
Published as a conference paper at ICLR 2025

SPECTRO-RIEMANNIAN GRAPH NEURAL NETWORKS

Karish Grover1,†, Haiyang Yu2, Xiang Song3, Qi Zhu3, Han Xie3,
Vassilis N. Ioannidis3, Christos Faloutsos1

1Carnegie Mellon University, 2Texas A&M University, 3Amazon
{karishg,christos}@cs.cmu.edu, {haiyang}@tamu.edu,
{xiangsx,qzhuamzn,hanxie,ivasilei}@amazon.com

ABSTRACT

Can integrating spectral and curvature signals unlock new potential in graph rep-
resentation learning? Non-Euclidean geometries, particularly Riemannian mani-
folds such as hyperbolic (negative curvature) and spherical (positive curvature),
offer powerful inductive biases for embedding complex graph structures like
scale-free, hierarchical, and cyclic patterns. Meanwhile, spectral filtering excels
at processing signal variations across graphs, making it effective in homophilic
and heterophilic settings. Leveraging both can significantly enhance the learned
representations. To this end, we propose Spectro-Riemannian Graph Neural Net-
works (CUSP) – the first graph representation learning paradigm that unifies both
CUrvature (geometric) and SPectral insights. CUSP is a mixed-curvature spec-
tral GNN that learns spectral filters to optimize node embeddings in products of
constant-curvature manifolds (hyperbolic, spherical, and Euclidean). Specifically,
CUSP introduces three novel components: (a) Cusp Laplacian, an extension of the
traditional graph Laplacian based on Ollivier-Ricci curvature, designed to capture
the curvature signals better; (b) Cusp Filtering, which employs multiple Rieman-
nian graph filters to obtain cues from various bands in the eigenspectrum; and
(c) Cusp Pooling, a hierarchical attention mechanism combined with a curvature-
based positional encoding to assess the relative importance of differently curved
substructures in our graph. Empirical evaluation across eight homophilic and het-
erophilic datasets demonstrates the superiority of CUSP in node classification and
link prediction tasks, with a gain of up to 5.3% over state-of-the-art models. The
code is available at: https://github.com/amazon-science/cusp.

1 INTRODUCTION

Graph representation learning has garnered significant research interest in recent years, owing to its
fundamental relevance in domains such as natural language processing (Mihalcea & Radev, 2011),
biology (Zhang et al., 2021a), and social network analysis (Grover et al., 2022). Recent advances
have rigorously examined constant curvature spaces to learn distortion-free graph representations, as
they provide suitable inductive biases for particular structures while avoiding the intrinsic problems
of very high dimensionality. For example, hyperbolic space (negative curvature) is optimal for
hierarchical tree-like graphs (Chami et al., 2019), while spherical geometry (positive curvature)
is best suited for cyclic graphs (Gu et al., 2019).The idea behind all Riemannian GNNs is that
optimal embeddings are achieved when the underlying manifold’s curvature aligns with the graphs’
discrete curvature. To model real-world graphs with complex topologies that cannot be adequately
represented within a single constant-curvature manifold, various mixed-curvature GNNs have been
proposed, that operate across multiple manifolds (Zhu et al., 2020).

Despite their success in managing complex graph topologies, existing mixed-curvature GNNs still
have significant limitations (Figure 1 (b)). (a) L1 (Low-pass filtering bias): State-of-the-art mixed-
curvature Riemannian GNNs, such as κGCN (Bachmann et al., 2020) and QGCN (Xiong et al.,
2022), inherently mimic low-pass spectral filters. These models are adaptations of the Euclidean
GCN (Kipf & Welling, 2016) to Riemannian manifolds, which are known to operate under the ho-
mophily assumption (low-pass filters) predominantly. Consequently, their performance degrades on

†The work was done during Karish Grover’s internship at Amazon, US.

1

https://github.com/amazon-science/cusp

Published as a conference paper at ICLR 2025

Figure 1: Motivation behind CUSP. (a) Diversity of curvatures (−ve to +ve) and frequencies in
homophilic (Cora) and heterophilic (Texas, Chameleon) real-world graphs (Section 5). (b) Spectral
GNNs overlook the curvature, whereas Riemannian GNNs are restricted by a cut-off frequency.
CUSP aims for the best of both – a rich geometric representation + full access to the spectrum.

graphs with varying degrees of heterophily. (b) L2 (Task-specific relevance of curvature): Different
datasets and tasks may emphasize more on different curvatures within a graph (Figure 1 (a)). For
example, the task of community detection focuses on clustered nodes typically associated with a
positive curvature (Tian et al., 2023). In contrast, fake news detection on social media graphs priori-
tizes tree-like cascade structures characterized by a negative curvature (Grover et al., 2022). Current
models do not adapt curvatures to tasks. (c) L3 (Lack of geometry-equivariance in spectral GNNs):
Spectral GNNs like BernNet (He et al., 2021) and GPRGNN (Chien et al., 2020) incorporate flexible
graph filters to learn representations based on different parts of the eigenspectrum but assume a flat
Euclidean manifold, ignoring the underlying geometry. As the geometry of the graph changes, these
filters should adapt to reflect the changing geometric properties, which is currently not the case.

To bridge these gaps, we introduce CUSP, a mixed-curvature spectral GNN that operates on a prod-
uct manifold composed of multiple constant-curvature spaces and computes geometrically and spec-
trally parameterized graph filters. We begin by introducing the (a) Cusp Laplacian, a curvature-
aware Laplacian operator for graphs, inspired by the equation of heat flow (Thanou et al., 2017)
and the discrete Ollivier-Ricci curvature (Ollivier, 2007). At the core of our approach is (b) Cusp
Filtering, where we propose a filter bank consisting of multiple mixed-curvature graph filters to en-
sure that our GNN captures information from multiple bands in the eigenspectrum. Using the Cusp
Laplacian, we extend the generalized PageRank (GPR)-based spectral GNN (Chien et al., 2020) to
mixed-curvature spaces by incorporating operations based on the κ-stereographic model of Rieman-
nian geometry (Bachmann et al., 2020). We chose GPRGNN as the spectral backbone of CUSP
because of its ability to capture node features and topological graph signals simultaneously. Lastly,
we introduce the (c) Cusp Pooling mechanism, complemented by functional curvature embeddings
based on Bochner’s Theorem (Xu et al., 2020), to weigh differently curved substructures, enhancing
its ability to model real-world graphs with diverse geometric and spectral properties. We perform
an extensive empirical evaluation of CUSP for Node Classification (NC) and Link Prediction (LP)
tasks, on eight real-world datasets. CUSP records state-of-the-art performance, with a gain of up to
5.3%. We summarize our main contributions as follows:

• To the best of our knowledge, this is the first attempt towards a graph learning paradigm that
seamlessly integrates both geometry and spectral cues.

• We introduce a curvature-aware Cusp Laplacian operator, design a mixed-curvature spectral
graph filtering framework, Cusp Filtering, and propose a curvature embedding method using
classical harmonic analysis and a hierarchical attention mechanism called Cusp Pooling.

• We conduct extensive experimentation on eight real-world benchmarking datasets, featuring ho-
mophilic and heterophilic graphs, for node classification and link prediction tasks.

2

Published as a conference paper at ICLR 2025

2 RELATED WORKS

Riemannian Geometry in Graph Neural Networks. Graph Neural Networks (GNNs) have set
new benchmarks for tasks like node classification and link prediction. Recently, non-Euclidean
(Riemannian) spaces – particularly hyperbolic (Sala et al., 2018) and spherical (Liu et al., 2017;
Wilson et al., 2014) geometries – have garnered attention for their ability to produce less distorted
representations, aligning well with hierarchical and cyclic data structures, respectively. Several ap-
proaches have emerged in this context. (a) Single Manifold GNNs: GNNs such as HGAT (Zhang
et al., 2021b), HGCN (Chami et al., 2019), and HVAE (Sun et al., 2021) have demonstrated state-
of-the-art performance on tree-like or hierarchical graphs by learning representations in hyperbolic
space. (b) Mixed-Curvature GNNs: To model more complex topologies (for example, a tree branch-
ing from a cyclic graph), mixed-curvature GNNs have been proposed. Gu et al. (2019) pioneered
this direction by embedding graphs in a product manifold combining spherical, hyperbolic, and Eu-
clidean spaces. Building on this, models like κ-GCN (Bachmann et al., 2020) and Q-GCN (Xiong
et al., 2022) extended the GCN architecture (Kipf & Welling, 2016) to constant-curvature spaces us-
ing the κ-stereographic model and pseudo-Riemannian manifolds, respectively. More recently, Sun
et al. (2022) proposed a mixed-curvature GNN for self-supervised learning, while FPS-T (Cho et al.,
2023) generalized the Graph Transformer (Min et al., 2022) to operate across multiple manifolds.

Spectral Graph Neural Networks. Spectral GNNs employ spectral graph filters (Liao et al., 2024)
to process graph data. These models either use fixed filters, as seen in APPNP (Gasteiger et al.,
2018) and GNN-LF/HF (Zhu et al., 2021), or learnable filters, as demonstrated by ChebyNet (Def-
ferrard et al., 2016) and GPRGNN (Chien et al., 2020), which approximate polynomial filters using
Chebyshev polynomials and generalized PageRank, respectively. BernNet (He et al., 2021) ex-
presses filtering operations through Bernstein polynomials. However, many of these methods focus
primarily on low-frequency components of the eigenspectrum, potentially overlooking important in-
formation from other frequency bands – particularly in heterophilic graphs. Models like GPRGNN
and BernNet address this by exploring the entire spectrum, performing well across both homophilic
and heterophilic graphs. GPRGNN stands out among them because it can express several poly-
nomial filters and incorporate node features and topological information. Despite these advances,
current mixed-curvature and spectral GNNs face significant limitations (L1, L2, L3) that constrain
their performance. To the best of our knowledge, this work is the first to unify geometric and spec-
tral information within a single model. Before presenting the architecture of CUSP, we introduce
some key preliminary concepts in the following section.

3 PRELIMINARIES

We study graphs G = (V, E ,A), where V is a finite set of |V| = n vertices, E is a set of edges and
A ∈ Rn×n is a weighted graph adjacency matrix. The nodes are associated with the node feature
matrix F ∈ Rn×df (df is the feature node dimension). A graph signal f : V → R on the nodes of
the graph may be regarded as a vector f ∈ Rn where fi is the value of f at the ith node. An essential
operator in spectral graph analysis is the graph Laplacian L = D−A ∈ Rn×n where D ∈ Rn×n is
the diagonal degree matrix with Dii =

∑
jAij (Kipf & Welling, 2016). The normalized Laplacian

is defined as Ln = I −An where An = D−1/2AD−1/2 is the normalized adjacency matrix, and
I ∈ Rn×n is the identity matrix. As L is a real symmetric positive semidefinite matrix, it has a
complete set of orthonormal eigenvectors U =

[
{ul}n−1

l=0

]
∈ Rn×n, and their associated ordered

real nonnegative eigenvalues
[
{λl}n−1

l=0

]
∈ Rn, identified as the frequencies of the graph. The

Laplacian can be diagonalized as L = UΛU⊤ where Λ = diag(
[
{λl}n−1

l=0

]
) ∈ Rn×n.

Riemannian Geometry (Do Carmo & Flaherty Francis, 1992). A smooth manifold M generalizes
the notion of surface to higher dimensions. Each point x ∈ M is associated with a tangent space
TxM, which is locally Euclidean. On tangent space TxM, the Riemannian metric, gx(·, ·) : TxM×
TxM → R, defines an inner product so that geometric notions (like distance, angle, etc.) can be
induced. The pair (M, g) is called a Riemannian manifold. For x ∈ M, the exponential map at x,
expx(v) : TxM → M, projects the vector v ∈ TxM onto the manifold M, and the logarithmic
map, logx(y) : M → TxM, projects the vector y ∈ M back to the tangent space TxM. The
Riemannian metric defines a curvature (κ) at each point on the manifold, indicating how the space
is curved. There are three canonical types: positively curved Spherical (S) space (κ > 0), negatively
curved Hyperbolic (H) space (κ < 0), and flat Euclidean (E) space (κ = 0).

3

Published as a conference paper at ICLR 2025

Product Manifolds (Gu et al., 2019). Consider q constant-curvature manifolds {Mκi,di
i }qi=1 with

dimension di and curvature κi. Then, the product manifold is defined as the Cartesian product
P = Mκ1,d1

1 × Mκ2,d2
2 · · · × Mκq,dq

q , with total dimension
∑q
i=1 di. Each Mi ∈ {H,S,E} is

known as a component space, and the decomposition P = ×qi=1M
κi,di
i is called the signature of P.

κ−Stereographic Model (Bachmann et al., 2020). In this work, we adopt the κ-Stereographic
Model to define Riemannian algebraic operations across both positively and negatively curved
spaces within a unified framework. This model eliminates the need for separate mathematical for-
mulations for different geometries. In particular, Md

κ is the stereographic sphere model for spherical
manifold (κ > 0), while it is the Poincaré ball model (Ungar, 2001) for hyperbolic manifold (κ < 0).
More mathematical details and intuitions have been discussed in Appendix 7.2.4.

Ollivier-Ricci Curvature (ORC). Discrete data like graphs lack manifold structure (hence, no cur-
vature). Several discrete analogs of manifold curvature have been defined, which satisfy properties
similar to curvature. ORC (Ollivier, 2007) is a graph discrete analog of Ricci curvature (Tanno, 1988)
and is defined by transport along an edge of the network, between neighborhoods of the vertex. In
an unweighted graph, for a hyperparameter δ ∈ [0, 1], we endow each node’s (x) neighbourhood
(N (x)) with a probability measure, mδ

x(z) := 1−δ
|N (x)| ∀z ∈ N (x), and mδ

x(z) = δ when z = x,
and analogously for mδ

y(z). ORC for an edge (x, y) is then defined w.r.t. the Wasserstein-1 distance,

W1 (Piccoli & Rossi, 2016), between these measures, i.e., κ̃(x, y) := 1− W1(m
δ
x,m

δ
y)

dG(x,y) . dG(x, y) is
the shortest graph distance between nodes x and y. The Ollivier-Ricci curvature κ̃(x) for a node x
is defined as the average curvature of its adjacent edges i.e. κ̃(x) = 1

|N (x)|
∑
z∈N (x) κ̃(x, z).

Generalized PageRanks (GPR). Generalized PageRank methods originated in the context of un-
supervised graph clustering, where they demonstrated notable improvements over the classical Per-
sonalized PageRank (Kloumann et al., 2017; Li et al., 2019). The core idea behind GPRs is as
follows: starting with a seed node s ∈ V (vertex set) within a graph cluster, an initial feature vector
H(0) ∈ Rn×1 is set, where H

(0)
v = δvs (i.e., 1 for the seed node and 0 for all others). The GPR

score is then defined as
∑∞
k=0 γkÃ

k
nH

(0) =
∑∞
k=0 γkH

(k), where γk ∈ R are the GPR weights
that control the importance of higher-order neighbors. This iterative process propagates the feature
information throughout the graph. Clustering is performed by locally thresholding the GPR scores.
Refer to the Appendix for more details on ORC (7.2.2), product manifolds (7.2.3), and GPR (7.4).

4 PROPOSED METHOD: CUSP

In this section, we present a comprehensive overview of the architecture of CUSP, as shown in Figure
2. We start by introducing and deriving the Cusp Laplacian (Section 4.1). Building on this, we
propose Cusp Filtering, the core component of our approach, which is a GPR-based, mixed-curvature
spectral graph filtering network (Section 4.2). Next, we introduce a curvature embedding technique
grounded in classical harmonic analysis (Section 4.3), which acts as the positional encoding in the
hierarchical attention-based Cusp Pooling mechanism (Section 4.4). Throughout this paper, we use
κ to denote the continuous manifold curvature and κ̃ for the Ollivier-Ricci curvature.

4.1 CUSP LAPLACIAN

Figure 2: Consider heat diffusion from y → x. If κ̃(x, y) <
0, there is a single path for the heat to diffuse from y →
x. When κ̃(x, y) ≥ 0, heat can effectively diffuse through
other paths from y → x (dotted).

To effectively incorporate geometric
insights into spectral graph learning,
we introduce the Cusp Laplacian,
a curvature-aware Laplacian opera-
tor. We begin by examining the con-
cept of heat flow on a graph (Weber,
2008). Suppose ψ describes a tem-
perature distribution across a graph,
where ψ(x) is the temperature at ver-
tex x. According to Newton’s law
of cooling (He, 2024), the heat trans-
ferred from node x to node y is pro-
portional to ψ(x) − ψ(y) if nodes x
and y are connected (if they are not

4

Published as a conference paper at ICLR 2025

connected, no heat is transferred). Consequently, the heat diffusion equation on the graph can be
expressed as dψ

dt = −β
∑
yAxy(ψ(x) − ψ(y)), where β is a constant of proportionality and A

denotes the adjacency matrix of the graph. Further insight can be gained by considering Fourier’s
law of thermal conductance (Liu, 1990), which states that heat flow is inversely proportional to the
resistance to heat transfer. In this context, we leverage the Ollivier-Ricci curvature (ORC) to define
the notion of resistance between nodes. Implicitly, ORC measures the transportation cost (W1(:, :))
between the neighborhoods of two nodes, reflecting the effort required to transport mass between
these neighborhoods (Bauer et al., 2011). We interpret this transportation cost as the resistance
between nodes.

The vital takeaway here is that − Heat flow between two nodes in a graph is influenced by the
underlying Ollivier-Ricci curvature (ORC) distribution. The diffusion rate is faster on an edge with
positive curvature (low resistance), and slower on an edge with negative curvature (high resistance).
Intuitively, if the neighborhoods of two nodes overlap significantly (Figure 2(c)), the transportation

cost between them is low (Rres
xy =

W1(m
δ
x,m

δ
y)

dG(x,y) < 1), resulting in a positive curvature value for
the edge connecting these nodes. In this scenario, messages (analogously, heat) can be transmitted
efficiently between the neighborhoods. Conversely, if the neighborhoods have little overlap (Figure
2(a)), the transportation cost is high, leading to a negative curvature value (Rres

xy > 1), and the edge
acts as a bottleneck, impeding effective message-passing. As a result, the heat diffusion process is
influenced by the underlying curvature (resistance).

Definition 1. The Cusp Laplacian operator takes the form −

L̃ψ(x) =
∑
y∼x

w̄xy (ψ(x)− ψ(y)) =
∑
y∼x

e
−1

1−κ̃(x,y) (ψ(x)− ψ(y)) , (1)

where x ∼ y denotes adjacency between nodes x and y, w̄xy = e
−1

1−κ̃(x,y) represents the curvature-
based weight between nodes x and y, and κ̃(x, y) is the discrete Ollivier-Ricci curvature between x
and y. The function ψ : V → R is defined on the vertex set V of the graph. In the matrix form, we
can write, L̃ = D̃− Ã, where D̃ and Ã are the degree and adjacency matrices based on w̄xy .

Refer to Appendix 7.3 for the derivation of Definition 1. The curvature-based Laplacian operator al-
low us to incorporate geometric cues into the spectral perspective, which are otherwise not captured
by the traditional graph Laplacian.

4.2 CUSP FILTERING

Now, we will talk about how we create a filter bank (i.e. multiple graph filters) to fuse information
from different parts of the eigenspectrum and learn node representations on a product manifold P.

Product manifold construction. P can have multiple hyperbolic or spherical components with
distinct learnable curvatures (parameters). This enables us to be representative of a wider range of
curvatures. However, we only need one Euclidean space, since the Cartesian product of Euclidean
space is Ed(e) = ×ji=1E

d(i)
i such that

∑j
i=1 d(i) = d(e). This is not the case with H or S (Eg.

Torus i.e. S1 × S1 is topologically distinct from Sphere i.e. S2). Thus, we can represent the product
manifold signature, PdM = ×Q

q=1M
κ(q),d(q)
q = (×H

h=1H
κ(h),d(h)

h) × (×S
s=1S

κ(s),d(s)
s) × Ed(e) with

total dimension dM =
∑H
h=1 d(h) +

∑S
s=1 d(s) + d(e). We use a simple combinatorial construction

of the mixed-curvature space, induced by the cartesian product (Sun et al., 2022). In Section 5 and
Appendix 7.2.3 we describe how we heuristically identify the signature of PdM .

Extending PageRank GNN to P: We choose GPRGNN (Chien et al., 2020) as the spectral back-
bone of CUSP (See Appendix 7.4 for more background on GPRGNN), becasue it jointly optimizes
node feature and topological information extraction, which is different from other spectral GNNs
like ChebyNet (Defferrard et al., 2016). The GPR weights automatically adjust to the node label
pattern (homophilic or heterophilic). Given the node feature matrix F ∈ Rn×df and normalized
symmetric Cusp adjacency matrix Ãn = D̃

−1
2 Ã D̃

−1
2 , we first extract hidden state features for

5

Published as a conference paper at ICLR 2025

Figure 3: Architecture of CUSP. The input graph (a) is used to construct the Cusp Laplacian (L̃),
based on the Ollivier-Ricci curvature (b), as illustrated in (c). The computed edge ORC (red), node
ORC (Green), and curvature-based weights (blue) have been highlighted in the input graph. With L̃,
(d) Cusp Filtering introduces multiple graph filters to capture different parts of the eigenspectrum.
Each node receives a curvature positional encoding Φ in (e) as part of the (f) Cusp Pooling mecha-
nism, which computes the relative importance of different filters and manifold components.

each node and then use GPR to propagate them. The process can be mathematically described as:

H
(0)

M
κ(q),d(q)
q

= exp
κ(q)

0 (fθ(F)) ;H
(l)

M
κ(q),d(q)
q

= Ãn ⊠κ(q)
H

(l−1)

M
κ(q),d(q)
q

(2)

Z
(L)

M
κ(q),d(q)
q

=

κ(q)⊕
l∈{0,L}

γl ⊗κ(q)
H

(l)

M
κ(q),d(q)
q

;Z
(L)

PdM = ||Qq=1Z
(L)

M
κ(q),d(q)
q

(3)

where fθ(.) : Rdf → RdM represents a neural network with parameter set {θ} that generates the
hidden state features of dimension dM. Here, expκ0 : RdM → Mκ,dM is the exponential map
(Section 3) to transform the euclidean node features F to the component manifold M, and || is the
attentional concatenation operator (discussed in Section 4.4). ⊕κ, ⊗κ and ⊠κ denote mobius addi-
tion, κ-right-matrix-multiplication and κ-left-matrix-multiplication respectively (Appendix 7.2.4).
These operations generalize vector addition and multiplication on κ-stereographic model. The GPR
weights γl are trained together with {θ} in an end-to-end fashion. The final mixed-curvature node
embeddings after attention can be represented as Z(L)

PdM ∈ Pn×dM , such that
∑Q
q=1 d(q) = dM.

Filter Bank. The GPR component of the network may be viewed as a polynomial graph filter (See
Appendix 7.4). Let Ãn = UΛUT be the eigenvalue decomposition of Ãn. Then, the polyno-
mial graph filter equals

∑L
l=0 γlÃ

l
n = Ugγ,L(Λ)UT , where gγ,L(Λ) is applied element-wise and

gγ,L(λ) =
∑L
l=0 γlλ

l. If one allows γl to be negative and learnt adaptively, the graph filter will pass
relevant high frequencies. Consequently, CUSP performs exceptionally well on heterophilic graphs.

Theorem 1 (Informal (Chien et al., 2020)). If γl ≥ 0 ∀l ∈ {0, 1, ..., L},
∑L
l=0 γl = 1 and ∃l′ > 0

such that γl′ > 0, then gγ,L(·) is a low-pass graph filter. Also, if γl = (−α)l, α ∈ (0, 1) and L is
large enough, then gγ,L(·) is a high-pass graph filter.

We encourage the reader to refer to Chien et al. (2020) for a detailed discussion on how different
initializations of the GPR weights, as mentioned in the theorem above, assist in designing low-pass
and high-pass filters. We present a proof of Theorem 1 in Appendix 7.4. Motivated by the limitation

6

Published as a conference paper at ICLR 2025

L1, instead of a single filter, we construct a filter bank to focus on different parts of the eigenspec-
trum (to assist in both heterophilic and homophilic graphs). In an attempt to be representative of the
higher order filters, the proposed filterbank is: ΩPdM =

[
ZI

PdM ,Z
(1)

PdM ,Z
(2)

PdM , . . . ,Z
(L)

PdM

]
. Here,

ZI
PdM is the unfiltered case, where we pass the identity matrix I instead of Ãn for GPR propagation.

4.3 FUNCTIONAL CURVATURE ENCODING

Recall our motivation that CUSP must be able to pay more attention to differently curved sub-
structures in our model, depending on different tasks and datasets, while learning the final node
representations. Specifically, our goal is to obtain a continuous functional mapping Φ : KP → PdC
from curvature domain to the dC-dimensional product space to serve as positional encoding in our
attention mechanism (Section 4.4). We approximate this in two steps, by considering the Ollivier-
Ricci (ORC) discretization of curvature on our graph and using the Bochner’s theorem (Moeller
et al., 2016) from classical harmonic analysis. First, we construct a translation-invariant Euclidean
curvature encoding map, and then map it to the product manifold. Without loss of generality, we
assume that the curvature domain can be represented by the interval: K = [−1, 1], where −1 to
1 is the typical range1 of ORC in the observed data. Formally, we define the Curvature Kernel
KR : K × K → R with KR(κ̃a, κ̃b) :=

〈
ΦRdC (κ̃a),ΦRdC (κ̃b)

〉
and KR(κ̃a, κ̃b) = ΨR(κ̃a − κ̃b),

∀κ̃a, κ̃b ∈ K for some ΨR : [−2, 2] → R. The intuition behind choosing such a kernel for curva-
ture values, lies in the fact that when comparing κ̃a and κ̃b we are only concerned with the relative
difference between the two values. According to the Bochner’s theroem (Moeller et al., 2016), a
continuous, translation-invariant kernel K(x,y) = Ψ(x − y) on Rd is positive definite if Ψ is the
Fourier transform of a non-negative probability measure on R. Our kernel is translation-invariant,
since KR(κ̃a+ c̃, κ̃b+ c̃) = ΨR((κ̃a+ c̃)−(κ̃b+ c̃)) = KR(κ̃a, κ̃b) for any constant c̃. The following
theorems defines the Euclidean encoding and it’s corresponding mapping to the product space.
Definition 2. Let RdC be the ambient Euclidean space for a node’s curvature encoding. The func-
tional curvature encoding ΦRdC : K → RdC for curvature κ̃(x) ∈ K of node x, is defined as:

ΦRdC (κ̃(x)) =

√
1

dC

[
cos(ω1κ̃(x)), sin(ω1κ̃(x)), . . . , cos(ωdC κ̃(x)), sin(ωdC κ̃(x))

]
, (4)

where ω1, . . . , ωdC
i.i.d∼ p(ω) are sampled from a distribution p(ω). The corresponding mapping to

the product manifold PdC , is defined as:

ΦPdC (κ̃(x)) = gθ

(
∥Qq=1exp

κ(q)

0 (ΦRdC (κ̃(x)))
)
= gθ

(
∥Qq=1ΦM

κ(q),d(q)
q

(κ̃(x))
)
, (5)

where exp
κ(q)

0 : RdC → Mκ(q),d(q)
q denotes the exponential map on the qth component manifold

with curvature κ(q), || is the concatenation operator and gθ : PdM → PdC is a Riemannian projector.

It is easy to show that
〈
ΦdC (κ̃a),ΦdC (κ̃b)

〉
≈ K(κ̃a, κ̃b). The unknown distribution p(ω) is esti-

mated using the inverse cumulative distribution function (CDF) transformation as in Xu et al. (2020).
Next, we prove the translation invariance of the curvature kernel in the product manifold setting.
Theorem 2. The mixed-curvature kernel KP(κ̃a, κ̃b) :=

〈
ΦPdC (κ̃a),ΦPdC (κ̃b)

〉
is translation in-

variant, i.e. KP(κ̃a, κ̃b) = ΨP(κ̃a − κ̃b).

Please refer to Appendix 7.5 for the detailed proofs (derivations) of Definition 2 and Theorem 2.
We employ ΦPdC (κ̃(x)) as the ORC-based positional encoding for each node x in the final pooling
layer, enabling it to incorporate local curvature information and compute the task-specific relevance
of substructures with varying curvatures within the graph.

4.4 CUSP POOLING

The importance of constant-curvature component spaces depends on the downstream task. To this
end, we propose a hierarchical attention mechanism called Cusp Pooling. We perform attentional

1ORC can theoretically vary from −∞ to 1, but in practice, its values usually lie within [−1, 1] for the
majority of graphs. For extreme scenarios, such as very sparse or highly clustered graphs, values may fall
outside this range. In such instances, ORC is normalized to [−1, 1].

7

Published as a conference paper at ICLR 2025

concatenation to fuse constant-curvature representations across component spaces so as to learn
mixed-curvature representations in the product space, weighing them appropriately. Specifically, we
lift component encodings to the common tangent space, where we can perform the usual euclidean
operations, and compute their centorid by the mean pooling. Then, we model the importance of a
component by the position of the embedding relative to the centorid, parameterized by θ.

µ(L) =
1

Q

Q∑
q=1

log
κ(q)

0

(
Wq ⊗κ(q)

Z
(L)

M
κ(q),d(q)
q

)
(Centroid using linear transformation Wq) (6)

τq = σ
(
θ⊤(logκ(q)

0

(
Wq ⊗κ(q)

Z
(L)

M
κ(q),d(q)
q

)
− µ(L)

))
(Relative importance of Mq) (7)

Finally, with the learnable attentional weights βq = eτq/
∑Q
q=0(e

τq), we perform attentional con-
catenation. Further, as motivated earlier, for every node x, we fuse the curvature embedding as
positional encoding:

Z
(L)(x)

PdM =
∥∥∥Q
q=1

(
βq ⊗κ(q)

Z
(L)(x)

M
κ(q),d(q)
q

)
; ζ

(L)
(x) = Z

(L)(x)

PdM

∥∥∥ΦPdM (κ̃(x)) (8)

We weigh different filters in our filter bank to yield the final node representation ζ(x) for x as ζ(x) =∑L
l=1 ϵlζ

(l)
(x). Here, ζ ∈ Pn×(dM+dC) contains the final node embeddings, and ϵl is a learnable

parameter to weigh the importance of different filters in our bank. These node embeddings are
then used for the final downstream tasks of node classification and link prediction. In the following
section, we lay out the empirical results to validate the efficacy of CUSP.

5 EXPERIMENTATION

Datasets. We evaluate CUSP on the Node Classification (NC) and Link Prediction (LP) tasks using
eight benchmark datasets. These include (a) Homophilic datasets such as (i) Citation networks –
Cora, Citeseer and PubMed (Sen et al., 2008; Yang et al., 2016), and (b) Heterophilic datasets,
which comprise (i) Wikipedia graphs – Chameleon and Squirrel (Rozemberczki et al., 2021), (ii)
Actor co-occurrence network (Tang et al., 2009), and (iii) Webpage graphs from WebKB 2 – Texas
and Cornell. The dataset statistics and their respective homophily ratios are detailed in Table 1.
Refer to Appendix 7.2.1 for the discrete curvature and eigenspectrum distributions of these datasets.

Dataset Cora Citeseer PubMed Chameleon Squirrel Actor Texas Cornell

Classes 7 6 5 5 5 5 5 5
Features 1433 3703 500 2325 2089 932 1703 1703
Nodes 2708 3327 19717 2277 5201 7600 183 183
Edges 5278 4552 44324 31371 198353 26659 279 277
H 0.825 0.718 0.792 0.247 0.217 0.215 0.057 0.301

Table 1: Data statistics and homophily ratio (H).

Baselines. To ensure a fair comparison,
we evaluate CUSP against three types of
baselines: (a) Spatial–Euclidean, includ-
ing traditional methods such as GCN (Kipf
& Welling, 2016), GAT (Veličković et al.,
2017), and GraphSAGE (Hamilton et al.,
2017). (b) Spatial–Riemannian, comprising
(i) Constant-curvature models like HGCN (Chami et al., 2019) and HGAT (Zhang et al., 2021b),
and (ii) Mixed-curvature GNNs such as κGCN (Bachmann et al., 2020), QGCN (Xiong et al., 2022),
and SelfMGNN (Sun et al., 2022). (c) Spectral, including ChebyNet (Defferrard et al., 2016), Bern-
Net (He et al., 2021), GPRGNN (Chien et al., 2020), and FiGURe (Ekbote et al., 2024) (More details
in Appendix 7.6.2). There are no existing methods that integrate both spectral and geometric signals.

Experimental Settings. For the transductive LP task, we randomly split edges into 85%/5%/10%
for training, validation and test sets, while for transductive NC task, we use the 60%/20%/20% split.
The results are averaged over 10 random splits and their 95% confidence intervals are reported.
We report the AUC-ROC and F1 Score metrics for LP and NC respectively. For computing ORC
(in Cusp Laplacian), we use δ = 0.5, i.e. equal probability mass is retained by the node and
distributed among it’s neighbors. We adopt the ORC implementation from Ni et al. (2019), and use
the Sinkhorn algorithm (Sinkhorn & Knopp, 1967) to approximate the W1 distance. See Appendix
7.2.2 for more computational details and complexity analysis. Next, we adopt the implementation
of the κ-stereographic product manifold from Geoopt library3. We heuristically determine the
signature of our manifold P (i.e. component manifolds) using the discrete ORC curvature of the

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
3https://github.com/geoopt/geoopt

8

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
https://github.com/geoopt/geoopt

Published as a conference paper at ICLR 2025

Baseline Cora Citeseer PubMed Chameleon Actor Squirrel Texas Cornell Av. ∆Gain
GCN 75.21±0.28 67.30±1.05 83.75±0.07 61.16±0.23 31.12±0.96 43.06±0.33 75.61±0.07 67.72±1.19 11.95
GAT 76.70±0.13 66.23±0.85 82.83±0.22 63.10±0.77 32.65±0.23 43.90±0.01 76.09±0.77 74.01±0.01 10.63
SAGE 71.88±0.91 70.01±0.64 81.09±0.13 59.99±0.89 36.73±0.01 41.11±1.16 77.11±0.45 69.91±0.24 11.59

HGCN 78.50±0.14 69.55±0.39 83.72±0.21 60.18±0.57 35.89±0.29 39.93±0.35 88.11±1.12 72.88±1.15 8.97
HGAT 77.12±0.01 70.12±0.92 84.02±0.19 62.43±0.59 35.12±0.27 41.78±0.37 85.56±1.10 73.12±0.18 8.91
κGCN 78.71±1.37 68.14±0.34 85.18±0.52 62.12±0.49 34.57±0.26 43.04±0.31 85.03±0.63 86.36±0.64 7.06
QGCN 79.64±0.38 71.15±1.11 84.76±0.13 61.83±1.01 32.24±0.65 46.65±0.90 82.76±0.07 83.90±0.71 7.20
SelfMGNN 80.19±0.60 70.91±0.38 82.81±0.34 64.97±0.54 38.99±0.23 49.79±0.29 90.92±0.65 85.01±0.69 4.62

ChebyNet 71.09±0.91 66.67±0.38 83.83±0.42 59.96±1.51 38.02±0.01 45.67±0.11 79.08±0.96 71.33±1.04 10.61
BernNet 73.34±0.53 62.12±2.09 82.15±0.13 62.03±0.12 33.55±0.24 42.81±0.66 75.11±0.14 65.56±1.02 12.98
GPRGNN 79.49±0.31 67.61±0.38 84.07±0.09 65.09±0.43 37.43±1.09 47.51±0.23 88.34±0.09 87.21±0.70 5.58
FiGURe 80.01±0.09 71.26±0.41 83.89±0.11 67.18±0.02 38.31±0.36 48.71±1.02 86.66±0.62 85.01±0.68 4.94

CUSP 83.45±0.15 74.21±0.02 87.99±0.45 70.23±0.61 43.91±0.11 52.98±0.25 94.03±0.72 92.31±0.09 0.0
∆Imp. 3.26% 2.95% 2.81% 4.05% 5.32% 3.19% 3.11% 5.10%

Table 3: Performance comparision of CUSP with baselines for NC task (Mean F1 Score ± 95%
confidence interval). First, Second and Third best performing models are highlighted. Av. ∆
Gain represents the average gain of CUSP over the model in that row, averaged across the different
datasets. ∆Imp. implies the % improvement of CUSP over the second best performing baseline.

input graph. The key idea is that the underlying curvature of the manifold must align with ORC.
However, this discussion, along with how we initialise the learnable curvatures for the component
manifolds, has been reserved for the Appendix 7.6.4. For all experiments, we choose the total
manifold dimension as dM = 48 and learning rate as 4e-3. We use the filter bank ΩPdM =[
ZI

PdM ,Z
(1)

PdM ,Z
(2)

PdM , . . . ,Z
(L)

PdM

]
, withL = 10. For the GPR weights, we experiment with different

initializations, α ∈ {0.1, 0.3, 0.5, 0.9}. We list the hyperparameter settings in Appendix 7.6.5.

Analysis. Tables 3 and 8 present a comparative performance analysis of CUSP against base-
line models for the NC and LP tasks respectively. (a) CUSP consistently outperforms all base-
line models across both homophilic and heterophilic datasets, achieving an improvement up to
5.32% in F1-score for NC, up to 5.11% increase in ROC-AUC score for LP. (b) Riemannian base-
lines perform well for homophilic datasets, while performing poorly in heterophilic cases (Evi-
dence of limitation L1). (c) While spectral baselines like ChebyNet and BernNet perform poorly
on heterophilic tasks because they act as low-pass, owing to the fixed filters, FiGURe performs
well across all tasks because it uses a filter bank to handle different bands in the eigenspectrum.
(d) Mixed-curvature baselines (κGCN and QGCN) outperform constant-curvature GNNs (HGCN
and HGAT) because they capture the complex graph geometry (Evidence of limitation L2).

CUSP Cora Citeseer PubMed Chameleon Actor Squirrel Texas Cornell

H24 × S24 82.50±0.18 73.20±0.16 87.20±0.26 69.42±0.01 42.70±0.22 52.00±0.20 81.97±0.24 87.20±0.02

(H8)2 × (S8)2 × E16 82.80±0.20 73.50±0.18 85.50±0.28 69.80±0.03 43.06±0.19 50.76±0.18 91.60±0.23 91.60±0.24

H8 × S8 × E32 82.70±0.32 73.40±0.17 86.40±0.29 69.60±0.07 40.73±0.20 51.20±0.19 94.03±0.72 92.31±0.09

H16 × (S16)2 81.83±0.20 72.72±0.13 85.90±0.60 70.23±0.61 42.50±0.21 52.98±0.25 92.50±0.22 83.11±0.36

(H16)2 × E16 81.90±0.17 72.50±0.15 87.99±0.45 65.30±0.28 43.91±0.11 51.10±0.24 93.20±0.19 91.20±0.45

H24 × E24 81.60±0.16 72.30±0.14 87.50±0.64 67.50±0.23 43.50±0.16 48.30±0.23 91.45±0.61 91.39±0.98

S24 × E24 80.80±0.41 71.80±0.19 80.99±0.31 69.20±0.21 36.44±0.23 51.83±0.21 90.99±0.21 90.00±0.10

H16 × S16 × E16 83.45±0.15 74.21±0.02 85.80±0.27 70.17±0.17 43.20±0.18 52.71±0.17 93.80±0.18 91.80±0.21

(S8)2 × E32 80.50±0.30 71.50±0.18 79.30±0.32 68.18±0.20 37.14±0.24 51.60±0.22 92.80±0.22 90.80±0.53

(H16)3 81.00±0.19 72.00±0.16 87.70±0.92 68.11±0.25 43.70±0.17 45.67±0.25 88.15±0.25 85.01±0.51

Table 2: Performance comparison of CUSP with different manifold
signatures for Node Classification (NC). Best performing signatures
are in Bold, and cases with a large decline in performance because of
manifold mismatch are in Blue.

Table 4 presents the
learnt filter weights (ϵ),
highlighting the distinct
preferences of homophilic
and heterophilic datasets.
Homophilic datasets, such
as Citeseer and PubMed,
emphasize low-pass filters,
with the highest weights
assigned to lower-order
filters, Z(2) and Z(3),
at 45.94% and 47.97%
respectively. In contrast,
heterophilic datasets like Actor and Cornell favor high-pass filters, attributing 40.09% and 28.56%
to higher-order filters, Z(5) and Z(9). In the next section, we perform extensive ablation studies to
evaluate the effectiveness of all components of CUSP.

5.1 ABLATION STUDY

■ Impact of product manifold signatures. Different datasets leverage substructures with varying
curvatures as inductive biases for downstream tasks, leading to differing performance across prod-
uct manifold signatures. Table 5 shows the learned curvature and weight (β) for the best-performing

9

Published as a conference paper at ICLR 2025

Dataset I Z(1) Z(2) Z(3) Z(4) Z(5) Z(6) Z(7) Z(8) Z(9) Z(10)

Cora 0.1729 0.1586 0.0695 0.0438 0.0446 0.0221 0.1525 0.0526 0.0711 0.0739 0.1385
Citeseer 0.0478 0.0506 0.4594 0.0183 0.0765 0.0187 0.1093 0.0755 0.0686 0.0232 0.0522
PubMed 0.1666 0.0342 0.0132 0.4795 0.1116 0.0289 0.0057 0.0153 0.0564 0.0442 0.0444
Chameleon 0.0232 0.1679 0.0536 0.1696 0.0121 0.0137 0.0392 0.2178 0.1356 0.0140 0.1532
Actor 0.0360 0.0753 0.0332 0.0337 0.0101 0.4009 0.2419 0.0096 0.1155 0.0089 0.0347
Squirrel 0.0306 0.0796 0.0719 0.2562 0.0351 0.0423 0.0415 0.1322 0.1050 0.1105 0.0951
Texas 0.1052 0.0308 0.0664 0.0490 0.0766 0.0274 0.0995 0.0402 0.1741 0.0639 0.2667
Cornell 0.1159 0.0302 0.0671 0.0434 0.0747 0.0249 0.0966 0.0358 0.1691 0.2856 0.0568

Table 4: Learned filter weights (NC) for the top-performing
split, distinguishing between homophilic (favoring low-pass
filters) and heterophilic (favoring high-pass filters). First,
second, and third highest filter weights are highlighted.

Dataset Signature

Cora H16(−0.36, 0.34)× S16(+0.68, 0.29)× E16(0, 0.37)
Citeseer H16(−0.62, 0.36)× S16(+.55, 0.49)× E16(0, 0.15)
PubMed H16(−0.91, 0.40)×H16(−0.37, 0.36)× E16(0, 0.24)
Chameleon H16(−0.21, 0.22)× S16(+0.13, 0.29)× S16(+0.59, 0.49)
Actor H16(−0.87, 0.39)×H16(−0.53, 0.36)× E16(0, 0.25)
Squirrel H16(−0.28, 0.14)× S16(+0.31, 0.39)× S16(+0.67, 0.53)
Texas H8(−0.45, 0.32)× S8(+0.34, 0.23)× E32(0, 0.45)
Cornell H8(−0.50, 0.14)× S8(+0.23, 0.19)× E32(0, 0.67)

Table 5: Learning results (NC) of
CUSP for the best performing prod-
uct signature − manifold (dim) (cur-
vature, weight).

configurations. Table 2 highlights performance across multiple signatures (which are heuristically
determined as discussed in Appendix 7.6.4), with large degradation (marked in blue) when there is
a mismatch between manifold and graph curvature. For example, Squirrel, which has a predomi-
nantly positively curved structure (Figure 7.2.1), performs poorly (drop of ∼ 6.5%) on signatures
dominated by negative curvature, such as S24 × E24 and (H16)3.

■ Impact of mixed-curvature space. Table 6 outlines the comparison of CUSP with its Euclidean
variant CUSPeuc, where all representations are learned in Euclidean space, omitting Cusp pool-
ing. On average, CUSPeuc experiences a ∼ 3.2% performance drop across all datasets for the
NC task, highlighting the importance of capturing mixed-curvature signals. Notably, the perfor-
mance degradation is more pronounced on heterophilic datasets (∼ 4%) compared to homophilic
datasets (∼ 2%). This suggests that CUSP’s integration of spectral and geometric properties
is crucial, particularly for heterophilic data where capturing the eigenspectrum is more relevant.

Dataset CUSP CUSPeuc CUSPlap CUSPenc CUSPpool CUSPfil

Cora 83.45±0.15 80.78±0.13 81.95±0.34 82.61±0.25 80.11±0.22 81.20±0.29

Citeseer 74.21±0.02 72.50±0.19 72.73±0.30 71.95±0.28 73.10±0.30 72.87±0.27

PubMed 87.99±0.45 85.23±0.25 86.67±0.10 87.11±0.12 86.23±0.10 87.29±0.09

Chameleon 70.23±0.61 66.47±0.56 68.12±0.35 67.83±0.31 68.47±0.32 66.12±0.34

Actor 43.91±0.11 39.03±0.09 43.03±0.27 41.12±0.28 40.03±0.27 38.81±0.29

Squirrel 52.98±0.25 49.92±0.36 51.39±0.35 50.92±0.35 51.03±0.11 48.13±0.17

Texas 94.03±0.72 90.15±0.61 92.15±0.52 93.15±0.55 92.15±0.60 90.27±0.62

Cornell 92.31±0.09 89.46±0.13 90.46±0.17 91.06±0.28 90.46±0.07 89.73±0.09

Avg. ∆ Gain 0 3.19 1.57 1.67 2.19 3.08

Table 6: Ablation study (NC) results on benchmark datasets. Av.
∆ Gain represents the average gain of CUSP over the model in
that column, averaged across the different datasets.

■ Impact of Cusp Laplacian.
To assess the effectiveness of the
Cusp Laplacian, we conducted an
ablation study by replacing the
Cusp Laplacian-based adjacency
matrix Ã, with the standard graph
adjacency matrix (for Cusp filter-
ing) in CUSPlap. This resulted
in a performance drop of 1.57%
(avg.) across all datasets. The rel-
atively modest degradation high-
lights the Cusp Laplacian’s role in
capturing curvature information.

■ Impact of the filter bank, cur-
vature encoding and Cusp pooling. CUSPfil replaces the filter bank with a single learnable filter,
as a result the performance degrades largely on heterophilic datasets (∼ 4%), while the degradation
in performance is not that large on homophilic datasets (∼ 2.5%). Further, we remove the curvature-
based positional encoding in CUSPenc and replace the Cusp pooling mechanism with simple con-
catenation in CUSPpool. We observe a consistent decline in performance across both these ablations.
Owing to spatial limitations, we present the experimental results for the LP task in Appendix 7.6.3.

6 CONCLUSION

In this paper, we propose to unify Spectral and Curvature signals in a graph for learning optimal
graph representations, aiming to inspire further research in this area. CUSP introduces a graph
learning paradigm parameterized by spectral filters on a mixed-curvature product manifold. We
propose a new curvature-informed Cusp Laplacian operator to capture the underlying geometry,
use it to define a novel GPR-based spectral filter-bank (Cusp Filtering) and introduce an attention-
based pooling mechanism to fuse representations from multiple mixed-curvature graph filters (Cusp
Pooling). CUSP outperforms the state-of-the-art baselines for node classification and link prediction
over homophilic and heterophilic datasets, highlighting the efficacy of combining spectrum and
curvature (geometry), in learning graph representations.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

We would like to sincerely thank Prof. Geoffrey J. Gordon (ggordon@cs.cmu.edu) from
Carnegie Mellon University for his invaluable feedback and comments throughout multiple itera-
tions of this paper, which greatly helped improve its quality.

REFERENCES

Gregor Bachmann, Gary Bécigneul, and Octavian Ganea. Constant curvature graph convolutional
networks. In International conference on machine learning, pp. 486–496. PMLR, 2020.

Frank Bauer, Jürgen Jost, and Shiping Liu. Ollivier-ricci curvature and the spectrum of the normal-
ized graph laplace operator. arXiv preprint arXiv:1105.3803, 2011.

Mikhail Belkin, Jian Sun, and Yusu Wang. Discrete laplace operator on meshed surfaces. In Pro-
ceedings of the twenty-fourth annual symposium on Computational geometry, pp. 278–287, 2008.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. Advances in neural information processing systems, 32, 2019.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Sungjun Cho, Seunghyuk Cho, Sungwoo Park, Hankook Lee, Honglak Lee, and Moontae Lee.
Curve your attention: Mixed-curvature transformers for graph representation learning. arXiv
preprint arXiv:2309.04082, 2023.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Manfredo Perdigao Do Carmo and J Flaherty Francis. Riemannian geometry, volume 2. Springer,
1992.

Chanakya Ekbote, Ajinkya Deshpande, Arun Iyer, Sundararajan Sellamanickam, and Ramakrishna
Bairi. Figure: Simple and efficient unsupervised node representations with filter augmentations.
Advances in Neural Information Processing Systems, 36, 2024.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Karish Grover, SM Angara, Md Shad Akhtar, and Tanmoy Chakraborty. Public wisdom matters!
discourse-aware hyperbolic fourier co-attention for social text classification. Advances in Neural
Information Processing Systems, 35:9417–9431, 2022.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature represen-
tations in products of model spaces. In International conference on learning representations,
volume 5, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251,
2021.

Zhuo-Chen He. Constrained heat kernel graph diffusion convolution: A high-dimensional statistical
approximation via information theory. IEEE Access, 2024.

Alec Jacobson and Olga Sorkine-Hornung. A cotangent laplacian for images as surfaces. Technical
Report/ETH Zurich, Department of Computer Science, 757, 2012.

J. Jost and S. Liu. Ollivier’s Ricci curvature, local clustering and curvature-dimension inequalities
on graphs. Discrete & Computational Geometry, 51(2):300–322, 2014.

11

Published as a conference paper at ICLR 2025

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Isabel M Kloumann, Johan Ugander, and Jon Kleinberg. Block models and personalized pagerank.
Proceedings of the National Academy of Sciences, 114(1):33–38, 2017.

Taewook Ko, Yoonhyuk Choi, and Chong-Kwon Kim. A spectral graph convolution for signed
directed graphs via magnetic laplacian. Neural Networks, 164:562–574, 2023.

H. Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2
(1-2):83–97, 1955.

Pan Li, I Chien, and Olgica Milenkovic. Optimizing generalized pagerank methods for seed-
expansion community detection. Advances in Neural Information Processing Systems, 32, 2019.

Ningyi Liao, Haoyu Liu, Zulun Zhu, Siqiang Luo, and Laks VS Lakshmanan. Benchmarking spec-
tral graph neural networks: A comprehensive study on effectiveness and efficiency. arXiv preprint
arXiv:2406.09675, 2024.

Y. Lin, L. Lu, and S. Yau. Ricci curvature of graphs. Tohoku Mathematical Journal, 63(4):605 –
627, 2011.

I-Shih Liu. On fourier’s law of heat conduction. Continuum mechanics and Thermodynamics, 2:
301–305, 1990.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 212–220, 2017.

Rada Mihalcea and Dragomir Radev. Graph-based natural language processing and information
retrieval. Cambridge university press, 2011.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

John Moeller, Vivek Srikumar, Sarathkrishna Swaminathan, Suresh Venkatasubramanian, and
Dustin Webb. Continuous kernel learning. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23,
2016, Proceedings, Part II 16, pp. 657–673. Springer, 2016.

Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. Community detection on networks with ricci
flow. Scientific reports, 9(1):1–12, 2019.

Yann Ollivier. Ricci curvature of metric spaces. Comptes Rendus Mathematique, 345(11):643–646,
2007.

Benedetto Piccoli and Francesco Rossi. On properties of the generalized wasserstein distance.
Archive for Rational Mechanics and Analysis, 222:1339–1365, 2016.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International conference on machine learning, pp. 4460–4469. PMLR, 2018.

Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs: Graph fourier
transform. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 6167–6170. IEEE, 2013.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–348, 1967.

12

Published as a conference paper at ICLR 2025

Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, and S Yu Philip. Hyper-
bolic variational graph neural network for modeling dynamic graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 4375–4383, 2021.

Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, and S Yu Philip. A self-
supervised mixed-curvature graph neural network. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 4146–4155, 2022.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 807–816, 2009.

Shukichi Tanno. Ricci curvatures of contact riemannian manifolds. Tohoku Mathematical Journal,
Second Series, 40(3):441–448, 1988.

Dorina Thanou, Xiaowen Dong, Daniel Kressner, and Pascal Frossard. Learning heat diffusion
graphs. IEEE Transactions on Signal and Information Processing over Networks, 3(3):484–499,
2017.

Yu Tian, Zachary Lubberts, and Melanie Weber. Curvature-based clustering on graphs. arXiv
preprint arXiv:2307.10155, 2023.

Abraham A Ungar. Hyperbolic trigonometry and its application in the poincaré ball model of hy-
perbolic geometry. Computers & Mathematics with Applications, 41(1-2):135–147, 2001.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Andreas Weber. Analysis of the physical laplacian and the heat flow on a locally finite graph. arXiv
preprint arXiv:0801.0812, 2008.

Richard C Wilson, Edwin R Hancock, Elżbieta Pekalska, and Robert PW Duin. Spherical and
hyperbolic embeddings of data. IEEE transactions on pattern analysis and machine intelligence,
36(11):2255–2269, 2014.

Bo Xiong, Shichao Zhu, Nico Potyka, Shirui Pan, Chuan Zhou, and Steffen Staab. Pseudo-
riemannian graph convolutional networks. Advances in Neural Information Processing Systems,
35:3488–3501, 2022.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their current
applications in bioinformatics. Frontiers in genetics, 12:690049, 2021a.

Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Ye. Hyperbolic graph attention
network. IEEE Transactions on Big Data, 8(6):1690–1701, 2021b.

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural
networks with an optimization framework. In Proceedings of the Web Conference 2021, pp.
1215–1226, 2021.

Shichao Zhu, Shirui Pan, Chuan Zhou, Jia Wu, Yanan Cao, and Bin Wang. Graph geometry inter-
action learning. Advances in Neural Information Processing Systems, 33:7548–7558, 2020.

13

Published as a conference paper at ICLR 2025

Table of Contents 14

7 Appendix 15

7.1 Notation Table . 15

7.2 More on Preliminaries . 16

7.2.1 Analysis of Real-world Graphs . 16

7.2.2 Ollivier-Ricci Curvature (ORC) . 17

7.2.3 Product Manifolds . 17

7.2.4 Kappa-Stereographic Model . 18

7.2.5 Spectral Graph Theory . 18

7.3 More on Cusp Laplacian . 18

7.3.1 Relevent Theorems for Cusp Laplacian 19

7.4 Generalised Pageranks and GPRGNN . 21

7.4.1 Proof of Theorem 1 . 21

7.4.2 Why GPRGNN as the backbone of CUSP? 22

7.5 Theorems for Curvature Encoding . 22

7.5.1 Proof of Definition 2 . 22

7.5.2 Proof of Theorem 2 . 23

7.6 Experimentation . 24

7.6.1 Datasets . 24

7.6.2 Baselines . 24

7.6.3 Experimental Results for Link Prediction 25

7.6.4 Estimating Product Manifold Signature 26

7.6.5 More Experimental Settings . 27

14

Published as a conference paper at ICLR 2025

7 APPENDIX

7.1 NOTATION TABLE

Notation Reference

H Hyperbolic manifold
S Spherical manifold
E Euclidean manifold
PdM Product manifold of dimension dM
κ Continous manifold curvature
κ̃ Ollivier-Ricci Curvature (ORC)
κ̃(x, y) ORC of edge {x, y}
κ̃(x) ORC of node x
mδ
x Probability mass assigned to node x for ORC computation

δij Kroneckner delta function
N (x) Neighbourhood set of node x
x ∼ y This implies that x and y are adjacent nodes
δ ORC neighbourhood weighting parameter
W1(.) Wasserstein-1 distance
dG(x, y) Shortest path (graph distance) between nodes x and y on graph G
Mκi,di

i Constant-curvature manifold with dimension di and curvature κi. Mi ∈ {H, S,E}
L̃, D̃, Ã Cusp Laplacian operator; L̃ = D̃− Ã

L̃n, Ãn Normalized Cusp Laplacian and Adjacency matrices; Ãn = D̃
−1
2 Ã D̃

−1
2

L,D,A Traditional graph Laplacian, Adjacency and Degree matrices; L = D−A
df Input graph feature dimension
dM Total dimension of the product manifold
dC Total dimension of the curvature embedding
F ∈ Rn×df Input feature matrix
expκ0 : RdM → Mκ Exponential map, to map from tangent plane (Euclidean) to the product manifold
⊕κ Mobius addition
⊗κ κ-right-matrix-multiplication
⊠κ κ-left-matrix-multiplication
ζ(x) Final node representation for node x
ϵl Learnable weight of lth filter
ζ ∈ Pn×(dM+dC) Matrix containing final node embeddings
βq Learnable weight of qth component manifold
τq Relative importance of manifold Mq in Cusp Pooling
L Total number of filters
Q Total number of components in product manifold
l Used to denote the lth filter
Z

(L)(x)

PdM
The GPR-based node representation for filter with L layers, on manifold PdM

κ(q) Manifold curvature of qth component in product manifold
d(q) Manifold dimension of qth component in product manifold
H

(l)

M
κ(q),d(q)
q

Hidden state representation after l layers of GPR, on qth manifold component with
curvature κ(q) and dimension d(q)

γl GPR weight for lth layer in the filter, while propagation GPR score.
α Initialising parameter for GPR
Signature PdM = ×Q

q=1M
κ(q),d(q)
q = (×H

h=1H
κ(h),d(h)

h)× (×S
s=1S

κ(s),d(s)
s)× Ed(e)

ψ : V → R A function defined on vertex set V
ΦPdC (κ̃(x)) Curvature encoding on product manifold
KP(κ̃a, κ̃b) KP(κ̃a, κ̃b) :=

〈
ΦPdC (κ̃a),ΦPdC (κ̃b)

〉
is the curvature kernel

λi ith eigenvalue of Ãn

λ̃i ith eigenvalue of L̃n
fθ(.) : Rdf → RdM Neural network with parameter set {θ} that generates the hidden state features be-

fore feeding input to Cusp Filtering.
gθ(.) : RdM → RdC Neural network projector used in curvature encoding

15

Published as a conference paper at ICLR 2025

7.2 MORE ON PRELIMINARIES

7.2.1 ANALYSIS OF REAL-WORLD GRAPHS

Figure 4: Distribution of Ollivier-Ricci curvatures κ̃(x, y) of edges across different datasets. The
histograms illustrate the frequencies of edge-based Ollivier-Ricci curvature values for each dataset,
highlighting the topological diversity in both homophilic and heterophilic settings, and hence the
need of learning representations in manifolds with different curvatures.

Figure 5: Distribution of Ollivier-Ricci curvatures κ̃(x) of nodes across different datasets.

Figure 6: Distribution of Spectral Energy with the respective eigenvalues of the graph Laplacian.
Spectral Energy, Ei = f2i /

∑
j f

2
j , where fj is the jth Fourier mode of the graph Laplacian. Low

frequency implies homophily and high frequency components correspond to heterophily. These plots
highlight the importance of capturing signals from different parts of the eigenspectrum for designing
a GNN that works well across multiple tasks.

16

Published as a conference paper at ICLR 2025

7.2.2 OLLIVIER-RICCI CURVATURE (ORC)

In an unweighted graph, the neighborhood of each node x, denoted as N (x), is assigned a probability distribu-
tion according to a lazy random walk formulation (Lin et al., 2011). Specifically, we define the distribution as
follows:

mα
z (x) =


α, if z = x,
1−α

|N (x)| , if z ∈ N (x),

0, otherwise.
(9)

Here, α controls the probability that a random walk will remain at the current node, while the remaining
probability mass (1−α) is uniformly distributed across the neighboring nodes. This formulation connects ORC
with lazy random walks and influences the balance between local exploration and the likelihood of revisiting a
node. In this work, we use α = 0.5, meaning that equal probability mass is distributed between the node itself
and its neighbors, striking a balance between breadth-first and depth-first search strategies. The choice of α is
crucial and depends on the topology of the graph. A smaller α value encourages more local exploration, while
a larger α favors revisiting nodes, thereby promoting a “lazy” walk. For our experiments, α = 0.5 was chosen
to reflect an equal probability mass distribution between the node and its neighbors.

■ Computational Considerations. Computing ORC can be computationally intensive due to the need to
calculate the Wasserstein-1 distance (W1), between the neighborhood distributions of connected nodes. In a
discrete setting, this corresponds to solving a linear program. Typically, W1(mx,my) between two nodes x
and y is computed using the Hungarian algorithm (Kuhn, 1955), which has a cubic time complexity. However,
this becomes prohibitively expensive as the graph size increases. Alternatively, the Wasserstein-1 distance can
be approximated using the Sinkhorn algorithm (Sinkhorn & Knopp, 1967), which reduces the complexity to
quadratic time. For this work, we employ the Sinkhorn approximation to compute ORC efficiently. Below,
we provide an alternative to approximate ORC of an edge in linear time, in case of very large (million-scale)
real-world graphs.

■ Approximating ORC in Linear Time. Even with the quadratic complexity of the Sinkhorn algorithm,
scaling to large networks remains challenging. To address this, a linear-time combinatorial approximation of
ORC can be employed, as suggested by Tian et al. (2023). This method approximates the Wasserstein distance
by utilizing local structural information, making it much more computationally feasible. The approximation
of ORC builds on classical bounds first introduced by Jost & Liu (2014). Let #(x, y) denote the number of
triangles formed by the edge (x, y), and define a ∧ b = min(a, b), a ∨ b = max(a, b) and dx is the degree of
node x. The following bounds on ORC can be derived for an edge e = x, y:

Theorem 3 (Jost & Liu (2014)). For an unweighted graph, the Ollivier-Ricci curvature of an edge e = x, y
satisfies the following bounds:

1. Lower bound:

κ̃(x, y) ≥ −
(
1− 1

dx
− 1

dy
− #(x, y)

dx ∧ dy

)
+

−
(
1− 1

dx
− 1

dy
− #(x, y)

dx ∨ dy

)
+

+
#(x, y)

dx ∨ dy
.

2. Upper bound:

κ̃(x, y) ≤ #(x, y)

dx ∨ dy
. (10)

The ORC of an edge, can then be approximated as the arithmetic mean of these bounds:

κ̂(x, y) :=
1

2

(
κupper(x, y) + κlower(x, y)

)
. (11)

The proof of these bounds has been detailed in Tian et al. (2023). This approximation is computationally
efficient, with linear-time complexity, and can be parallelized easily across edges, making it suitable for large-
scale graphs. The computation relies solely on local structural information, such as the degree of the nodes and
the number of triangles.

7.2.3 PRODUCT MANIFOLDS

Let M1,M2, . . . ,Mk denote a set of smooth manifolds. Their Cartesian product forms a product manifold,
denoted by P , such that P = M1 × M2 × · · · × Mk. Any point p ∈ P is characterized by its coordinates
p = (p1, p2, . . . , pk), where each pi corresponds to a point on the individual manifold Mi. Similarly, a tangent
vector v ∈ TpP can be expressed as v = (v1, v2, . . . , vk), where each vi ∈ Tpi Mi represents the projection
of v in the tangent space of the respective component manifold Mi. Optimization over manifolds requires the
notion of taking steps along the manifold, which can be achieved by moving in the tangent space and mapping
those movements back onto the manifold through the exponential map. The exponential map at a point p ∈ P,

17

Published as a conference paper at ICLR 2025

denoted expp : TpP → P, allows for this transfer. For product manifolds, the exponential map decomposes
into individual component exponential maps. Specifically, given a tangent vector v = (v1, v2, . . . , vk) at
p = (p1, p2, . . . , pk) ∈ P, the exponential map on P can be expressed as:

expp(v) = (expp1(v1), expp2(v2), . . . , exppk (vk)) (12)

7.2.4 KAPPA-STEREOGRAPHIC MODEL

The κ-stereographic model (Bachmann et al., 2020) unifies Hyperbolic and Spherical geometries under gy-
rovector formalism. This model leverages the framework of gyrovector spaces to represent all three con-
stant curvature geometries—hyperbolic, Euclidean, and spherical—simultaneously. Additionally, it facilitates
smooth transitions between these constant curvature geometries, enabling the joint learning of space curvatures
alongside the embeddings. It is a smooth manifold Mκ,d = {z ∈ Rd| − κ||z||22 < 1}, whose origin is
0 ∈ Rd, equipped with a Riemannian metric gκz = (λκz)

2I, where λκz is given by λκz = 2
(
1 + κ||z||22

)−1
.

The Riemannian operations under this model are elaborated in the table below:f

Operation Formalism in Ed Unified formalism in κ-stereographic model (Hd/ Sd)
Distance Metric dκM(x,y) = ∥x− y∥2 dκM(x,y) = 2√

|κ|
tan−1

κ

(√
|κ| ∥−x⊕κ y∥2

)
Exp. Map expκx(v) = x+ v expκx(v) = x⊕κ

(
tanκ

(√
|κ|λ

κ
x∥v∥2

2

)
v√

|κ|∥v∥2

)
Log. Map logκx(y) = x− y logκx(y) =

2√
|κ|λκ

x

tan−1
κ

(√
|κ| ∥−x⊕κ y∥2

)
−x⊕κy

∥−x⊕κy∥2

Addition x⊕κ y = x+ y x⊕κ y =
(1+2κxT y+K∥y∥2)x+(1−κ||x||2)y

1+2κxT y+κ2||x||2||v||2

Table 7: Operations in Hyperbolic Hd, Spherical Sd and Euclidean space Ed.

■ κ-right-matrix-multiplication. Given a matrix X ∈ Rn×d holding κ-stereographic embeddings in its rows
and weights W ∈ Rd×e, the Euclidean right multiplication can be written row-wise as (XW)i• = Xi•W.
Then the κ-right-matrix-multiplication is defined row-wise as

(X⊗κ W)i• = expκ0 ((logκ0 (X)W)i•) = tanκ
(
αi tan

−1
κ (||X•i||)

) (XW)i•
||(XW)i•||

(13)

where αi = ||(XW)i•||
||Xi•||

and expκ0 and logκ0 denote the exponential and logarithmic map in the κ-stereo. model.

■ κ-left-matrix-multiplication. Given a matrix X ∈ Rn×d holding κ-stereographic embeddings in its rows
and weights A ∈ Rn×n, the κ-left-matrix-multiplication is defined row-wise as

(A⊠κ X)i• := (
∑
j

Aij)⊗κ mκ(X1•, · · · ,Xn•;Ai•). (14)

7.2.5 SPECTRAL GRAPH THEORY

Graph Fourier Transform (GFT) (Sandryhaila & Moura, 2013) lays the foundation for Graph Neural Networks
(GNNs). A GFT is defined using a reference operator R which admits a spectral decomposition. Traditionally,
in the case of GNNs, this reference operator has been the symmetric normalized Laplacian Ln = I − An

(Kipf & Welling, 2016). The graph Fourier transform of a signal f ∈ Rn is then defined as f̂ = U⊤f ∈ Rn,
and its inverse as f = Uf̂ . A graph filter is an operator that acts independently on the entire eigenspace of a
diagonalisable and symmetric reference operator R, by modulating their corresponding eigenvalues. A graph
filter is defined via the graph filter function g(.) operating on the reference operator as g(R) = Ug(Λ)U⊤.

7.3 MORE ON CUSP LAPLACIAN

Spectral graph theory has shown significant progress in relating geometric characteristics of graphs to properties
of spectrum of graph Laplacians and related matrices. Several variants of the graph Laplacian matrices have
been shown to capture specific inductive biases for different tasks (Ko et al., 2023; Belkin et al., 2008; Jacobson
& Sorkine-Hornung, 2012).

Proof of Definition 1. Say the function ψ : V → R is defined on the vertex set V of the graph. Suppose ψ
describes a temperature distribution across a graph, where ψ(x) is the temperature at vertex x. According to
Newton’s law of cooling (He, 2024), the heat transferred from node x to node y is proportional to ψ(x)−ψ(y)

18

Published as a conference paper at ICLR 2025

if nodes x and y are connected (if they are not connected, no heat is transferred). Consequently, the heat
diffusion equation on the graph can be expressed as dψ

dt
= −β

∑
yAxy(ψ(x)−ψ(y)), where β is a constant of

proportionality and A denotes the adjacency matrix of the graph. Further insight can be gained by considering
Fourier’s law of thermal conductance (Liu, 1990), which states that heat flow is inversely proportional to the
resistance to heat transfer. ORC measures the transportation cost (W1(:, :)) between the neighborhoods of two
nodes, reflecting the effort required to transport mass between these neighborhoods (Bauer et al., 2011). We
interpret this transportation cost as the resistance between nodes. The vital takeaway here is that − Heat flow
between two nodes in a graph is influenced by the underlying Ollivier-Ricci curvature (ORC) distribution. The
diffusion rate is faster on an edge with positive curvature (low resistance), and slower on an edge with negative
curvature (high resistance). Thus, the ratio Rres

xy =
W1(mx,my)

dG(x,y)
represents the resistance from node x to node

y, i.e. dψxy

dt
∝ 1

Rres
xy

. It can be observed that 1
Rres

xy
=

dG(x,y)

W1(mx,my)
= 1

1−κ̃(x,y) (From the definition of ORC)

would tend to infinity when W1(mx,my) = 0 (i.e. κ̃(x, y) = 1). Thus, to ensure continuity, we create a new

ratio as 1
R•

xy
= e−Rres

xy = e
−1

1−κ̃(x,y) . Thus, we can modify the above heat flow equation as:

dψ

dt
= −β̄

∑
y

Axy(ψ(x)− ψ(y))

R•
xy

(Inversely proportional to R•
xy)

= −β̄
∑
y

Axy(ψ(x)− ψ(y)) e
−1

1−κ̃(x,y) = −β̄

(
ψ(x)

∑
y

Axy −
∑
y

Axyψ(y))

)
e

−1
1−κ̃(x,y)

= −β̄

(
ψ(i)Dxx −

∑
y

ψ(y)Axy

)
e

−1
1−κ̃(x,y) (∵ Dxx =

∑
y

Axy)

= −β
∑
y

(
δxy e

−1
1−κ̃(x,y)Dxx − e

−1
1−κ̃(x,y) Axy

)
ψ(y) (δxy is the Kronecker delta.)

= −β̄
∑
y

(
e

−1
1−κ̃(x,y) Lxy

)
ψ(y) (L,D,A are Laplacian, Degree and Adjacency matrices.)

= −β̄
(
L⊙ e

−1
1−κ̃(x,y)

)
ψ = −β̄L̃ψ (⊙ is the element-wise product)

This gives us the standard heat equation on graphs. Here, β̄ is the updated constant of proportionality. L̃ =

D̃ − Ã is the Cusp Laplacian operator, where D̃ and Ã are the updated Degree and Adjacency matrices,
to represent that the graph is transformed under edge weights wxy = 1

R•
xy

= e
1

1−κ̃(x,y) . Finally, our Cusp
Laplacian operator can be written as (x ∼ y means xy is an edge in the graph):

L̃ψ(x) =
∑
y∼x

w̄xy (ψ(x)− ψ(y)) =
∑
y∼x

e
−1

1−κ̃(x,y) (ψ(x)− ψ(y)) (15)

■ Why is e−Rres
xy = e

−1
1−κ̃(x,y) the right choice? To mathematically justify that e−

1
1−κ̃(x,y) is an appropriate

choice, we must verify its properties:

1. Asymptotics. As κ̃(x, y) → 1, e
− 1

1−κ̃(x,y) → 0 , indicating that nodes with high positive curvature

experience very fast heat diffusion (minimal resistance). Conversely, as κ̃(x, y) → −1 , e−
1

1−κ̃(x,y) → 1√
e

, meaning that nodes with high negative curvature have slow heat diffusion (higher resistance).

2. Continuity. The exponential function is smooth and continuous, ensuring that even small changes in
the curvature result in smooth changes in the heat flow dynamics, which is crucial for stable numerical
simulations and theoretical consistency.

3. Monotonicity. For κ̃(x, y) > 0, e
− 1

1−κ̃(x,y) is a decreasing function with respect to κ̃(x, y). This means
as curvature increases, the resistance decreases, aligning with the physical intuition of heat flow.

7.3.1 RELEVENT THEOREMS FOR CUSP LAPLACIAN

Theorem 4 (Positive Semidefiniteness of Cusp Laplacian). The normalized Laplacian operator L̃ is positive
semidefinite, i.e., for any real vector u ∈ Rn, we have uT L̃nu ≥ 0.

19

Published as a conference paper at ICLR 2025

Proof. We start by showing that the normalized Cusp Laplacian

L̃n = I− D̃−1/2ÃD̃−1/2 = I− Ãn (16)

is positive semi-definite. Let u be any real vector of unit norm and f = D̃−1/2u, then we have

uT L̃nu = uTu− uT D̃−1/2ÃD̃−1/2u =

n∑
x=1

u2
x −

n∑
x,y=1

fxfyÃxy (17)

=

n∑
x=1

D̃xxf
2
x −

n∑
x,y=1

fxfyÃxy =
1

2
(

n∑
x=1

D̃xxf
2
x − 2

n∑
x,y=1

fxfyÃxy +

n∑
y=1

D̃yyf
2
y) (18)

=
1

2

n∑
x,y=1

Ãxy(fx − fy)
2 =

1

2

n∑
x,y=1

e
−1

1−κ̃(x,y)Axy(fx − fy)
2, (19)

where the last step follows from the definition of the degree. We know that e
−1

1−κ̃(x,y) > 0 ∀κ(x, y), hence our
Cusp Laplacian is positive semidefinite.

Theorem 5. The eigenvalues {λ̃i}ni=1 of the normalized Cusp Laplacian L̃n lie in the interval [0, 2].

Proof. We begin by noting that Theorem 4 shows that the normalized Cusp Laplacian L̃n has real, non-
negative eigenvalues, meaning we need only to prove that the largest eigenvalue, denoted as λn, is less than
or equal to 2. Before moving to that, we show that 0 is indeed an eigenvalue of L̃ associated with the unit

eigenvector τ where τ =

√
D̃ii√∑
v D̃vv

.

Let 1 be the all one vector. Then, a direct calculation reveals that

L̃symτ = τ − D̃−1/2ÃD̃−1/2τ = τ − D̃−1/2ÃD̃−1/2D̃1/21× 1√∑
v D̃vv

(20)

= τ − D̃−1/2Ã1× 1√∑
v D̃vv

= τ − D̃−1/2D̃1× 1√∑
v D̃vv

(21)

= τ − D̃1/21× 1√∑
v D̃vv

= τ − τ = 0. (22)

Combining this result with the positive semi-definite property of the Laplacian shows that 0 is indeed the
smallest eigenvalue of L̃sym associated with the eigenvector τ . For the second part, using the Courant-Fischer
theorem, we know that the largest eigenvalue can be expressed as:

λn = max
u ̸=0

u⊤L̃nu

u⊤u
.

Substituting the definition of the normalized Cusp Laplacian L̃n = I − Ãn into this expression, and letting
f = D̃−1/2u, we have:

λn = max
u̸=0

u⊤D̃−1/2L̃D̃−1/2u

u⊤u
= max

f ̸=0

f⊤L̃f

f⊤D̃f
.

The degree matrix, can be expressed in the quadratic form as f⊤D̃f =
∑n
x=1 D̃xx|fx|2.

For the numerator involving L̃, we expand the quadratic form:

f⊤L̃f =
1

2

n∑
x,y=1

Ãxy(fx − fy)
2 =

1

2

n∑
x,y=1

e
−1

1−κ̃(x,y)Axy(fx − fy)
2 (23)

≤
n∑

x,y=1

e
−1

1−κ̃(x,y)Axy(fx + fy)
2 ≤ 2

n∑
x=1

|fx|2
(

n∑
y=1

Axy

)
= 2

n∑
x=1

Dxx|f(x)|2. (24)

The last inequality follows from the fact that e
−1

1−κ̃(x,y) → 1√
e

as κ̃(x, y) → −1 implies that it is always < 1.

Thus, we can conclude that, f⊤L̃f ≤ 2f⊤D̃f , and the Rayleigh quotient is bounded f⊤L̃f

f⊤D̃f
≤ 2. This shows

that the largest eigenvalue of the normalized Cusp Laplacian L̃n is bounded by 2, completing the proof that the
eigenvalues of L̃n are contained within the interval [0, 2].

20

Published as a conference paper at ICLR 2025

Figure 7: Architecture of GPRGNN.

7.4 GENERALISED PAGERANKS AND GPRGNN

■ Equivalence of the GPR method and polynomial graph filtering. If we truncate the infinite series in the
GPR definition at some integerK,

∑K
k=0 γkÃ

k
n becomes a polynomial graph filter of degreeK. Consequently,

optimizing the GPR weights is tantamount to optimizing the polynomial graph filter. It is important to note that
any graph filter can be approximated using a polynomial graph filter, enabling the GPR method to handle a
wide variety of node label patterns. Additionally, increasing K enhances the approximation of the optimal
graph filter. This again illustrates the advantage of large-step propagation.

■ GPRGNN architecture. GPR-GNN initially derives hidden state features for each node and subsequently
employs GPR to disseminate them. The GPR-GNN procedure can be represented as:

P̂ = softmax(Z), Z =

K∑
k=0

γkH
(k), H(k) = ÃsymH

(k−1), H
(0)
i: = fθ(Xi:), (25)

Here, fθ(.) denotes a neural network parametrized by {θ}, which produces the hidden state features H(0). The
GPR weights γk are optimized alongside {θ} in an end-to-end manner. The GPR-GNN model is straightfor-
ward to interpret: As previously mentioned, GPR-GNN is capable of adaptively managing the contribution of
each propagation step to fit the node label pattern. Analyzing the trained GPR weights also aids in understand-
ing the topological properties of a graph, such as identifying the optimal polynomial graph filter.

7.4.1 PROOF OF THEOREM 1

We first state the formal version of Theorem 1

Theorem 6 (Formal version of Theorem 1). Assume the graph G is connected. Let λ1 ≥ λ2 ≥ ... ≥ λn and
λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃n be the eigenvalues of Ãn and L̃n, respectively. If γl ≥ 0 ∀l ∈ {0, 1, ..., L},

∑L
l=0 γl = 1

and ∃l′ > 0 such that γl′ > 0, then
∣∣∣ gγ,L(λi)

gγ,L(λ1)

∣∣∣ < 1 ∀i ≥ 2. Also, if γl = (−α)l, α ∈ (0, 1) and L→ ∞, then∣∣∣ limL→∞ gγ,L(λi)

limL→∞ gγ,L(λ1)

∣∣∣ > 1 ∀i ≥ 2.

1. Note that
∣∣∣ gγ,L(λi)

gγ,L(λ1)

∣∣∣ < 1 ∀i ≥ 2 implies the low-pass case as after applying the graph filter gγ,L, the
lowest frequency component (correspond to λ1) further dominates.

2. Unfiltered case. Recall that in the unfiltered case, we do not multiply with Ãn. It can also be viewed as
multiplying the identity matrix I , where the eigenvalue ratio is |λi|0

|λ1|0
= 1. Hence gγ,L acts like a low pass

filter in this case.

3. In contrast,
∣∣∣ limL→∞ gγ,L(λi)

limL→∞ gγ,L(λ1)

∣∣∣ > 1 ∀i ≥ 2 implies that after applying the graph filter, the lowest frequency
component (correspond to λ1) no longer dominates. This corresponds to the high pass filter case.

Proof. We start with the low pass filter result. From Theorem 5, we know that 0 ≤ λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃n ≤ 2.
Given the spectrum of Ãn, we know that −Ãn has spectrum negatives of Ãn, and I − Ãn adds one to each
eigenvalue of −Ãn . Hence, 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λn ≥ −1 follows directly. Now, we know that λ1 = 1

and |λi| < 1, ∀i ≥ 2. Further, we have assumed that gγ,L(λ1) =
∑L
l=0 γl = 1. Hence, proving Theorem 6 is

equivalent to show

|gγ,L(λi)| < 1 ∀i ≥ 2.

21

Published as a conference paper at ICLR 2025

This is obvious since gγ,L(λ) =
∑L
l=0 γlλ

l is a polynomial of order L with nonnegative coefficients. It is easy
to check that ∀l ≥ 1, |λ|l < 1, ∀|λ| < 1. Combine with the fact that all γk’s are nonnegative we have

|gγ,L(λi)| ≤
L∑
l=0

γl|λl| =
L∑
l=0

γl|λ|l
(a)
≤

L∑
l=0

γl = 1.

Finally, note that the only possibility that the equality holds is γl = δ0,l since ∀l ≥ 1, |λ|l < 1,∀|λ| < 1.
However, by assumption

∑L
l=0 γl = 1 and ∃l′ > 0 such that γl′ > 0 we know that this is impossible. Hence

(a) is a strict inequality <.

For the high pass filter result, it can be observed that:

lim
L→∞

gγ,L(λ) = lim
L→∞

L∑
l=0

γlλ
l = lim

L→∞

L∑
l=0

(−αλ)l = 1

1 + αλ
,

where the last step is due to the fact that α ∈ (0, 1) and thus limL→∞(−αλ)L = 0, ∀|λ| ≤ 1. Thus we have∣∣∣∣ limL→∞ gγ,L(λi)

limL→∞ gγ,L(λ1)

∣∣∣∣ = ∣∣∣∣ 1 + α

1 + αλi

∣∣∣∣ (b)
> 1 ∀i ≥ 2.

The strict inequalities (b) is from the fact that |λi| < 1, ∀i ≥ 2. Notably, supλ∈[1,−1)
1

1+αλ
happens at the

boundary λ = −1, which corresponds the the bipartite graph. It further shows that the graph filter with respect
to the choice γl = (−α)l emphasizes high frequency components and thus it is indeed acting as a high pass
filter.

7.4.2 WHY GPRGNN AS THE BACKBONE OF CUSP?

In this section, we elaborate on why GPR is an ideal backbone when compared to other Spectral GNNs.

1. Adaptive Filter Design. GPR learns the filter coefficients directly, allowing the spectral response to adapt
to the task and dataset. This flexibility is critical for modeling both homophilic and heterophilic graphs.

2. Universality. Unlike fixed low-pass filters like ChebNet, which excel primarily in homophilic settings,
GPR’s learnable filters enable it to balance low-pass and high-pass components, making it suitable for
both homophilic and heterophilic graphs. This is one of the main goals of our paper - to achieve superior
performance on homophilic and heterophilic tasks. Fixed polynomial filters in ChebNet and Bernstein-
based methods approximate spectral responses up to a fixed order, limiting their ability to model complex
spectral properties.

3. GPRGNN escapes oversmoothing. GPR weights are adaptively learnable, which allows GPR-GNN to
avoid over-smoothing and trade node and topology feature informativeness. See Section 4 of Chien et al.
(2020) for more theoretical analysis on the same and proofs, which is beyond the scope of this work. GPR
not only mitigates feature over-smoothing, but also works on highly diverse node label patterns (See Section
4 and 5 of Chien et al. (2020)).

4. Capturing node features and graph topology. In many important graph data processing applications, the
acquired information includes both node features and observations of the graph topology. GPRGNN jointly
optimizes node feature and topological information extraction, regardless of the extent to which the node
labels are homophilic or heterophilic.

5. Filter Bank Construction. Using GPR based spectral filters, helps us to effectively construct a filter
bank where each adaptive filter contributes to a specific spectral profile, enabling the model to aggregate
information across different spectral bands. This approach captures diverse patterns in node features and
topology, unlike ChebNet or Bernstein-based methods, which rely on fixed polynomial approximations and
lack such flexibility.

7.5 THEOREMS FOR CURVATURE ENCODING

Theorem 7 (Bochner’s Theorem). (Moeller et al., 2016) A continuous, translation-invariant kernel K(x,y) =
Ψ(x − y) on Rd is positive definite if and only if there exists a non-negative measure on R such that Ψ is the
Fourier transform of the measure.

7.5.1 PROOF OF DEFINITION 2

Proof. Using the Bochner’s theorem stated above, our curvature kernel KR has the expression:

KR(κ̃a, κ̃b) = ΨR(κ̃a, κ̃a) =

∫
R
eiω(κ̃a−κ̃b)p(ω)dω = Eω[ξω(κ̃a)ξω(κ̃b)∗], (26)

22

Published as a conference paper at ICLR 2025

where ξω(κ̃) = eiωκ̃. Since kernel KR and measure p(ω) are real, we extract the real part of (26):

KR(κ̃a, κ̃b) = Eω
[
cos(ω(κ̃a − κ̃b))

]
= Eω

[
cos(ωκ̃a) cos(ωκ̃b) + sin(ωκ̃a) sin(ωκ̃b)

]
. (27)

The above formulation suggests approximating the expectation by the Monte Carlo integral, i.e. KR(κ̃a, κ̃b) ≈
1
dC

∑dC
i=1 cos(ωiκ̃a) cos(ωiκ̃b)+sin(ωiκ̃a) sin(ωiκ̃b), with ω1, . . . , ωdC

i.i.d∼ p(ω). Therefore, we propose the
finite dimensional functional mapping to RdC as:

ΦRdC (κ̃) =

√
1

dC

[
cos(ω1κ̃), sin(ω1κ̃), . . . , cos(ωdC κ̃), sin(ωdC κ̃)

]
(28)

The unknown probability distribution p(ω) is estimated using the inverse cumulative distribution function
(CDF) transformation as in Xu et al. (2020). Since our GNN is operating in the mixed-curvature space, we
must map our defined curvature kernel based representations to the product manifold. We do so using the
exponential map, for a node x with ORC curvature κ̃(x) as:

ΦPdC (κ̃(x)) = gθ
(
∥Qq=1exp

κ(q)

0 (ΦRdC (κ̃(x)))
)

(29)

= gθ
(
∥Qq=1ΦM

κ(q),d(q)
q

(κ̃(x))
)

(30)

where exp
κ(q)

0 : RdC → Mκ(q),d(q)
q denotes the exponential map on the qth component manifold with

curvature κ(q), || is the concatenation operator and gθ : Pdf → PdC is a Riemannian projector. We need
gθ because we maintain a single product manifold for CUSP with total dimension df . So, upon taking the
exponential map with respect to this product manifold, we are required to project the curvature embeddings to
the required dimension dC .

7.5.2 PROOF OF THEOREM 2

Proof. We begin by recalling that in Euclidean space, the curvature kernel KR is:

KR(κ̃a, κ̃b) =
〈
ΦRdC (κ̃a),ΦRdC (κ̃b)

〉
= ΨR(κ̃a − κ̃b).

The key property here is translation invariance:

KR(κ̃a + c̃, κ̃b + c̃) = KR(κ̃a, κ̃b) = ΨR(κ̃a − κ̃b).

Next, we move to the product manifold PdC , which consists of multiple components of different curvatures,
such as hyperbolic, spherical, and Euclidean spaces.

For each component manifold Mκ(q),d(q)
q with curvature κ(q), the stereographic inner product ⟨., .⟩κx :

TxMn
κ × TxMn

κ → R, is defined on the tangent plane of the Riemannian manifold as:

⟨u,v⟩κx = uTgκxv = (λκx)
2 ⟨u,v⟩,

where the conformal factor λκx is defined as:

λκx =
2

1 + κ∥x∥22
.

This conformal factor modulates the stereographic projection in the curved space, and it ensures that distances
are mapped correctly in the manifold space. Now, consider the inner product between the curvature embeddings
ΦPdC (κ̃a) and ΦPdC (κ̃b) in the mixed-curvature space.

KP(κ̃a, κ̃b) =

Q∑
q=1

⟨Φ
M

κ(q),d(q)
q

(κ̃a),Φ
M

κ(q),d(q)
q

(κ̃b)⟩κ(q)
,

where each component manifold Mκ(q),d(q)
q contributes to the overall inner product in the product manifold

PdC . Using the stereographic inner product in each component, we can write:

KP(κ̃a, κ̃b) =

Q∑
q=1

(
λ
κ(q)
x

)2
⟨ΦRdC (κ̃a),ΦRdC (κ̃b)⟩.

We now need to show that translation invariance holds in the mixed-curvature product manifold. Since the
conformal factor λκx depends only on the norm ∥x∥2, any translation by a constant c̃ does not affect the relative
difference between curvature embeddings. Specifically, for any constant shift c̃:

KP(κ̃a + c̃, κ̃b + c̃) =

Q∑
q=1

(
λ
κ(q)
x

)2
ΨR((κ̃a + c̃)− (κ̃b + c̃)) = ΨP(κ̃a − κ̃b).

Thus, the kernel in the mixed-curvature space remains invariant to translation, completing the proof.

23

Published as a conference paper at ICLR 2025

7.6 EXPERIMENTATION

7.6.1 DATASETS

The performance of CUSP is evaluated over eight benchmark datasets for two primary tasks: Node Classifi-
cation (NC) and Link Prediction (LP). These datasets encompass both homophilic and heterophilic domains.
Detailed descriptions of each dataset are provided below.

1. Citation Networks. Cora, PubMed, and Citeseer (Sen et al., 2008; Yang et al., 2016) are citation networks
in which nodes symbolize research papers, and edges denote citation links between them. Each node is
labeled with its subject category. This dataset is commonly utilized for node classification because of its
pronounced homophilic properties.

2. Wikipedia graphs. Chameleon and Squirrel (Rozemberczki et al., 2021) are heterophilic graphs derived
from Wikipedia articles. Nodes represent articles, and edges represent hyperlinks between them. Node
labels correspond to website traffic levels.

3. Actor Co-occurrence Network. Actor (Tang et al., 2009) is a heterophilic graph dataset where nodes depict
actors and edges signify co-occurrences on the same Wikipedia page. The node labels correspond to the
professional background of the actors.

4. Webpage graphs. Texas and Cornell4 are parts of the WebKB dataset, and are sparsely connected het-
erophilic graphs. Here, nodes represent web pages, and edges represent hyperlinks between them. Labels
reflect different types of webpages.

7.6.2 BASELINES

This part offers an in-depth discussion of the baseline models against which CUSP is compared. We classify
the baseline models into three categories: Spatial, Riemannian, and Spectral methods, which each address a
distinct facet of graph neural network architectures.

■ Spatial baselines. The first kind of baselines includes the traditional spatial methods, which directly operate
on the node features and their immediate neighborhoods.

1. GCN (Kipf & Welling, 2016). Graph Convolutional Networks (GCNs) represent one of the foundational
graph neural networks that utilize spectral graph convolution in the spatial domain. They derive node em-
beddings by combining features from neighboring nodes via a linear combination involving the adjacency
matrix and the nodes’ features.

2. GAT (Veličković et al., 2017). Graph Attention Network (GAT) introduces attention mechanisms to graph
neural networks. Each node assigns learnable attention weights to its neighbors and aggregates their fea-
tures based on these weights.

3. GraphSAGE (Hamilton et al., 2017). GraphSAGE is an inductive technique designed to learn node em-
beddings by sampling and aggregating features from a fixed set of neighboring nodes, instead of processing
the entire graph. This method enables GraphSAGE to create embeddings for nodes not encountered during
training by using efficient neighborhood sampling.

■ Riemannian Baselines. Riemannian models function within non-Euclidean spaces (such as hyperbolic
or spherical manifolds) and are tailored for graph data characterized by intricate geometric properties (e.g.
hierarchical or cyclic structures).

1. HGCN (Chami et al., 2019). Hyperbolic Graph Convolutional Networks utilize hyperbolic geometry to
represent the hierarchical and tree-like characteristics of graphs. This approach extends GCN to hyperbolic
space by introducing a hyperbolic variant of the convolutional operation. It is especially suitable for datasets
that exhibit hierarchical or tree-like configurations.

2. HGAT (Zhang et al., 2021b). Hyperbolic Graph Attention Network (HGAT) extends Graph Attention
Networks (GAT) into hyperbolic space by integrating attention mechanisms with hyperbolic geometry, and
calculates the attention weights among the nodes in the hyperbolic space to enhance the aggregation of
features.

3. κGCN (Bachmann et al., 2020). κGCN allows for learning the curvature of each node in a graph and
generalizes GCN to operate in mixed-curvature spaces. The curvature parameter κ determines whether
a node lies in hyperbolic, spherical, or Euclidean space. By learning curvature adaptively, κGCN offers
flexibility in modeling graphs with regions of different geometries, providing a better fit for graphs with
complex structures.

4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

24

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

Published as a conference paper at ICLR 2025

4. QGCN (Xiong et al., 2022). Pseudo-Riemannian GCN extends a GCN to a pseudo-Riemannian manifold,
enabling functionality in mixed-curvature spaces. This network is capable of modeling graph regions with
both positive and negative curvature.

5. SelfMGNN (Sun et al., 2022). SelfMGNN generates embeddings within a mixed-curvature space through
self-supervision. It dynamically allocates varied curvatures to different regions of the graph by utilizing a
mixed-curvature embedding space. This approach incorporates both self-supervision and mixed-curvature
learning to improve performance on heterogeneous graphs.

■ Spectral Baselines. These techniques utilize the eigenvalues of either the graph Laplacian or adjacency
matrix to establish convolutional filters that function in the frequency domain.

1. ChebyNet (Defferrard et al., 2016). ChebyNet implements spectral convolutions through a polynomial
approximation of the graph Laplacian, sidestepping the expensive process of eigenvalue decomposition.
Instead, it approximates the convolution using Chebyshev polynomials. This approach allows ChebyNet to
execute localized graph convolutions efficiently, making it well-suited for handling larger graphs.

2. BernNet (He et al., 2021). BernNet employs Bernstein polynomials to approximate graph filters, providing
flexible management over the filter’s frequency response. This method extends polynomial-based graph
filters and is adaptable to various frequency elements in graphs.

3. GPRGNN (Chien et al., 2020). The Generalized PageRank Graph Neural Network (GPRGNN) builds
upon the Personalized PageRank (PPR) approach, integrating it into the framework of graph neural net-
works. It propagates node features through the graph by using a weighted sum of adjacency matrix powers,
dynamically adjusting to both homophilic and heterophilic graphs.

4. FiGURe (Ekbote et al., 2024). FiGURe employs adaptive filters to capture various sections of the graph
spectrum, enabling it to learn both high-pass and low-pass filters specific to the task. It dynamically selects
the optimal filter bank to accurately represent the graph’s architecture.

7.6.3 EXPERIMENTAL RESULTS FOR LINK PREDICTION

Baseline Cora Citeseer PubMed Chameleon Actor Squirrel Texas Cornell Av. ∆ Gain
GCN 88.54±0.51 85.42±0.89 91.31±0.73 86.07±0.64 85.12±0.78 90.01±0.15 69.08±0.99 73.09±0.92 9.58
GAT 85.45±0.66 87.23±0.11 87.65±0.04 88.99±0.13 87.33±0.08 90.23±0.14 68.79±0.72 75.12±0.77 9.31
SAGE 87.12±0.82 90.71±0.65 90.09±0.90 90.01±0.58 86.06±0.73 91.02±0.61 76.54±0.69 77.98±0.88 6.97

HGCN 91.63±0.55 94.13±0.67 91.04±0.79 91.45±0.62 90.01±0.80 92.34±0.01 69.99±0.84 74.03±0.57 6.34
HGAT 90.43±0.03 91.02±0.16 88.99±0.89 89.77±0.02 90.99±0.01 89.22±0.04 71.58±0.89 72.03±0.22 7.66
κGCN 92.04±0.70 93.33±0.57 92.45±0.85 92.03±0.63 90.45±0.88 91.35±0.60 76.09±0.76 73.05±0.71 5.56
QGCN 92.17±0.79 92.75±0.52 92.16±0.09 91.67±0.05 91.07±0.06 90.98±0.92 75.44±0.10 73.89±0.26 5.65
SelfMGNN 93.12±0.04 92.99±0.91 90.99±0.17 93.51±0.14 91.98±0.19 95.01±0.16 74.51±0.62 78.99±0.81 4.28

ChebyNet 88.23±0.85 89.22±0.06 86.54±0.29 90.01±0.23 88.09±0.44 92.13±0.57 73.45±0.01 79.01±0.18 7.33
BernNet 86.34±0.13 87.09±0.60 85.34±0.82 87.15±0.37 87.22±0.15 91.22±0.55 77.65±0.87 78.34±0.19 8.12
GPRGNN 91.16±0.72 93.05±0.81 92.03±0.01 91.22±0.16 89.76±0.62 92.34±0.23 76.05±0.18 80.04±0.12 4.96
FiGURe 91.98±0.69 94.33±0.15 92.67±0.83 93.09±0.31 90.11±0.29 95.43±0.65 76.99±0.16 80.12±0.58 3.82

CUSP 95.08±0.13 96.88±0.65 96.01±0.01 97.66±0.33 96.04±0.38 97.17±0.11 81.23±0.14 85.23±0.05 0
Imp. ∆ 1.96 2.55 3.34 4.15 4.06 1.74 3.58 5.11

Table 8: Performance comparision of CUSP with baselines for LP task (Mean AUC Score ± 95%
confidence interval). First, Second and Third best performing models are highlighted.

Dataset CUSP CUSPeuc CUSPlap CUSPenc CUSPpool CUSPfil

Cora 95.08±0.13 92.45±0.25 93.21±0.42 93.78±0.33 92.13±0.40 93.02±0.27

Citeseer 96.88±0.65 94.03±0.30 95.34±0.22 94.08±0.29 94.01±0.31 94.56±0.26

PubMed 96.01±0.01 93.52±0.60 94.81±0.40 94.92±0.38 94.11±0.35 94.16±0.39

Chameleon 97.66±0.33 95.02±0.44 96.23±0.52 96.13±0.28 95.13±0.40 95.67±0.57

Actor 96.04±0.38 91.45±0.55 93.99±0.32 92.81±0.42 91.98±0.47 92.13±0.49

Squirrel 97.17±0.11 93.14±0.22 95.56±0.37 94.33±0.43 93.75±0.32 92.89±0.14

Texas 81.23±0.14 78.45±0.36 79.88±0.52 80.12±0.42 79.23±0.37 77.81±0.54

Cornell 85.23±0.05 82.89±0.32 83.91±0.39 84.23±0.37 82.31±0.48 82.45±0.42

Avg. ∆ Gain 0 3.0437 1.5462 1.8625 2.8312 2.8262

Table 9: Ablation study (LP) results. CUSPeuc is the Euclidean variant, CUSPlap uses the traditional
Laplacian, CUSPenc gets rid of curvature encoding, CUSPpool replaces Cusp pooling with concate-
nation, and CUSPfil uses a single filter instead of a filter bank. Av. ∆ Gain represents the average
gain of CUSP over the ablation model in that column, averaged across the different datasets.

25

Published as a conference paper at ICLR 2025

CUSP Cora Citeseer PubMed Chameleon Actor Squirrel Texas Cornell

H24 × S24 93.10±0.22 94.33±0.35 95.41±0.25 97.28±0.45 95.25±0.44 96.05±0.51 75.43±0.31 76.95±0.38

(H8)2 × (S8)2 × E16 93.00±0.27 95.11±0.28 94.52±0.34 96.66±0.39 95.34±0.38 95.40±0.57 80.95±0.42 84.80±0.43

H8 × S8 × E32 93.20±0.24 93.25±0.30 95.65±0.30 97.11±0.37 94.92±0.40 95.51±0.45 81.23±0.14 85.23±0.05

H16 × (S16)2 93.50±0.25 94.12±0.33 95.32±0.45 97.66±0.33 95.20±0.34 97.17±0.11 80.30±0.45 78.02±0.47

(H16)2 × E16 93.25±0.21 93.05±0.32 96.01±0.01 96.80±0.40 96.04±0.38 96.15±0.55 79.50±0.38 84.60±0.40

H24 × E24 92.70±0.30 94.71±0.35 95.45±0.42 96.51±0.47 95.00±0.37 88.95±0.53 79.70±0.54 81.20±0.60

S24 × E24 88.50±0.39 91.23±0.35 89.99±0.44 91.12±0.43 79.90±0.52 91.20±0.51 79.08±0.52 83.75±0.48

H16 × S16 × E16 95.08±0.13 96.88±0.65 95.55±0.41 94.44±0.34 95.55±0.35 96.25±0.38 81.07±0.29 84.60±0.30

(S8)2 × E32 88.05±0.40 90.35±0.42 86.30±0.48 89.34±0.45 93.33±0.54 90.25±0.48 80.10±0.43 82.01±0.55

(H16)3 89.10±0.44 91.01±0.50 93.93±0.55 96.19±0.50 95.25±0.49 92.30±0.52 77.77±0.53 79.44±0.58

Table 10: Performance comparison of CUSP with different manifold signatures for Link Prediction
(LP). Best performing signatures are in Bold, and cases with a large decline in performance because
of manifold mismatch are in Blue.

Dataset Signature

Cora H16(−0.21, 0.31)× S16(+0.49, 0.38)× E16(0, 0.31)
Citeseer H16(−0.78, 0.29)× S16(+0.55, 0.39)× E16(0, 0.32)
PubMed H16(−0.76, 0.56)×H16(−0.28, 0.41)× E16(0, 0.03)
Chameleon H16(−0.34, 0.09)× S16(+0.71, 0.25)× S16(+0.55, 0.34)
Actor H16(−0.77, 0.17)×H16(−0.39, 0.42)× E16(0, 0.41)
Squirrel H16(−0.17, 0.23)× S16(+0.54, 0.38)× S16(+0.38, 0.39)
Texas H8(−0.38, 0.31)× S8(+0.18, 0.19)× E32(0, 0.50)
Cornell H8(−0.41, 0.19)× S8(+0.09, 0.26)× E32(0, 0.55)

Table 11: Learning results of CUSP on Link Prediction (LP) task for the best performing product
signature. Format of entries − manifold type (dim) (learnt curvature, learnt manifold weight).

Dataset I Z(1) Z(2) Z(3) Z(4) Z(5) Z(6) Z(7) Z(8) Z(9) Z(10)

Cora 0.1125 0.2393 0.0520 0.0504 0.0676 0.0272 0.1531 0.1251 0.0939 0.0095 0.0694
Citeseer 0.2131 0.0150 0.2195 0.0283 0.0922 0.1530 0.0350 0.0320 0.0282 0.1254 0.0582
PubMed 0.0279 0.1793 0.0285 0.0296 0.0563 0.3870 0.0603 0.0324 0.0612 0.0271 0.1104
Chameleon 0.0601 0.1136 0.1694 0.0924 0.1329 0.1605 0.1026 0.0157 0.0475 0.0344 0.0709
Actor 0.1230 0.0321 0.0324 0.1147 0.1287 0.3700 0.0136 0.0389 0.0604 0.0691 0.0172
Squirrel 0.0182 0.0289 0.1056 0.2099 0.0209 0.0355 0.0854 0.2159 0.0475 0.1042 0.1279
Texas 0.0890 0.1983 0.0179 0.4570 0.0035 0.1429 0.0177 0.0087 0.0474 0.0131 0.0046
Cornell 0.0886 0.2026 0.0181 0.4460 0.0034 0.1472 0.0183 0.0089 0.0487 0.0134 0.0048

Table 12: Learned filter weights (Link Prediction) for the top-performing split, distinguishing be-
tween homophilic (favoring low-pass filters) and heterophilic (favoring high-pass filters). First,
second, and third highest filter weights are highlighted.

7.6.4 ESTIMATING PRODUCT MANIFOLD SIGNATURE

In our model, the mixed-curvature product manifold PdC is essential for representing the geometric structure
of the data. The curvature configuration needed for each dataset depends on the intrinsic geometry of its graph.
To generalize across various datasets, we aim to determine the optimal signature of the product manifold,
specifically the proportions of hyperbolic, spherical, and Euclidean components. This estimation is based on
analyzing the Ollivier-Ricci curvature (ORC) distribution as a heuristic. See Figures 4 and 5 in Appendix 7.2.1
for the ORC distribution of multiple datasets. For datasets with many positively curved edges, we select a
Spherical component, and for those with negatively curved edges, we choose a Hyperbolic component. For
example, the curvature distribution of PubMed’s edges in Figure 4 shows two significant peaks around −0.45
and +0.25. Given this distribution, we opt for Spherical and Hyperbolic components when evaluating CUSP
on PubMed. Empirically, the best performance for PubMed is achieved with the signature (H16)2 × E16. We
initialize the curvatures of PubMed’s component manifolds with these prominent values: H with −0.45 and S
with +0.25. We select two hyperbolic manifolds to capture different curvature ranges.

An overview of this simple idea is provided in Algorithm 1. By systematically analyzing the curvature distribu-
tion, our heuristic-based algorithm identifies the manifold signature that best represents the dataset’s underly-
ing geometric structure. We heuristically cluster the curvature distribution and identify the centroid curvatures
without altering their order or frequencies. The use of predefined dimensions allows for flexibility based on
experimental settings. Since optimal dimension allocations can vary and are complex to analyze, we manually
set the dimensions of the component manifolds as a hyperparameter. This ensures fair and uniform comparison
across multiple datasets, as different datasets may perform best with different configurations. We do not claim
that this algorithm finds the best possible, optimal combination of component manifolds, rather, it estimates a
potential signature that might be a good fit for a particular dataset.

26

Published as a conference paper at ICLR 2025

Algorithm 1 Product manifold signature estimation and curvature initialisation

Require: • Edge curvature histogram C = {(κi, fi)}Ni=1

• Threshold ϵ to distinguish between curved and flat regions
• Maximum number of Hyperbolic (Hmax) and Spherical (Smax) components.
• Total product manifold dimension dM
• (Optional) Preferred component manifold dimensions dpre

(h), d
pre
(s), d

pre
(e)

Ensure: Product manifold signature PdM = ×Q
q=1M

κ(q),d(q)
q

1: Normalize frequencies: f ′
i =

fi∑N
j=1 fj

2: Construct weighted curvature set: C′ = {(κi, f ′
i)}Ni=1

3: Determine optimal number of clusters K using methods like the elbow method, constrained by K ≤
Hmax + Smax + 1 ▷ There can be only 1 Euclidean component

4: Cluster C′ into K clusters using weighted clustering (e.g., weighted K-means)
5: Initialize empty lists H,S, E
6: for each cluster c in clusters do
7: Compute cluster centroid curvature κc =

∑
(κi,f

′
i
)∈c κi

|c|
8: Compute total frequency weight wc =

∑
(κi,f

′
i)∈c

f ′
i

9: if κc < −ϵ and |H| ≤ Hmax then ▷ Negative curvature
10: Assign manifold component: Mq = Hκc ▷ Curvature initialization
11: Add (Mq, wc) to H
12: else if κc > ϵ and |S| ≤ Smax then ▷ Positive curvature
13: Assign manifold component: Mq = Sκc ▷ Curvature initialization
14: Add (Mq, wc) to S
15: else
16: Assign manifold component: Mq = E ▷ Approximate zero curvature, i.e. κc ∈ [−ϵ, ϵ]
17: Add (Mq, wc) to E
18: end if
19: end for
20: if Predefined dimensions dpre

(h), d
pre
(s), d

pre
(e) are provided then

21: Assign dimensions d(q) to each component q as per predefined values ▷ Dimension assignment
22: else
23: Set total number of components Q = |H|+ |S|+ |E| ▷ Dimension assignment

24: Allocate dimensions d(q) to each component q: d(q) =
⌊
dM × wq∑Q

p=1 wp

⌋
▷ Proportional to weights

25: Adjust d(q) to ensure
∑Q
q=1 d(q) = dM

26: end if
27: Formulate manifold signature:

PdM =
(
×|H|
h=1H

κ(h),d(h)

h

)
×
(
×|S|
s=1S

κ(s),d(s)
s

)
× Ed(e)

7.6.5 MORE EXPERIMENTAL SETTINGS

Hyperparameter Tuning Configurations Description
L {5, 10, 15, 20, 25} Total number of graph filters.
δ {0.2, 0.5, 0.7} Neighbourhood weight distribution parameter for ORC
α {0.1, 0.3, 0.5, 0.9} Alpha (initialization) parameter for GPR propagation
dC {8, 16, 32, 64} Total dimension of curvature embeddings.
dM {32, 48, 64, 128, 256} Total dimension of the product manifold.
dropout {0.2, 0.3, 0.5} Dropout rate
epochs {50, 100, 300} Number of training epochs
lr {1e− 4, 4e− 3, 0.001, 0.01} Learning rate
weight decay {0, 1e− 4, 5e− 4} Weight decay

Table 13: Hyperparameter configurations used in the experiments for all baselines. Some of the
hyperparameters are specific to CUSP. We highlight the final configuration of CUSP for NC in Red.

27

	Introduction
	Related Works
	Preliminaries
	Proposed Method: CUSP
	Cusp Laplacian
	Cusp Filtering
	Functional Curvature Encoding
	Cusp Pooling

	Experimentation
	Ablation Study

	Conclusion
	Table of Contents
	Appendix
	Notation Table
	More on Preliminaries
	Analysis of Real-world Graphs
	Ollivier-Ricci Curvature (ORC)
	Product Manifolds
	Kappa-Stereographic Model
	Spectral Graph Theory

	More on Cusp Laplacian
	Relevent Theorems for Cusp Laplacian

	Generalised Pageranks and GPRGNN
	Proof of Theorem 1
	Why GPRGNN as the backbone of CUSP?

	Theorems for Curvature Encoding
	Proof of Definition 2
	Proof of Theorem 2

	Experimentation
	Datasets
	Baselines
	Experimental Results for Link Prediction
	Estimating Product Manifold Signature
	More Experimental Settings

