𝑎 can effectively
promote the learning of transferable features and mitigate feature
distributions discrepancy. In terms of the coefficient 𝛽 , our model
exhibits strong robustness to variations in 𝛽 , and we find that 0.5 is
the optimal value for both tasks.

3 CODE
We assure a release of code following publication.
We sincerely appreciate the reviewers’ patience.
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