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7. Model Details

7.1. Model Architecture

To complement the simplified pipeline presented in the
main paper, we provide a more detailed illustration of
SNAP in Fig. 6. Specifically, the Mask Decoder is decom-
posed into a Prompt-Point Attention module and three ded-
icated MLP heads that process the mask, score, and CLIP
tokens, together with the spatial prompt embeddings. For
completeness, we also indicate the corresponding super-
vision signals, showing how each type of prediction con-
tributes to the overall training objective through its associ-
ated loss functions.

7.2. Details on Loss Functions

Focal and Dice Loss. Following Interactive4D [5], we ap-
ply a distance-based, click-localized weight to the point-
wise Focal loss and Dice loss terms (Lfocal and Ldice). Con-
cretely, for each point pi ∈ P, we compute its normal-
ized distance to its nearest spatial prompt point p∗

sp: di =
Dist(pi,p

∗
sp). If di is below a threshold τd, the weight is

defined to decay linearly from wmax to wmin as the distance
increases; otherwise, the weight is set to wmin. Formally,
the weight of each point is defined as:

w(pi) =

{
wmax − (wmax − wmin) di, di < τd,

wmin, otherwise.
(3)

In our implementation, we set wmax = 2, wmin = 1, and
τ = 0.5. This weighting strategy increases the contribution
of points closer to spatial prompts (clicks), encouraging the
model to focus its supervision around click regions while
preserving global mask consistency.
Auxiliary Loss. In addition to the final mask prediction
loss described above, we strengthen supervision by lever-
aging the spatial prompt embeddings corresponding to in-
dividual clicks. The intuition is that each click should in-
dependently guide a plausible mask prediction, rather than
only contributing through the aggregated mask token. To
achieve this, we treat the P prompt embeddings extracted
from Zsp ∈ RM×(P+3)×D as auxiliary mask tokens and
feed them through the same mask head described in the
method section. This yields M × P auxiliary mask predic-
tions, which are supervised using standard point-wise fo-
cal and Dice loss terms. The resulting auxiliary loss Laux
encourages individual clicks to directly align with the seg-
mentation masks, thereby providing more fine-grained su-
pervision.
Confidence Score Loss. To improve the reliability of mask
confidence score estimation, we supervise this score predic-
tion process with Lscore. Intuitively, this score should reflect
the quality of the predicted mask, which we approximate
by its intersection-over-union (IoU) with its corresponding
ground-truth mask. Concretely, given the predicted mask
Mi, we first obtain a binarized mask by thresholding it:
Mi > τ . The IoU between this mask and its ground-truth
counterpart M∗

i is then computed and used as the regres-
sion target: S∗i = IoU(Mi > τ,M∗

i ). Finally, we formu-
late the score loss as a mean squared error (MSE) between
the predicted score and the IoU target:

Lscore =
1

M

M∑
i=1

(
Si − S∗i

)2
, (4)

where Si denotes the predicted score for the i-th mask.
Text Loss. To supervise the predicted CLIP tokens LCLIP,
we follow a prototype-based classification scheme against
the CLIP text vocabulary embeddings T ∈ RC×DCLIP . After
L2 normalization, cosine similarities between LCLIP and T
yield logits Z = LCLIP ·T⊤ ∈ RM×C . For the i-th sample
with ground-truth label y, let pi = softmax(Zi)y denote the
probability of the correct class. We then apply a focal loss
with focusing parameter γ = 2.0 and no additional class
re-weighting, which gives the text loss:

Ltext =
1

M

M∑
i=1

(
1− pi

)γ(− log pi
)
. (5)
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(a) Prompt-Point Attention Module. (b) Text Encoder & Prediction Heads.

Figure 6. Detailed architecture of SNAP. (a) The Prompt-Point Attention module refines both point and prompt embeddings within the
Mask Decoder. (b) The refined embeddings are then fed into several lightweight prediction heads for mask, confidence score, and CLIP
embedding predictions. For completeness, we also indicate the external CLIP Text Encoder for processing text prompts and the supervision
signals associated with each branch.

7.3. Auto Prompt Generation

Given an input point cloud P with N points, let F denote
the segmentation model and d the scene domain (outdoor /
indoor / aerial). We define v0 as the initial domain-specific
voxel size, Kmax as the maximum number of iterations, τs
as the predicted confidence score threshold, and τnms as the
NMS IoU threshold. The algorithm iteratively generates
prompt points, segments objects of decreasing scales, and
refines the results across iterations, as illustrated in Fig. 7.
Finally, it outputs a set of masks M, their corresponding
text embeddings T , and confidence scores S. The complete
procedure is summarized in Alg. 1.

8. Implementation Details
8.1. Details on Evaluation Metrics

IoU@k. Following conventions from [2, 3, 5], we eval-
uate using IoU@k, the average intersection over union
(IoU) achieved with k clicks per object, averaged across all
objects.
Average Precision. In our comparisons against the base-
lines for open-vocabulary segmentation, we use the Average
Precision metric defined as follows -

mAP =
1

C × 10

C∑
c=1

0.95∑
τ=0.5

APc
τ (step size = 0.05) (6)

where C is the number of classes.
Panoptic Segmentation metrics. To assess panoptic qual-
ity, we utilize the Panoptic Segmentation metrics as defined
in [40] and as used by SAL [7]. Specifically, PQ is Panoptic
Quality, SQ is Segmentation Quality and RQ is Recognition
Quality. TP, FP, FN represent True Positives, False Positives
and False Negatives respectively. For class-aware segmen-
tation, A prediction is counted as a TP if it has a IoU > 0.5

Algorithm 1 Mask generation with iterative prompting al-
gorithm.

Input: Point cloud P = {pi}Ni=1, segmentation model F ,
scene domain d, initial domain-specific voxel size v0,
maximum number of iterations Kmax, confidence score
threshold τs, NMS IoU threshold τnms

Output: Set of masksM, text embeddings T , confidence
scores S

1: v0 ← domain-specific voxel size
2: C ← {0}N ▷ Coverage mask
3: M, T ,S ← ∅
4: for k = 0 to Kmax − 1 do
5: U ← {pi : Ci = 0} ▷ Get uncovered points
6: vk ← v0/2

k ▷ Halve voxel size
7: Q ← VoxelDownsample(U , vk) ▷ Generate

prompts
8: Mk, T k,Sk ← F(P,Q) ▷ Run model
9: for j = 1 to |Mk| do

10: if Skj ≥ τs then
11: M←M∪ {Mk

j }
12: T ← T ∪ {T k

j }
13: S ← S ∪ {Skj }
14: C ← C ∨Mk

j ▷ Update coverage
15: end if
16: end for
17: end for
18: M, T ,S ← NMS(M, T ,S, τnms)
19: returnM, T ,S

and the correct label. For class-agnostic segmentation, we
assume class predictions are correct and TP is counted if
IoU > 0.5.



Table 10. Summary of Dataset Statistics.

Training Datasets

Dataset Train Val Domain Sensor Type

SemanticKITTI 19,130 4,071 Outdoor HDL-64 LiDAR
nuScenes 28,130 6,019 Outdoor 32-beam LiDAR
PandaSet 2,000 400 Outdoor Pandar64
ScanNet 1,201 312 Indoor RGBD Camera
HM3D 1805 481 Indoor RGBD camera
STPLS3D 3,395 500 Aerial Photogrammetry
DALES 2,900 1,100 Aerial Aerial LiDAR

Total 58,561 12,883

Zero-Shot Validation Datasets

Dataset Val Domain Sensor Type

Waymo 5,976 Outdoor Proprietary LiDAR
KITTI-360 SS 13,440 Outdoor HDL-64 LiDAR
KITTI-360 Full 61 Outdoor HDL-64 LiDAR
KITTI-360 Crops 3,421 Outdoor HDL-64 LiDAR
Matterport3D 233 Indoor RGBD Camera
ScanNet++ 178 Indoor RGBD Camera
S3DIS Crops 2,330 Indoor RGBD Camera
S3DIS Full 68 Indoor RGBD Camera
UrbanBIS 46 Aerial Photogrammetry

Total 25,753

PQ =
|TP |

|TP |+ 1
2 |FP |+ 1

2 |FN |︸ ︷︷ ︸
Recognition Quality (RQ)

×
∑

(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
Segmentation Quality (SQ)

(7)

8.2. Dataset Details

We provide a summary of the dataset statistics in Tab. 10.
Samples from each dataset illustrating the various domains
are visualized in Fig. 8, 9 and 10.

8.2.1 Indoor Datasets

ScanNetV2 [11] is a richly annotated dataset of 3D indoor
scenes, covering a wide variety of scenes including offices,
rooms, hotels etc. It provides semantic segmentation masks
for 200 fine-grained classes, known as ScanNet200, and 20
coarser classes known as ScanNet20. We evaluate on both
the benchmarks.
Habitat Matterport 3D [12] is a large scale annotated
dataset for 3D indoor scenes which covers 216 3D spaces
and 3100 rooms within these spaces. It provides instance
annotation for 40 categories. After processing, it provides
us with 1805 samples for training and 481 samples for vali-
dation.
ScanNet++ [17] comes with high-fidelity 3D mask annota-
tions including smaller objects which are not well labeled in

the ScanNet datasets. It includes high-resolution 3D scans
captured at sub-millimeter precision and annotated compre-
hensively, covering objects of varying sizes.
Matterport3D [18] is a collection of 90 high-quality 3D re-
constructions of indoor environments with instance annota-
tions for 21 object categories. After processing, it provides
us with 233 samples for validation.
S3DIS Full [19] is a collection of 6 large scale scenes cov-
ering 271 rooms. it provides annotations for 13 semantic
classes. Following prior works [3, 4, 29] in instance seg-
mentation, we use Area 5 for evaluation which contains 68
samples for validation.
S3DIS Crops is proposed by AGILE3D [3] in their eval-
uation setting, cropping the validation samples from the
original S3DIS dataset around each instance into 3m × 3m
blocks. They provide the processed data on their github
here. We call this dataset variant S3DIS Crops.

8.2.2 Outdoor Datasets

Outdoor datasets include two types of classes: things, which
have instance labels, and stuff, which do not. This distinc-
tion can hinder the effectiveness of a promptable segmenta-
tion model. To address this, we use an off-the-shelf cluster-
ing algorithm, HDBSCAN [39], to provide us with pseudo
instance labels for the stuff classes, enabling instance-wise
promptable training on these categories. Details about
HDBSCAN are provided in § 8.3.
SemanticKITTI [8] is derived from the KITTI Odometry
[20] datasets. Each point in the dataset is densely labeled
with one of C = 19 classes divided into things (with in-
stance labels) and stuff (without instance labels) classes.
We run HDBSCAN [39] to generate instance labels for the
stuff classes.
nuScenes [9] is a comprehensive dataset that includes over
1000 diverse driving records, each lasting around 20 sec-
onds. The LiDAR data from nuScenes is densely annotated
with C = 32 classes, again divided into things and stuff
classes. We run HDBSCAN [39] to generate instance la-
bels for the stuff classes.
PandaSet [10] is an autonomous driving dataset featuring
103 driving sequences lasting about 8 seconds each. We
only use a subset of 39 out of 103 scenes as the original
dataset download links have expired. The dataset used for
our training can be found at Kaggle. It provides semantic
annotations for 37 classes divided into 28 things and 9 stuff
classes. We run HDBSCAN [39] to generate instance labels
for the stuff classes.
KITTI-360 Full [21] is a large-scale outdoor driving
dataset which provides 360-degree annotations on point
clouds, including bounding boxes, semantic, and instance
annotations. The original dataset only provides labels for
down-sampled superimposed point clouds. We call this

https://drive.google.com/file/d/1cqWgVlwYHRPeWJB-YJdz-mS5njbH4SnG/view?usp=sharing
https://www.kaggle.com/datasets/usharengaraju/pandaset-dataset


original version KITTI-360 Full. This dataset provides an-
notations on 37 semantic classes in 19 object categories.
KITTI-360 Single Scan is derived from the KITTI-
360 [21] Full dataset by following Interactive4D [5], where
we applied a nearest-neighbor algorithm to propagate la-
bels to individual points in individual scans. We use pub-
licly available scripts for this purpose (Sanchez, 2021). We
call this derived version KITTI-360 Single Scan. This also
contains annotations for 37 semantic classes in 19 object
categories. Since SNAP is trained using HDBSCAN-based
instance labels for stuff classes, it would constitute a differ-
ent evaluation setting if we evaluate on all classes. To keep
evaluations fair, we only evaluate on the 11 things classes
and compare against baselines.
KITTI-360 Crops is also derived from KITTI-360 [21]
Full dataset. Specifically, to keep consistent with prior
works like AGILE3D [3], which evaluated their indoor
models on this variant, we also use the cropped version from
their provided list of preprocessed scenes. This prepro-
cessing includes dividing the original superimposed point
clouds into smaller 3m × 3m chunks centered around the
object instance.
Waymo [22] is a large-scale outdoor driving dataset which
provides semantic labels across 23 classes but does not pro-
vide any instance annotations. However, Waymo does pro-
vide bounding boxes for 4 classes, including vehicle, cyclist,
sign, and pedestrian. We use the combination of bounding
boxes and semantic labels to generate instance labels for
these 4 classes. After preprocessing on the entire validation
set of Waymo, we get 5,976 samples for validation. Our
preprocessed dataset will be released for reproducibility.

8.2.3 Aerial Datasets

STPLS3D [13] is a large-scale photogrammetry point cloud
dataset covering approximately 16km2 of urban and rural
areas in Malaysia. Released in 2020, it contains over 2 bil-
lion labeled points across 25 scenes with annotations for 14
semantic classes. To keep computational demands tractable,
we crop the point clouds to 50m× 50m blocks. The dataset
is generated from aerial imagery using photogrammetric
techniques, providing dense colored point clouds.
DALES [14] is a large-scale aerial LiDAR dataset covering
10km2 of diverse landscapes, including urban, suburban,
rural, and forested areas. It contains over 505 million points
manually annotated with 8 semantic classes. Since DALES
does not provide instance annotations, we again employ
HDBSCAN [39] to generate instance labels for training
and validation. We also crop the point clouds to 50m ×
50m blocks. The dataset provides high-density aerial Li-
DAR data (50 points per m2) captured at varying altitudes,
making it particularly challenging due to large variations in
point density and object scales.

UrbanBIS [24] is a dataset for large-scale 3D urban un-
derstanding, supporting practical urban-level semantic and
building-level instance segmentation. UrbanBIS comprises
six real urban scenes, with 2.5 billion points, covering a vast
area of 10.78km2 and 3,370 buildings, captured by 113,346
views of aerial photogrammetry. It provides annotations on
6 scenes, out of which we evaluate on the Yingrenshi test
scenes. After cropping to 50m × 50m blocks, this provides
us with 46 validation samples.

8.3. HDBSCAN Details

For the outdoor datasets used to train SNAP-C, the datasets
include two types of classes: things, which have instance
labels and stuff which do not have instance labels. From a
promptable segmentation perspective, instance labels from
things classes fit in directly. However, stuff includes classes
such as vegetation, roads, buildings, etc., and is assigned a
single label for all of them. The objects from these classes
can be far away from each other and thus using one label
directly is counterproductive in training a promptable seg-
mentation model. To solve this issue, we propose to pre-
process the datasets with HDBSCAN [39]. Specifically, we
first take all the points belonging to a stuff class, and apply
clustering on it. This helps in making multiple clusters from
single class labels, which can then be used for promptable
segmentation training.

8.4. Training and Inference Details

All SNAP variants are trained for 100 epochs using
8×NVIDIA A6000 GPUs. We train with a batch size of
1, where each batch corresponds to a single point cloud,
from which 32 objects are randomly sampled for supervi-
sion. During training, we set the maximum click budget
to 10. In each iteration, the number of clicks is randomly
sampled between 1 and 10, ensuring that the model is con-
sistently exposed to varying levels of user interaction. We
use mixed-precision training to speed up both the training
and evaluation process. We employ a round-robin style
multi-dataset dataloader that repeats smaller datasets multi-
ple times to keep the sample count similar to large datasets.
During training, this dataloader provides a point cloud from
one of the datasets at each training iteration, with each batch
containing samples from a single dataset. To ensure proper
routing through the correct normalization layer, we follow
[15] and attach a domain variable to each point cloud. Dur-
ing training, this approach allows the network to route the
data to the correct normalization layer. For interactive infer-
ence, this functionality translates into a simple domain-type
checkbox selection, making it highly user-friendly.

https://github.com/JulesSanchez/recoverKITTI360label


Table 11. Backbone Ablation on the ScanNet dataset. Note that
memory and time statistics are reported for 1-Click experiments.

Backbone
IoU@k ↑ Memory

@1 click
Time

@1 click@1 @5 @10

AGILE3D [3] 63.3 79.9 83.7 1.2 GB 203 ms
Minkowski [41] 68.4 82.2 83.4 1.8 GB 213 ms
PTv3 [33] 68.6 82.1 84.6 1.3 GB 197 ms

Table 12. Inference Click Strategy Ablations. We evaluate dif-
ferent click strategies on the ScanNet20 dataset. Random Sam-
pling represents all click points sampled randomly on the target
object. Iterative sampling represents additional click points sam-
pled in the unsegmented region from previous click mask.

Strategy IoU@k ↑ Time (ms)

Random
Sampling

@1 68.6 170
@5 79.4 178
@10 80.5 185

Iterative
Sampling

@1 68.6 170
@5 82.3 190
@10 85.5 211

9. Additional Ablations
9.1. Effect of Backbone Architecture

We use the PTv3 [33] backbone for feature extraction, but
a natural question to ask is, “How is the model perfor-
mance affected if we use a different backbone?” To an-
swer this, we compare PTv3 [33] with the Minkowski
Res16UNet34C[41] backbone, which has been employed
by [2, 3, 5]. The comparison, conducted on the ScanNet
dataset, is summarized in Tab. 11. We observe consistent
improvement in both PTv3 and Minkowski Engine back-
bones against AGILE3D [3], showing that our approach is
equally applicable across both recent transformer-based as
well as the common sparse-convolution-based backbones.
To compute the memory and timing requirements, we use
a random uniform point cloud with 100,000 points on all
methods.

9.2. Effect of Click Strategy

We evaluate two click strategies during inference: (1)
Random-sampling and (2) Iterative Refinement. The re-
sults are shown in Tab. 12, with timing measurements ob-
tained by running the evaluation on a single NVIDIA RTX
3090 GPU. While Iterative Refinement performs much bet-
ter than random sampling, it also runs slower in compari-
son. The random sampling strategy is especially helpful for
users when trying to segment objects in the scene, because
users can give multiple clicks at the beginning (which is
equivalent to random sampling) to get a high-quality mask
and later use refinement clicks to further improve the mask

quality. In SNAP, we provide the flexibility to use both
approaches during inference. To compute inference time,
we used a point cloud from the ScanNet dataset with about
80,000 points.

9.3. Cross-Domain Input Ablation

To determine the effect of passing the wrong domain in-
put when running zero-shot evaluations, we evaluate differ-
ent domain settings of SNAP-C on 3 in-distribution and 6
zero-shot datasets. As demonstrated in Tab. 13, the correct
domain input is crucial for getting good performance from
the model on both in-distribution and zero-shot datasets.
Moreover, while using the outdoor domain on indoor scenes
completely disrupts performance, using the outdoor domain
on aerial scenes still yields reasonable segmentation results,
and vice versa. This is expected because aerial LiDAR cap-
tures are often collected over outdoor environments, which
introduces partial similarities between aerial and outdoor
domains while still retaining distinct characteristics.

10. Additional Quantitative Results
10.1. Timing and Memory Consumption Compari-

son

We compare the computational efficiency of SNAP with
other interactive segmentation methods in Tab. 14, report-
ing inference time and memory consumption on an RTX
3090 GPU for single-object segmentation with 1 click. The
results indicate that SNAP maintains competitive efficiency
across both time and memory. For this test, we use the
same uniform random point cloud with 100,000 points for
all methods.

10.2. Class-Agnostic Interactive Segmentation
against Non-interactive Fully-Supervised
Methods

We evaluate our interactive model variants against state-
of-the-art non-interactive baselines on both in-distribution
and zero-shot datasets as a sanity check for their effec-
tiveness. Since SNAP variants benefit from click super-
vision on all objects in the scene, they are expected to
outperform non-interactive instance segmentation methods.
As shown in Tab. 15, all SNAP variants achieve substan-
tial gains over the current SOTA method EASE[29] on
the ScanNet200 [11] benchmark, surpassing it by a 19.3
point margin with a single click and further improving as
the number of clicks increases (5 and 10). This large
advantage comes from the fact that predicting 200 cate-
gories, especially the long-tailed proportion, is inherently
difficult for non-interactive methods, whereas SNAP ben-
efits from click guidance that helps disambiguate object
boundaries, leading to a much stronger performance. On
the aerial STPLS3D [13] dataset with 14 semantic classes,



Table 13. Effect of Cross-Domain Selection in Domain Normalization. Evaluation results of SNAP-C when applying different domain
types (Indoor, Outdoor, Aerial) in Domain Norm. The domain used for normalization is indicated in teal beneath each result.

Model

IoU @ k
In-Distribution Zero-Shot

SemanticKITTI ScanNet20 STPLS3D Matterport3D S3DIS Full KITTI-360 Full Waymo UrbanBIS

@1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5 @1 @5

SNAP - C 71.5 86.0 19.2 52.3 41.4 66.9 17.4 45.6 15.7 51.3 23.1 48.1 69.8 86.6 55.2 80.1
Norm used Outdoor Outdoor Outdoor Outdoor Outdoor Outdoor Outdoor Outdoor
SNAP - C 7.2 19.1 67.7 82.3 4.9 6.6 52.6 75.2 53.6 77.6 2.4 4.1 1.2 7.8 19.9 27.9
Norm used Indoor Indoor Indoor Indoor Indoor Indoor Indoor Indoor
SNAP - C 27.1 57.9 11 22.1 67.8 80.4 12.6 22.3 8.2 25.6 6.8 28.3 25.1 60.4 71.6 90.2
Norm used Aerial Aerial Aerial Aerial Aerial Aerial Aerial Aerial

Table 14. Model Efficiency Comparison Results. We compare
the timing and memory consumption on an RTX 3090 GPU when
performing single-object segmentation with 1 click.

Method
Model

Size (M)
Memory

(GB)
Inference
Time (ms)

AGILE3D 39.3 1.20 203
Point-SAM 311.0 3.70 287
Interactive4D 39.3 1.05 200
SNAP 49.6 1.27 197

SNAP-C@1 Click shows slightly better performance than
the current SOTA methods, and as expected, this con-
tinues to improve with additional clicks. On the out-
door SemanticKITTI [8] dataset, SNAP variants show very
strong performance, significantly outperforming the SOTA
Mask4Former [43] with 1-Click.

When evaluating zero-shot on unseen datasets like Scan-
Net++ [17] and Matterport3D [18], SNAP outperforms
these method by 8.6 points on ScanNet++ and 14.5 points
on Matterport3D. Notably, both the baseline methods
LaSSM [44] and ODIN [45] were trained on ScanNet++
and Matterport3D datasets respectively. Further on the
aerial UrbanBIS [24] dataset, SNAP again outperforms the
B-Seg [24] baseline which was trained on the dataset. With
additional clicks, this performance continues to improve.

10.3. Interactive segmentation results with all
model variants

Tab. 16 presents results for all SNAP variants on in-
distribution datasets. For datasets lacking established base-
lines, we compare against zero-shot results from single-
dataset models and in-distribution results from single-
domain models. SNAP-C achieves the best 1-click perfor-
mance on 4/7 datasets, best 3-click results on 6/7 datasets,

and optimal performance across all datasets for higher click
counts, demonstrating effective performance with a unified
model.

Tab. 17 evaluates all SNAP variants on unseen datasets.
SNAP-C outperforms baselines on 6/9 datasets for 1-click
performance and maintains strong performance across dif-
ferent click counts (7/9 for 3-click, 6/9 for 5-click, 7/9 for 7-
click, and 7/9 for 10-click). This demonstrates robust gener-
alization across diverse domains. Notably, while SNAP-C
may not achieve state-of-the-art performance on every in-
dividual dataset, it is the only method that operates across
all domains with a single set of weights, unlike approaches
such as AGILE3D [3] that require separate models for dif-
ferent scene types.

11. Additional Qualitative Results
We provide additional qualitative results, showcasing the
performance of our SNAP model across different tasks.
Fig. 11 demonstrates the model’s capability in open-
vocabulary scene understanding on the ScanNet++ dataset
by using arbitrary queries involving object categories
that are not present during training. Fig. 12-20 present
point-based segmentation results on the ScanNet, Se-
manticKITTI, and STPLS3D datasets, respectively. For
each domain, we compare the ground truth masks with our
model’s outputs under 1-click, 5-click, and 10-click interac-
tion settings, reporting the corresponding mean IoU values.
These results demonstrate the effectiveness of our approach
in diverse environments, emphasizing the flexibility and ro-
bustness of our method across diverse segmentation chal-
lenges.
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(d)
Figure 7. Visualization of the Iterative Prompting algorithm. (a.1): Generate prompt points with a large voxel size to segment out large
objects in the scene, (a.2): All the points segmented after first iteration (Yellow color). (b.1): Reduce the voxel size and generate prompt
points on the unsegmented points. (b.2): All points segmented after Iteration 1 (yellow) and 2(dark green). (c.1): Reduce voxel size again
and repeat. (c.2): All points segmented after Iteration 1 (yellow), 2(dark green) and 3 (light green). (d): Final instance masks after Non
Maximum Suppression.



Figure 8. Samples from Training Datasets. Here we present samples taken from the training datasets to showcase the difference in scale,
point density and scene types. Note that the dataset name is displayed in each figure. From the top - DALES and STPLS3D are aerial
datasets, ScanNet and HM3D are indoor scene datasets and SemanticKITTI and nuScenes are outdoor scene datasets. HM3D provides full
room scenes, point size has been reduced for better understanding of the scene.



Figure 9. Samples from Validation Datasets. We evaluate SNAP on a variety of datasets. From the top - UrbanBIS is an Aerial scene;
Waymo, KITTI-360 Crops, KITTI-360 Single Scan, and KITTI-360 Full are outdoor scene datasets. Note the difference in the variants of
KITTI-360. KITTI-360 Crops particularly represents small-scale dense scenes generally found in indoor point clouds, while KITTI-360
Single Scan shows a traditional point cloud collected with a LiDAR sensor, and KITTI-360 Full shows an aggregated point cloud map built
by combining multiple LiDAR scans.



Figure 10. Samples from Validation Datasets. Here we show the examples from Indoor datasets used for validation. Note that S3DIS
Crops is a cropped version of the full S3DIS point clouds, therefore some objects appear truncated. ScanNet++ provides full room scenes,
point size has been reduced for better understanding of the scene.



Table 15. Class Agnostic Instance Segmentation Comparison against Non-Interactive Fully-Supervised Methods. We compare SNAP
against state-of-the-art baselines for in-distribution and zero-shot datasets on the instance segmentation task in a class-agnostic fashion.

In-distribution Evaluation
ScanNet200 Validation Set

Method mAP mAP50 mAP25

EASE [29] 29.9 38.8 44.7

@1 @5 @10 @1 @5 @10 @1 @5 @10

SNAP - SN200 47.9 68.1 73 69.7 89.6 92.4 84.2 97.3 98.8
SNAP - Indoor 45.2 66.7 73.3 69.3 90.5 95.3 84.8 98.8 99.7
SNAP - C 49.2 69.8 77.5 73.2 91.6 95.9 87.7 99.1 99.8

STPLS3D Validation Set

Method mAP mAP50 mAP25

Mask3D [42] 57.3 74.3 81.6

@1 @5 @10 @1 @5 @10 @1 @5 @10

SNAP - Aerial 56.2 72.9 80.7 74.4 88.9 94 86.5 97.1 98.6
SNAP - C 58.3 75.7 84.4 76.7 91.1 95.3 88.8 98.0 99.1

Semantic KITTI Validation Set

Method PQ SQ RQ

Mask4Former [43] 61.7 81 71.4

@1 @5 @10 @1 @5 @10 @1 @5 @10

SNAP - KITTI 68.6 83.4 87.6 80.9 84.9 88.9 82.7 91.8 97.5
SNAP - Outdoor 69.9 85.1 90.1 82.3 87.9 91.3 84.1 96.3 98.3
SNAP - C 71.1 86.5 90.7 82.7 88.7 91.7 84.8 97.4 98.4

Zero-Shot Evaluation
ScanNet++ Validation Set

Method mAP mAP50 mAP25

LaSSM [44] 29.1 43.5 51.6

@1 @5 @10 @1 @5 @10 @1 @5 @10

SNAP - SN200 32.9 52.1 58.1 49.1 71.9 77.3 62.9 86.1 89.6
SNAP - Indoor 35.9 59.8 66.5 55.5 84.9 89.4 73.3 97.3 98.6
SNAP - C 37.7 60.4 70.1 55.4 83.0 90.9 73.2 94.6 98.1

Matterport3D Validation Set

Method mAP mAP50 mAP25

ODIN [45] 24.7 – 63.8

@1 @5 @10 @1 @5 @10 @1 @5 @10

SNAP - SN200 42.7 62.3 68.8 64.4 85.6 90.9 77.5 95.9 97.1
SNAP - Indoor 36.5 63 70.7 59.2 90.3 93.3 74.2 98.1 98.8
SNAP - C 39.2 64.6 74.3 59.4 88.7 94.5 77.3 96.9 98.7

UrbanBIS Validation Set

Method mAP mAP50 mAP25

B-Seg [24] 62.1 70 73.9

@1 @5 @10 @1 @5 @10 @1 @5 @10

SNAP - Aerial 62.9 84.2 91.1 85.6 95.5 98.2 96.4 99.1 98.2
SNAP - C 62.2 89.1 94.9 84.1 100 100 94.6 100 100



Table 16. In-distribution Interactive Point Cloud Segmentation Results. * indicates models not trained on the evaluation dataset and †
denotes that the methods are evaluated by us.

Domain Dataset Method IoU@k

@1 @3 @5 @7 @10

Outdoor

SemanticKITTI

AGILE3D [3] 53.1 70 76.7 - 83
Interactive4D [5] 67.5 78.3 83.4 - 88.2
SNAP-KITTI 68.1 80.1 84.5 87.5 88.7
SNAP-Outdoor 71.3 81.9 85.7 87.7 89.3
SNAP-C 71.5 81.9 86 88.1 90

nuScenes

AGILE3D* [3] 32.4 47.1 56.4 - 68.4
Interactive4D* [5] 45.5 57.2 64.6 - 74.3
SNAP-KITTI* 50.2 64.3 71.3 74.6 76.9
SNAP-Outdoor 72.4 83.1 88.1 90.2 91.2
SNAP-C 72.2 83.3 88.1 90.3 92.2

Pandaset
SNAP-KITTI 17 29.7 34.2 35.8 36.7
SNAP-Outdoor 60.5 74.8 80.1 82.1 84.3
SNAP-C 56.3 74.6 80.2 82.6 84.4

Indoor

ScanNet20

InterObject3D [2] 40.8 63.9 72.4 - 79.9
AGILE3D [3] 63.3 75.4 79.9 - 83.7
Point-SAM† [4] 52.7 75.9 80.6 82.9 83.3
SNAP-SN 68.6 78.4 82.1 83.4 84.6
SNAP-Indoor 66 77.6 81.3 83 84
SNAP-C 67.7 78.5 82.3 84.1 85.5

HM3D
SNAP-SN 38.7 52.4 58.6 61.4 63.3
SNAP-Indoor 47.1 65.2 71.2 74.0 75.9
SNAP-C 50 66.7 72.9 76.1 78.7

Aerial
STPLS3D

SNAP-Aerial 65.8 74.5 79.1 81.6 83.6
SNAP-C 67.8 75.5 80.4 83.3 85.8

DALES
SNAP-Aerial 60.7 72.5 76.8 78.7 80
SNAP-C 61.6 74 78.2 80.4 82.3



Table 17. Zero-Shot Interactive Point Cloud Segmentation Results. † denotes that the methods are evaluated by us.

Domain Dataset Method IoU@k

@1 @3 @5 @7 @10

Outdoor

Waymo

Interactive4D 7.2 7.3 7.5 7.7 7.9
Point-SAM 12.8 43 53.1 57.4 60.2
SNAP-KITTI 48.2 61.8 66.3 68.4 70
SNAP-Outdoor 68.5 81.8 86 87.4 88.3
SNAP-C 69.8 82.3 86.6 88.2 89.3

KITTI 360 Full

Point-SAM 6.8 22.7 28.1 30.7 32.5
SNAP-KITTI 6.7 25.9 29.7 31.2 32.4
SNAP-Outdoor 18.3 35.2 44.6 47.3 50.2
SNAP-C 23.1 40.1 48.1 51.7 54.2

KITTI 360 Single Scan

AGILE3D 36.3 47.3 53.5 - 63.3
Interactive4D 47.7 59.4 64.1 - 70
SNAP-KITTI 54.4 60.9 63.9 65.5 66.8
SNAP-Outdoor 59.8 63.3 65.9 67.5 69.1
SNAP-C 60.4 64.6 67.7 70.1 72.6

KITTI 360 Crops

AGILE3D 34.8 42.7 44.4 45.8 49.6
Point-SAM 49.4 74.4 81.7 84.3 85.8
SNAP-KITTI 56.1 68.8 72.8 74.3 75.3
SNAP-Outdoor 56.9 70.6 75.6 78.1 80.3
SNAP-SN 54.5 68.6 74.1 76.8 78.6
SNAP-Indoor 54.9 70.2 76.6 79.3 80.4
SNAP-C 65.6 76.1 80 82.1 83.6

Indoor

ScanNet++

Point-SAM† 28.6 56.3 62.9 65.5 67.2
SNAP-SN 45.5 59.9 65.3 67.8 69.5
SNAP-Indoor 51.5 67.9 73.4 75.9 77.6
SNAP-C 52 67.3 73.2 76.3 78.6

Matterport3D

Point-SAM† 41.1 67.2 73.7 76.2 77.9
SNAP-SN 53.4 66.6 71.3 73.7 75.3
SNAP-Indoor 49.9 68.4 74.2 76.4 78.3
SNAP-C 52.6 69.6 75.2 78.2 80.5

S3DIS Crops

AGILE3D 58.7 77.4 83.6 86.4 88.5
Point-SAM 45.9 77.6 84.6 86.9 88.4
SNAP-SN 55.8 68.7 74.1 77.2 79.4
SNAP-Indoor 54.8 73.5 80.5 83.7 85.9
SNAP-C 56.6 73.8 80.9 84.4 87

S3DIS Full

Point-SAM† 35.6 68 76.3 78.9 80.6
SNAP-SN 51.4 64.3 70 72.6 74.8
SNAP-Indoor 51.9 70.1 76.9 79.9 81.9
SNAP-C 53.6 71.1 77.6 80.8 83.2

Aerial UrbanBIS
Point-SAM 39.3 79.1 89.4 92.7 94.3
SNAP-Aerial 74.2 83.2 86.9 89.8 90.6
SNAP-C 71.6 86.2 90.2 92.8 94.7



“Segment tripod.”

“Segment light.” “Segment swivel chair.”

“Segment utility stand.”

“Segment kitchen mat.” “Segment TV stand.” “Segment footrest.”

“Segment desktop.”

“Segment bar table.”

Figure 11. Additional qualitative segmentation results of open-set scene understanding on the ScanNet++ Dataset. Given a text
prompt in the format of “Segment {open-set vocabulary}”, our SNAP model finds the corresponding masks in the scenes.



Figure 12. Additional qualitative results for point-based segmentation on the ScanNet dataset. For each block, we show the ground
truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean IoU values.
Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for better visibility.



Figure 13. Additional qualitative results for point-based segmentation on the ScanNet dataset. For each block, we show the ground
truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean IoU values.
Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for better visibility.



Figure 14. Additional qualitative results for point-based segmentation on the ScanNet dataset. For each block, we show the ground
truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean IoU values.
Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for better visibility.



Figure 15. Additional qualitative results for point-based segmentation on the SemanticKITTI dataset. For each block, we show the
ground truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean
IoU values. Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for
better visibility.



Figure 16. Additional qualitative results for point-based segmentation on the SemanticKITTI dataset. For each block, we show the
ground truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean
IoU values. Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for
better visibility.



Figure 17. Additional qualitative results for point-based segmentation on the SemanticKITTI dataset. For each block, we show the
ground truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean
IoU values. Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for
better visibility.



Figure 18. Additional qualitative results for point-based segmentation on the STPLS3D dataset. For each block, we show the ground
truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean IoU values.
Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for better visibility.



Figure 19. Additional qualitative results for point-based segmentation on the STPLS3D dataset. For each block, we show the ground
truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean IoU values.
Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for better visibility.



Figure 20. Additional qualitative results for point-based segmentation on the STPLS3D dataset. For each block, we show the ground
truth masks alongside our segmentation results for 1-click, 5-click, and 10-click interactions, including the corresponding mean IoU values.
Points with the same color represent the same object, while clicks are highlighted using darker colors and larger spheres for better visibility.
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