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A APPENDIX

A.1 DATA

A.1.1 HONEY BEE DATASET

Two honey bee colonies with individual markers attached to each individual were recorded. Times-
tamps, positions, and unique identifiers of all individuals from these colonies were obtained (details
redacted during double-blind peer review). See Table 1 for dates and number of individuals.

Temporal affinity matrices were derived from this data as follows: For each day, counts of proximity
contact events were extracted. Two individuals were defined to be in proximity if their markers’
positions had an euclidean distance of less than 2 cm for at least 0.9 seconds. The daily affinity
between two individuals i and j based on their counts of proximity events pt,i,j at day t was then
computed as: At,i,j = log(1 + pt,i,j), A ∈ RNt×Ni×Ni , where Nt is the number of days and Ni the
number of individuals in the dataset.

The datasets are open access and will be deanonymized with more details after the double-blind peer
review: Anonymous (2020)

A.1.2 SYNTHETIC DATASET
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Figure 7: Example of one generated synthetic dataset. a) Common lifetime trajectory of all entities.
b) The lifetime trajectory of one random latent group. c) The factors of one individual in the dataset.
d) Generated interaction matrix for one day.

We generated synthetic datasets to evaluate whether the model is able to identify groups of individuals
with common latent factors that determine their interaction frequencies. We model a common lifetime
trajectory for all entities using a smoothed Gaussian random walk in R+ with σwalk = 1 for the steps
of the random walk and σsmoothing = 10 for the Gaussian smoothing kernel. See Figure 7 a) for one
example of a generated lifetime trajectory with three factors. We then randomly create latent groups
by creating smoothed Gaussian random walks that define how these groups differ from the common
lifetime trajectory. See Figure 7 b) for the lifetime trajectory of one latent group. For each group, we
also define different expected mean lifetimes. We set the average lifetime of an entity to 30 days with
a standard deviation of 10 days. We then randomly assign 1024 individuals to those latent groups and
also assign random dates of emergence and disappearance of these individuals in the dataset. We then
compute the individual factor trajectories for each individual, as can be seen in Figure 7 c). Finally,
for 100 days of simulated data, we generate interaction matrices by computing the dot products of the
factors of all individuals (Figure 7 d).
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A.2 MODEL DETAILS AND HYPERPARAMETERS

A.2.1 REGULARIZATION TERMS

Rembeddings = λembeddingsN
−1
i

Ni∑
i=0

K∑
k=0

∣∣φi,k∣∣ (8)

Rf = λfN
−1
i

Ni∑
i=0

Nt∑
t=0

f+(t, i) (9)

Rbasis = λbasisN
−1
a

Na∑
a=0

K∑
k=0

∣∣bk(a)∣∣ Na = 60 (10)

where Na can be any number higher than the oldest individual in the dataset at any time.

Radv = λadvN
−1
i

Ni∑
i=0

log

(
exp(d(φi)c[i])∑Nd

d exp(d(φi)d)

)
(11)

where d(φi) is the probability distribution returned by the discriminative network, c[i] the day the
entitity i emerged in the dataset, and Nd the number of days in the dataset.

See appendix A.4 for an ablation study of the effect of these regularization term on the results.

A.2.2 NETWORK ARCHITECTURE

We use the following neural network architecture for the functions m(c(t, i)), b(c(t, i)), and d(φi):

Linear(Nin, Nh)→ LReLU→ Linear(Nh, Nh)→ LReLU︸ ︷︷ ︸
Nl-times

→ Linear(Nh, Nout)

where Linear is an affine transformation f(x) = Ax+ b and α = 0.3 for the Leaky ReLU activation
function. For m(c(t, i)) and b(c(t, i)): Nin = 1 (the individuals’ ages). For m(c(t, i)): Nout =M
and for b(c(t, i)): Nout =MK. For d(φi): Nin = K and Nout = Nlabels.

A.2.3 HYPERPARAMETERS

Table 4: Hyperparameters used in the evaluated models (if not stated otherwise)
Parameter Value Description

Nl 3 Number of hidden layers
Nh 64 Hidden layer size
M 8 Number of factors
K 16 Number of individuality basis function
Nlabels 100 Number of cohorts
Nbatch 128 Minibatch size
Nsteps 100 000 Number of training iterations
λf 0.1 Factor L1 regularization
λadv 0.1 Factor L1 regularization
λbasis 0.01 Basis function L1 regularization
λembeddings 0.1 Embedding L1 regularization

The scaling factors for the regularization losses (see Table 4) were manually selected by increasing
each factor until it prevented the model from converging (i.e. the reconstruction loss of the full model
f+(t, i) did not improve on the age model m). This initial set of hyperparameters was then manually
refined such that each regularization loss was still effective (e.g. the factor regularization loss Lf
reduced the total number of factors effectively used by the model). Overfitting was not a concern
because the model is fitted unsupervised and the goal of the hyperparameter selection was to find a
set of parameters that is sparse and interpretable, and not to increase the predictive capabilities of the
learned factors.
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A.2.4 MODEL FITTING

The model was fitted using a single GPU (GeForce RTX 2080 Ti). A training run consisting of
200 000 minibatches finished in about six hours. Due to overhead in data loading and preprocessing,
up to three training runs could be executed in parallel without negatively affecting the runtime.

Algorithm 1: Training loop
for b = 0 to Nsteps do

Draw minibatch of Nbatch random individuals
Compute Ât,i,j ∀t for individuals i, j in minibatch
Compute model training loss: equation 5 + regularization
Update parameters for m(c(t, i)), b(c(t, i)), and d(φi)

Compute l̂i = d(φi) for individuals i in minibatch
Compute discriminator training loss
Update parameters for d(φi)

end for

A.3 TRADEOFF BETWEEN TEMPORAL CONSISTENCY AND SEMANTIC MEANINGFULNESS

We performed a grid search over the hyperparameters λf, λadv, λbasis, and λembeddings to evaluate
whether models can only be either semantically meaningful or temporally consistent. For this
analysis, we define Semantic meaningfulness as the sum of the Rhythmicity and Mortality metrics
introduced in section 2.5. We find that models that are very temporally consistent fail to learn
semantically meaningful information. Interestingly, the models with the best tradeoff between the
two metrics are almost as semantically meaningful as those models with low temporal consistency
and the highest semantic meaningfulness. This analysis suggests that regularization encourages the
model to only represent different individuals differently if this is strictly necessary to factorize the
data.
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Figure 8: A grid search over the hyperparameters reveals that models can be temporally consistent,
semantically meaningful, or both. Semantic meaningfulness is the sum of the Rhythmicity and
Mortality metrics introduced in section 2.5. The arrow points to the model with the best tradeoff.

A.4 ABLATION STUDY

As highlighted in section 3, the regularization termsRf andRadv improve the semantic meaningfulness
and temporal consistency of the model. Here we present an ablation study that shows the effects of
the regularization terms on the sparseness and interpretability of the learned factors and embeddings,
and how the adversarial term influences the distribution of the learned embeddings. While the
regularization terms increase the methodological complexity of the model, we argue that they
improve the interpretability of the results.
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Figure 9: A model trained without the regularization terms Rembeddings, Rf, Rbasis, and Radv. The
model uses all eight factors, and many of them are strongly correlated (left). Most individuals
personality offsets are a function of multiple embeddings (right).
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Figure 10: A model trained with only the regularization term Rf. The factor trajectories are now
sparse and uncorrelated (left), most individuals personality offsets are a still a function of multiple
embeddings (right).
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Figure 11: The regularization terms Rembeddings and Rbasis introduce sparseness in the embeddings
(right), and also slightly decorrelate the factor trajectories (left).

A.5 BASELINE MODELS

We implemented SymNMF, and models proposed in Jiao et al. (2017) and Yu et al. (2017) in PyTorch
and compare them to our method. Following the notation given in Yu et al. (2017), we list the degree
of the fitted polynomial as d, and the regularization parameter as β. For the model proposed by Jiao
et al. (2017), we list the regularization as γ. For SymNMF, the Aligned variant refers to the Aligned
symmetric NMF described in section 2.4.

We only evaluate the non-negative and symmetric variants of the models for consistency with our
method. For all baselines, we only list the hyperparameters with the best results that we were able to
obtain.
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Adversarial regularization

Figure 12: Scatter plots of the individuality embeddings φ (reduced to two dimensions using TSNE)
for two models trained without (left) and with adversarial (right) regularization. The color encodes the
dataset of the individuals (Dark = BN16, Bright = BN19). The model with adversarial regularization
learns to embed the individuals from two different colonies that never interacted with each other in a
joint individuality embedding space.

A.5.1 TEMPORAL REORDERING OF FACTORS FOR BASELINE MODELS

Algorithm 2: Temporal reordering of factors for baseline models
for d = 0 to Ndays do
Fresult < −
if d == 0 then
Fprevious_reordered ← Precomputed SymNMF factors of day 0

else
Fcurrent ← Precomputed SymNMF factors of day d
min_loss← 0
Fbest ← Fcurrent
for all permutations p of orderings of factors [0..M ] do
Fcurrent_reordered ← Fcurrent reordered by permutation p
if (Fcurrent_reordered − Fprevious_reordered)

2 < min_loss then
min_loss← (Fcurrent_reordered − Fprevious_reordered)

2

Fbest ← Fcurrent_reordered
end if

end for
Fprevious_reordered ← Fbest

end if
Fresult.insert(Fprevious_reordered)

end for
return Fresult
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A.6 BASIS FUNCTIONS OF FITTED MODEL
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Figure 13: Magnitude of factor offsets for all learned individuality basis functions over age bk(c(t, i)).
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A.7 ADDITIONAL INDIVIDUAL LIFETIME TRAJECTORIES OF FITTED MODEL
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Figure 14: Individual lifetime trajectories: 18 individuals that lived for at least 35 days were randomly
sampled and their factors f(t, i) were computed over all t, constituting their lifetime trajectories.
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