20
21
22
23
24
25
26
27
28

29

30
31

32

33

Robot See Robot Do: Part-Centric Feature Fields for
Visual Imitation of Articulated Objects
Supplementary Material

Anonymous Author(s)
Affiliation

Address
email

A Appendix

A.1 Implementation Details

Part-Centric Feature Fields Our implementation is built on Nerfstudio’s Splatfacto model, taking
advantage of the same splitting and culling logic. We represent DINOv2 ViT-B/14 features by
taking the PCA across all input image features to compress them to 64 dimensions, then assign
every gaussian a learnable 32-dimension vector. These vectors can be rasterized with the exact same
rendering equations as RGB, using the N-D rasterization implementation from the gsplat library.
After rasterization, pixel values are passed through a 4-layer, 64-wide MLP to output the final 64-
dimension features. The outputs are supervised with a simple MSE loss against the image features.
We additionally apply a nearest-neighbors total-variation loss, which at each step minimizes the
standard deviation of a gaussian with its 3 neighbors, encouraging feature embeddings to be spatially
smooth. To refine camera poses from their potentially noisy initialization from Polycam, we enable
camera optimization from view matrix gradients propagated from RGB rasterization. We train for
6000 steps, which takes about 3 minutes on an RTX 4090 GPU.

Tracking During loss calculation we weight the three optimization objectives with Apgap =
0.2, Ayronvo = 0.5, Aprnvo = 1 before summing. Adam’s learning rate is decreased from 0.005
to 0.0005 over the course of 50 steps each frame with an exponential decay. During tracking we
sample 30,000 random pairs within the object mask to use with the sparse depth loss, where the
object mask is defined by pixels with rendered alpha values over 0.9 (mostly opaque).

Grasp and Motion Planning As described in main text’s section 4.3, part contact selection out-
puts a ranked list of candidate object parts to interact with, from human hand detection. Then, the
planner attempts to find the first set of parts where the motion is executable. For bimanual tasks
the list is composed of length-two tuples [(p1, p2), ...], one part for each hand, and we exhaustively
check over both arms i.e., left arm to p; and right to ps, and vice versa. We first optimize for the
robot motion following the pose of the desired object using a motion planner implemented in JAX,
optimizing for smooth joint positions given a set of 6D robot gripper poses, as cuRobo currently
does not provide a waypoint-based trajectory optimization. Then, for the successful trajectories, we
use curobo to plan collision-free trajectories to the pre-grasp and grasp pose for each part.

A.2 Experiment Details

Robot Trials Please see the supplemental video for example executions of these motions on the
robot, as well as failure case videos.

The experiment motions for each objects are as follows:

1. Red Box: Closing the box, by lowering the lid

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



34 2. Nerf Gun: Sliding back the firing mechanism of the gun

35 3. Scissors: Closing, then opening the scissors
36 4. Sunglasses: Folding back the left leg of the sunglasses
37 5. Bear: Waving the right arm of the bear

38 Tracking Evaluation 3D pose for part trajectories is manually annotated for keyframes by visu-
o alizing the dense RGB-pointcloud obtained from the depth camera in a 3D viewer, then manually
o moving the rendered gaussian splat of the object part to align with this pointcloud.

P



	Appendix
	Implementation Details
	Experiment Details


