
Published as a conference paper at ICLR 2025

Table of Contents 14

7 Appendix 15

7.1 Notation Table . 15

7.2 More on Preliminaries . 16

7.2.1 Analysis of Real-world Graphs . 16

7.2.2 Ollivier-Ricci Curvature (ORC) . 17

7.2.3 Product Manifolds . 17

7.2.4 Kappa-Stereographic Model . 18

7.2.5 Spectral Graph Theory . 18

7.3 More on Cusp Laplacian . 18

7.3.1 Relevent Theorems for Cusp Laplacian 19

7.4 Generalised Pageranks and GPRGNN . 21

7.4.1 Proof of Theorem 1 . 21

7.4.2 Why GPRGNN as the backbone of CUSP? 22

7.5 Theorems for Curvature Encoding . 22

7.5.1 Proof of Definition 2 . 22

7.5.2 Proof of Theorem 2 . 23

7.6 Experimentation . 24

7.6.1 Datasets . 24

7.6.2 Baselines . 24

7.6.3 Experimental Results for Link Prediction 25

7.6.4 Estimating Product Manifold Signature 26

7.6.5 More Experimental Settings . 27

14

Published as a conference paper at ICLR 2025

7 APPENDIX

7.1 NOTATION TABLE

Notation Reference

H Hyperbolic manifold
S Spherical manifold
E Euclidean manifold
PdM Product manifold of dimension dM
κ Continous manifold curvature
κ̃ Ollivier-Ricci Curvature (ORC)
κ̃(x, y) ORC of edge {x, y}
κ̃(x) ORC of node x
mδ
x Probability mass assigned to node x for ORC computation

δij Kroneckner delta function
N (x) Neighbourhood set of node x
x ∼ y This implies that x and y are adjacent nodes
δ ORC neighbourhood weighting parameter
W1(.) Wasserstein-1 distance
dG(x, y) Shortest path (graph distance) between nodes x and y on graph G
Mκi,di

i Constant-curvature manifold with dimension di and curvature κi. Mi ∈ {H, S,E}
L̃, D̃, Ã Cusp Laplacian operator; L̃ = D̃− Ã

L̃n, Ãn Normalized Cusp Laplacian and Adjacency matrices; Ãn = D̃
−1
2 Ã D̃

−1
2

L,D,A Traditional graph Laplacian, Adjacency and Degree matrices; L = D−A
df Input graph feature dimension
dM Total dimension of the product manifold
dC Total dimension of the curvature embedding
F ∈ Rn×df Input feature matrix
expκ0 : RdM → Mκ Exponential map, to map from tangent plane (Euclidean) to the product manifold
⊕κ Mobius addition
⊗κ κ-right-matrix-multiplication
⊠κ κ-left-matrix-multiplication
ζ(x) Final node representation for node x
ϵl Learnable weight of lth filter
ζ ∈ Pn×(dM+dC) Matrix containing final node embeddings
βq Learnable weight of qth component manifold
τq Relative importance of manifold Mq in Cusp Pooling
L Total number of filters
Q Total number of components in product manifold
l Used to denote the lth filter
Z

(L)(x)

PdM
The GPR-based node representation for filter with L layers, on manifold PdM

κ(q) Manifold curvature of qth component in product manifold
d(q) Manifold dimension of qth component in product manifold
H

(l)

M
κ(q),d(q)
q

Hidden state representation after l layers of GPR, on qth manifold component with
curvature κ(q) and dimension d(q)

γl GPR weight for lth layer in the filter, while propagation GPR score.
α Initialising parameter for GPR
Signature PdM = ×Q

q=1M
κ(q),d(q)
q = (×H

h=1H
κ(h),d(h)

h)× (×S
s=1S

κ(s),d(s)
s)× Ed(e)

ψ : V → R A function defined on vertex set V
ΦPdC (κ̃(x)) Curvature encoding on product manifold
KP(κ̃a, κ̃b) KP(κ̃a, κ̃b) :=

〈
ΦPdC (κ̃a),ΦPdC (κ̃b)

〉
is the curvature kernel

λi ith eigenvalue of Ãn

λ̃i ith eigenvalue of L̃n
fθ(.) : Rdf → RdM Neural network with parameter set {θ} that generates the hidden state features be-

fore feeding input to Cusp Filtering.
gθ(.) : RdM → RdC Neural network projector used in curvature encoding

15

Published as a conference paper at ICLR 2025

7.2 MORE ON PRELIMINARIES

7.2.1 ANALYSIS OF REAL-WORLD GRAPHS

Figure 4: Distribution of Ollivier-Ricci curvatures κ̃(x, y) of edges across different datasets. The
histograms illustrate the frequencies of edge-based Ollivier-Ricci curvature values for each dataset,
highlighting the topological diversity in both homophilic and heterophilic settings, and hence the
need of learning representations in manifolds with different curvatures.

Figure 5: Distribution of Ollivier-Ricci curvatures κ̃(x) of nodes across different datasets.

Figure 6: Distribution of Spectral Energy with the respective eigenvalues of the graph Laplacian.
Spectral Energy, Ei = f2i /

∑
j f

2
j , where fj is the jth Fourier mode of the graph Laplacian. Low

frequency implies homophily and high frequency components correspond to heterophily. These plots
highlight the importance of capturing signals from different parts of the eigenspectrum for designing
a GNN that works well across multiple tasks.

16

Published as a conference paper at ICLR 2025

7.2.2 OLLIVIER-RICCI CURVATURE (ORC)

In an unweighted graph, the neighborhood of each node x, denoted as N (x), is assigned a probability distribu-
tion according to a lazy random walk formulation (Lin et al., 2011). Specifically, we define the distribution as
follows:

mα
z (x) =


α, if z = x,
1−α

|N (x)| , if z ∈ N (x),

0, otherwise.
(9)

Here, α controls the probability that a random walk will remain at the current node, while the remaining
probability mass (1−α) is uniformly distributed across the neighboring nodes. This formulation connects ORC
with lazy random walks and influences the balance between local exploration and the likelihood of revisiting a
node. In this work, we use α = 0.5, meaning that equal probability mass is distributed between the node itself
and its neighbors, striking a balance between breadth-first and depth-first search strategies. The choice of α is
crucial and depends on the topology of the graph. A smaller α value encourages more local exploration, while
a larger α favors revisiting nodes, thereby promoting a “lazy” walk. For our experiments, α = 0.5 was chosen
to reflect an equal probability mass distribution between the node and its neighbors.

■ Computational Considerations. Computing ORC can be computationally intensive due to the need to
calculate the Wasserstein-1 distance (W1), between the neighborhood distributions of connected nodes. In a
discrete setting, this corresponds to solving a linear program. Typically, W1(mx,my) between two nodes x
and y is computed using the Hungarian algorithm (Kuhn, 1955), which has a cubic time complexity. However,
this becomes prohibitively expensive as the graph size increases. Alternatively, the Wasserstein-1 distance can
be approximated using the Sinkhorn algorithm (Sinkhorn & Knopp, 1967), which reduces the complexity to
quadratic time. For this work, we employ the Sinkhorn approximation to compute ORC efficiently. Below,
we provide an alternative to approximate ORC of an edge in linear time, in case of very large (million-scale)
real-world graphs.

■ Approximating ORC in Linear Time. Even with the quadratic complexity of the Sinkhorn algorithm,
scaling to large networks remains challenging. To address this, a linear-time combinatorial approximation of
ORC can be employed, as suggested by Tian et al. (2023). This method approximates the Wasserstein distance
by utilizing local structural information, making it much more computationally feasible. The approximation
of ORC builds on classical bounds first introduced by Jost & Liu (2014). Let #(x, y) denote the number of
triangles formed by the edge (x, y), and define a ∧ b = min(a, b), a ∨ b = max(a, b) and dx is the degree of
node x. The following bounds on ORC can be derived for an edge e = x, y:

Theorem 3 (Jost & Liu (2014)). For an unweighted graph, the Ollivier-Ricci curvature of an edge e = x, y
satisfies the following bounds:

1. Lower bound:

κ̃(x, y) ≥ −
(
1− 1

dx
− 1

dy
− #(x, y)

dx ∧ dy

)
+

−
(
1− 1

dx
− 1

dy
− #(x, y)

dx ∨ dy

)
+

+
#(x, y)

dx ∨ dy
.

2. Upper bound:

κ̃(x, y) ≤ #(x, y)

dx ∨ dy
. (10)

The ORC of an edge, can then be approximated as the arithmetic mean of these bounds:

κ̂(x, y) :=
1

2

(
κupper(x, y) + κlower(x, y)

)
. (11)

The proof of these bounds has been detailed in Tian et al. (2023). This approximation is computationally
efficient, with linear-time complexity, and can be parallelized easily across edges, making it suitable for large-
scale graphs. The computation relies solely on local structural information, such as the degree of the nodes and
the number of triangles.

7.2.3 PRODUCT MANIFOLDS

Let M1,M2, . . . ,Mk denote a set of smooth manifolds. Their Cartesian product forms a product manifold,
denoted by P , such that P = M1 × M2 × · · · × Mk. Any point p ∈ P is characterized by its coordinates
p = (p1, p2, . . . , pk), where each pi corresponds to a point on the individual manifold Mi. Similarly, a tangent
vector v ∈ TpP can be expressed as v = (v1, v2, . . . , vk), where each vi ∈ Tpi Mi represents the projection
of v in the tangent space of the respective component manifold Mi. Optimization over manifolds requires the
notion of taking steps along the manifold, which can be achieved by moving in the tangent space and mapping
those movements back onto the manifold through the exponential map. The exponential map at a point p ∈ P,

17

Published as a conference paper at ICLR 2025

denoted expp : TpP → P, allows for this transfer. For product manifolds, the exponential map decomposes
into individual component exponential maps. Specifically, given a tangent vector v = (v1, v2, . . . , vk) at
p = (p1, p2, . . . , pk) ∈ P, the exponential map on P can be expressed as:

expp(v) = (expp1(v1), expp2(v2), . . . , exppk (vk)) (12)

7.2.4 KAPPA-STEREOGRAPHIC MODEL

The κ-stereographic model (Bachmann et al., 2020) unifies Hyperbolic and Spherical geometries under gy-
rovector formalism. This model leverages the framework of gyrovector spaces to represent all three con-
stant curvature geometries—hyperbolic, Euclidean, and spherical—simultaneously. Additionally, it facilitates
smooth transitions between these constant curvature geometries, enabling the joint learning of space curvatures
alongside the embeddings. It is a smooth manifold Mκ,d = {z ∈ Rd| − κ||z||22 < 1}, whose origin is
0 ∈ Rd, equipped with a Riemannian metric gκz = (λκz)

2I, where λκz is given by λκz = 2
(
1 + κ||z||22

)−1
.

The Riemannian operations under this model are elaborated in the table below:f

Operation Formalism in Ed Unified formalism in κ-stereographic model (Hd/ Sd)
Distance Metric dκM(x,y) = ∥x− y∥2 dκM(x,y) = 2√

|κ|
tan−1

κ

(√
|κ| ∥−x⊕κ y∥2

)
Exp. Map expκx(v) = x+ v expκx(v) = x⊕κ

(
tanκ

(√
|κ|λ

κ
x∥v∥2

2

)
v√

|κ|∥v∥2

)
Log. Map logκx(y) = x− y logκx(y) =

2√
|κ|λκ

x

tan−1
κ

(√
|κ| ∥−x⊕κ y∥2

)
−x⊕κy

∥−x⊕κy∥2

Addition x⊕κ y = x+ y x⊕κ y =
(1+2κxT y+K∥y∥2)x+(1−κ||x||2)y

1+2κxT y+κ2||x||2||v||2

Table 7: Operations in Hyperbolic Hd, Spherical Sd and Euclidean space Ed.

■ κ-right-matrix-multiplication. Given a matrix X ∈ Rn×d holding κ-stereographic embeddings in its rows
and weights W ∈ Rd×e, the Euclidean right multiplication can be written row-wise as (XW)i• = Xi•W.
Then the κ-right-matrix-multiplication is defined row-wise as

(X⊗κ W)i• = expκ0 ((logκ0 (X)W)i•) = tanκ
(
αi tan

−1
κ (||X•i||)

) (XW)i•
||(XW)i•||

(13)

where αi = ||(XW)i•||
||Xi•||

and expκ0 and logκ0 denote the exponential and logarithmic map in the κ-stereo. model.

■ κ-left-matrix-multiplication. Given a matrix X ∈ Rn×d holding κ-stereographic embeddings in its rows
and weights A ∈ Rn×n, the κ-left-matrix-multiplication is defined row-wise as

(A⊠κ X)i• := (
∑
j

Aij)⊗κ mκ(X1•, · · · ,Xn•;Ai•). (14)

7.2.5 SPECTRAL GRAPH THEORY

Graph Fourier Transform (GFT) (Sandryhaila & Moura, 2013) lays the foundation for Graph Neural Networks
(GNNs). A GFT is defined using a reference operator R which admits a spectral decomposition. Traditionally,
in the case of GNNs, this reference operator has been the symmetric normalized Laplacian Ln = I − An

(Kipf & Welling, 2016). The graph Fourier transform of a signal f ∈ Rn is then defined as f̂ = U⊤f ∈ Rn,
and its inverse as f = Uf̂ . A graph filter is an operator that acts independently on the entire eigenspace of a
diagonalisable and symmetric reference operator R, by modulating their corresponding eigenvalues. A graph
filter is defined via the graph filter function g(.) operating on the reference operator as g(R) = Ug(Λ)U⊤.

7.3 MORE ON CUSP LAPLACIAN

Spectral graph theory has shown significant progress in relating geometric characteristics of graphs to properties
of spectrum of graph Laplacians and related matrices. Several variants of the graph Laplacian matrices have
been shown to capture specific inductive biases for different tasks (Ko et al., 2023; Belkin et al., 2008; Jacobson
& Sorkine-Hornung, 2012).

Proof of Definition 1. Say the function ψ : V → R is defined on the vertex set V of the graph. Suppose ψ
describes a temperature distribution across a graph, where ψ(x) is the temperature at vertex x. According to
Newton’s law of cooling (He, 2024), the heat transferred from node x to node y is proportional to ψ(x)−ψ(y)

18

Published as a conference paper at ICLR 2025

if nodes x and y are connected (if they are not connected, no heat is transferred). Consequently, the heat
diffusion equation on the graph can be expressed as dψ

dt
= −β

∑
yAxy(ψ(x)−ψ(y)), where β is a constant of

proportionality and A denotes the adjacency matrix of the graph. Further insight can be gained by considering
Fourier’s law of thermal conductance (Liu, 1990), which states that heat flow is inversely proportional to the
resistance to heat transfer. ORC measures the transportation cost (W1(:, :)) between the neighborhoods of two
nodes, reflecting the effort required to transport mass between these neighborhoods (Bauer et al., 2011). We
interpret this transportation cost as the resistance between nodes. The vital takeaway here is that − Heat flow
between two nodes in a graph is influenced by the underlying Ollivier-Ricci curvature (ORC) distribution. The
diffusion rate is faster on an edge with positive curvature (low resistance), and slower on an edge with negative
curvature (high resistance). Thus, the ratio Rres

xy =
W1(mx,my)

dG(x,y)
represents the resistance from node x to node

y, i.e. dψxy

dt
∝ 1

Rres
xy

. It can be observed that 1
Rres

xy
=

dG(x,y)

W1(mx,my)
= 1

1−κ̃(x,y) (From the definition of ORC)

would tend to infinity when W1(mx,my) = 0 (i.e. κ̃(x, y) = 1). Thus, to ensure continuity, we create a new

ratio as 1
R•

xy
= e−Rres

xy = e
−1

1−κ̃(x,y) . Thus, we can modify the above heat flow equation as:

dψ

dt
= −β̄

∑
y

Axy(ψ(x)− ψ(y))

R•
xy

(Inversely proportional to R•
xy)

= −β̄
∑
y

Axy(ψ(x)− ψ(y)) e
−1

1−κ̃(x,y) = −β̄

(
ψ(x)

∑
y

Axy −
∑
y

Axyψ(y))

)
e

−1
1−κ̃(x,y)

= −β̄

(
ψ(i)Dxx −

∑
y

ψ(y)Axy

)
e

−1
1−κ̃(x,y) (∵ Dxx =

∑
y

Axy)

= −β
∑
y

(
δxy e

−1
1−κ̃(x,y)Dxx − e

−1
1−κ̃(x,y) Axy

)
ψ(y) (δxy is the Kronecker delta.)

= −β̄
∑
y

(
e

−1
1−κ̃(x,y) Lxy

)
ψ(y) (L,D,A are Laplacian, Degree and Adjacency matrices.)

= −β̄
(
L⊙ e

−1
1−κ̃(x,y)

)
ψ = −β̄L̃ψ (⊙ is the element-wise product)

This gives us the standard heat equation on graphs. Here, β̄ is the updated constant of proportionality. L̃ =

D̃ − Ã is the Cusp Laplacian operator, where D̃ and Ã are the updated Degree and Adjacency matrices,
to represent that the graph is transformed under edge weights wxy = 1

R•
xy

= e
1

1−κ̃(x,y) . Finally, our Cusp
Laplacian operator can be written as (x ∼ y means xy is an edge in the graph):

L̃ψ(x) =
∑
y∼x

w̄xy (ψ(x)− ψ(y)) =
∑
y∼x

e
−1

1−κ̃(x,y) (ψ(x)− ψ(y)) (15)

■ Why is e−Rres
xy = e

−1
1−κ̃(x,y) the right choice? To mathematically justify that e−

1
1−κ̃(x,y) is an appropriate

choice, we must verify its properties:

1. Asymptotics. As κ̃(x, y) → 1, e
− 1

1−κ̃(x,y) → 0 , indicating that nodes with high positive curvature

experience very fast heat diffusion (minimal resistance). Conversely, as κ̃(x, y) → −1 , e−
1

1−κ̃(x,y) → 1√
e

, meaning that nodes with high negative curvature have slow heat diffusion (higher resistance).

2. Continuity. The exponential function is smooth and continuous, ensuring that even small changes in
the curvature result in smooth changes in the heat flow dynamics, which is crucial for stable numerical
simulations and theoretical consistency.

3. Monotonicity. For κ̃(x, y) > 0, e
− 1

1−κ̃(x,y) is a decreasing function with respect to κ̃(x, y). This means
as curvature increases, the resistance decreases, aligning with the physical intuition of heat flow.

7.3.1 RELEVENT THEOREMS FOR CUSP LAPLACIAN

Theorem 4 (Positive Semidefiniteness of Cusp Laplacian). The normalized Laplacian operator L̃ is positive
semidefinite, i.e., for any real vector u ∈ Rn, we have uT L̃nu ≥ 0.

19

Published as a conference paper at ICLR 2025

Proof. We start by showing that the normalized Cusp Laplacian

L̃n = I− D̃−1/2ÃD̃−1/2 = I− Ãn (16)

is positive semi-definite. Let u be any real vector of unit norm and f = D̃−1/2u, then we have

uT L̃nu = uTu− uT D̃−1/2ÃD̃−1/2u =

n∑
x=1

u2
x −

n∑
x,y=1

fxfyÃxy (17)

=

n∑
x=1

D̃xxf
2
x −

n∑
x,y=1

fxfyÃxy =
1

2
(

n∑
x=1

D̃xxf
2
x − 2

n∑
x,y=1

fxfyÃxy +

n∑
y=1

D̃yyf
2
y) (18)

=
1

2

n∑
x,y=1

Ãxy(fx − fy)
2 =

1

2

n∑
x,y=1

e
−1

1−κ̃(x,y)Axy(fx − fy)
2, (19)

where the last step follows from the definition of the degree. We know that e
−1

1−κ̃(x,y) > 0 ∀κ(x, y), hence our
Cusp Laplacian is positive semidefinite.

Theorem 5. The eigenvalues {λ̃i}ni=1 of the normalized Cusp Laplacian L̃n lie in the interval [0, 2].

Proof. We begin by noting that Theorem 4 shows that the normalized Cusp Laplacian L̃n has real, non-
negative eigenvalues, meaning we need only to prove that the largest eigenvalue, denoted as λn, is less than
or equal to 2. Before moving to that, we show that 0 is indeed an eigenvalue of L̃ associated with the unit

eigenvector τ where τ =

√
D̃ii√∑
v D̃vv

.

Let 1 be the all one vector. Then, a direct calculation reveals that

L̃symτ = τ − D̃−1/2ÃD̃−1/2τ = τ − D̃−1/2ÃD̃−1/2D̃1/21× 1√∑
v D̃vv

(20)

= τ − D̃−1/2Ã1× 1√∑
v D̃vv

= τ − D̃−1/2D̃1× 1√∑
v D̃vv

(21)

= τ − D̃1/21× 1√∑
v D̃vv

= τ − τ = 0. (22)

Combining this result with the positive semi-definite property of the Laplacian shows that 0 is indeed the
smallest eigenvalue of L̃sym associated with the eigenvector τ . For the second part, using the Courant-Fischer
theorem, we know that the largest eigenvalue can be expressed as:

λn = max
u ̸=0

u⊤L̃nu

u⊤u
.

Substituting the definition of the normalized Cusp Laplacian L̃n = I − Ãn into this expression, and letting
f = D̃−1/2u, we have:

λn = max
u̸=0

u⊤D̃−1/2L̃D̃−1/2u

u⊤u
= max

f ̸=0

f⊤L̃f

f⊤D̃f
.

The degree matrix, can be expressed in the quadratic form as f⊤D̃f =
∑n
x=1 D̃xx|fx|2.

For the numerator involving L̃, we expand the quadratic form:

f⊤L̃f =
1

2

n∑
x,y=1

Ãxy(fx − fy)
2 =

1

2

n∑
x,y=1

e
−1

1−κ̃(x,y)Axy(fx − fy)
2 (23)

≤
n∑

x,y=1

e
−1

1−κ̃(x,y)Axy(fx + fy)
2 ≤ 2

n∑
x=1

|fx|2
(

n∑
y=1

Axy

)
= 2

n∑
x=1

Dxx|f(x)|2. (24)

The last inequality follows from the fact that e
−1

1−κ̃(x,y) → 1√
e

as κ̃(x, y) → −1 implies that it is always < 1.

Thus, we can conclude that, f⊤L̃f ≤ 2f⊤D̃f , and the Rayleigh quotient is bounded f⊤L̃f

f⊤D̃f
≤ 2. This shows

that the largest eigenvalue of the normalized Cusp Laplacian L̃n is bounded by 2, completing the proof that the
eigenvalues of L̃n are contained within the interval [0, 2].

20

Published as a conference paper at ICLR 2025

Figure 7: Architecture of GPRGNN.

7.4 GENERALISED PAGERANKS AND GPRGNN

■ Equivalence of the GPR method and polynomial graph filtering. If we truncate the infinite series in the
GPR definition at some integerK,

∑K
k=0 γkÃ

k
n becomes a polynomial graph filter of degreeK. Consequently,

optimizing the GPR weights is tantamount to optimizing the polynomial graph filter. It is important to note that
any graph filter can be approximated using a polynomial graph filter, enabling the GPR method to handle a
wide variety of node label patterns. Additionally, increasing K enhances the approximation of the optimal
graph filter. This again illustrates the advantage of large-step propagation.

■ GPRGNN architecture. GPR-GNN initially derives hidden state features for each node and subsequently
employs GPR to disseminate them. The GPR-GNN procedure can be represented as:

P̂ = softmax(Z), Z =

K∑
k=0

γkH
(k), H(k) = ÃsymH

(k−1), H
(0)
i: = fθ(Xi:), (25)

Here, fθ(.) denotes a neural network parametrized by {θ}, which produces the hidden state features H(0). The
GPR weights γk are optimized alongside {θ} in an end-to-end manner. The GPR-GNN model is straightfor-
ward to interpret: As previously mentioned, GPR-GNN is capable of adaptively managing the contribution of
each propagation step to fit the node label pattern. Analyzing the trained GPR weights also aids in understand-
ing the topological properties of a graph, such as identifying the optimal polynomial graph filter.

7.4.1 PROOF OF THEOREM 1

We first state the formal version of Theorem 1

Theorem 6 (Formal version of Theorem 1). Assume the graph G is connected. Let λ1 ≥ λ2 ≥ ... ≥ λn and
λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃n be the eigenvalues of Ãn and L̃n, respectively. If γl ≥ 0 ∀l ∈ {0, 1, ..., L},

∑L
l=0 γl = 1

and ∃l′ > 0 such that γl′ > 0, then
∣∣∣ gγ,L(λi)

gγ,L(λ1)

∣∣∣ < 1 ∀i ≥ 2. Also, if γl = (−α)l, α ∈ (0, 1) and L→ ∞, then∣∣∣ limL→∞ gγ,L(λi)

limL→∞ gγ,L(λ1)

∣∣∣ > 1 ∀i ≥ 2.

1. Note that
∣∣∣ gγ,L(λi)

gγ,L(λ1)

∣∣∣ < 1 ∀i ≥ 2 implies the low-pass case as after applying the graph filter gγ,L, the
lowest frequency component (correspond to λ1) further dominates.

2. Unfiltered case. Recall that in the unfiltered case, we do not multiply with Ãn. It can also be viewed as
multiplying the identity matrix I , where the eigenvalue ratio is |λi|0

|λ1|0
= 1. Hence gγ,L acts like a low pass

filter in this case.

3. In contrast,
∣∣∣ limL→∞ gγ,L(λi)

limL→∞ gγ,L(λ1)

∣∣∣ > 1 ∀i ≥ 2 implies that after applying the graph filter, the lowest frequency
component (correspond to λ1) no longer dominates. This corresponds to the high pass filter case.

Proof. We start with the low pass filter result. From Theorem 5, we know that 0 ≤ λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃n ≤ 2.
Given the spectrum of Ãn, we know that −Ãn has spectrum negatives of Ãn, and I − Ãn adds one to each
eigenvalue of −Ãn . Hence, 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λn ≥ −1 follows directly. Now, we know that λ1 = 1

and |λi| < 1, ∀i ≥ 2. Further, we have assumed that gγ,L(λ1) =
∑L
l=0 γl = 1. Hence, proving Theorem 6 is

equivalent to show

|gγ,L(λi)| < 1 ∀i ≥ 2.

21

Published as a conference paper at ICLR 2025

This is obvious since gγ,L(λ) =
∑L
l=0 γlλ

l is a polynomial of order L with nonnegative coefficients. It is easy
to check that ∀l ≥ 1, |λ|l < 1, ∀|λ| < 1. Combine with the fact that all γk’s are nonnegative we have

|gγ,L(λi)| ≤
L∑
l=0

γl|λl| =
L∑
l=0

γl|λ|l
(a)
≤

L∑
l=0

γl = 1.

Finally, note that the only possibility that the equality holds is γl = δ0,l since ∀l ≥ 1, |λ|l < 1,∀|λ| < 1.
However, by assumption

∑L
l=0 γl = 1 and ∃l′ > 0 such that γl′ > 0 we know that this is impossible. Hence

(a) is a strict inequality <.

For the high pass filter result, it can be observed that:

lim
L→∞

gγ,L(λ) = lim
L→∞

L∑
l=0

γlλ
l = lim

L→∞

L∑
l=0

(−αλ)l = 1

1 + αλ
,

where the last step is due to the fact that α ∈ (0, 1) and thus limL→∞(−αλ)L = 0, ∀|λ| ≤ 1. Thus we have∣∣∣∣ limL→∞ gγ,L(λi)

limL→∞ gγ,L(λ1)

∣∣∣∣ = ∣∣∣∣ 1 + α

1 + αλi

∣∣∣∣ (b)
> 1 ∀i ≥ 2.

The strict inequalities (b) is from the fact that |λi| < 1, ∀i ≥ 2. Notably, supλ∈[1,−1)
1

1+αλ
happens at the

boundary λ = −1, which corresponds the the bipartite graph. It further shows that the graph filter with respect
to the choice γl = (−α)l emphasizes high frequency components and thus it is indeed acting as a high pass
filter.

7.4.2 WHY GPRGNN AS THE BACKBONE OF CUSP?

In this section, we elaborate on why GPR is an ideal backbone when compared to other Spectral GNNs.

1. Adaptive Filter Design. GPR learns the filter coefficients directly, allowing the spectral response to adapt
to the task and dataset. This flexibility is critical for modeling both homophilic and heterophilic graphs.

2. Universality. Unlike fixed low-pass filters like ChebNet, which excel primarily in homophilic settings,
GPR’s learnable filters enable it to balance low-pass and high-pass components, making it suitable for
both homophilic and heterophilic graphs. This is one of the main goals of our paper - to achieve superior
performance on homophilic and heterophilic tasks. Fixed polynomial filters in ChebNet and Bernstein-
based methods approximate spectral responses up to a fixed order, limiting their ability to model complex
spectral properties.

3. GPRGNN escapes oversmoothing. GPR weights are adaptively learnable, which allows GPR-GNN to
avoid over-smoothing and trade node and topology feature informativeness. See Section 4 of Chien et al.
(2020) for more theoretical analysis on the same and proofs, which is beyond the scope of this work. GPR
not only mitigates feature over-smoothing, but also works on highly diverse node label patterns (See Section
4 and 5 of Chien et al. (2020)).

4. Capturing node features and graph topology. In many important graph data processing applications, the
acquired information includes both node features and observations of the graph topology. GPRGNN jointly
optimizes node feature and topological information extraction, regardless of the extent to which the node
labels are homophilic or heterophilic.

5. Filter Bank Construction. Using GPR based spectral filters, helps us to effectively construct a filter
bank where each adaptive filter contributes to a specific spectral profile, enabling the model to aggregate
information across different spectral bands. This approach captures diverse patterns in node features and
topology, unlike ChebNet or Bernstein-based methods, which rely on fixed polynomial approximations and
lack such flexibility.

7.5 THEOREMS FOR CURVATURE ENCODING

Theorem 7 (Bochner’s Theorem). (Moeller et al., 2016) A continuous, translation-invariant kernel K(x,y) =
Ψ(x − y) on Rd is positive definite if and only if there exists a non-negative measure on R such that Ψ is the
Fourier transform of the measure.

7.5.1 PROOF OF DEFINITION 2

Proof. Using the Bochner’s theorem stated above, our curvature kernel KR has the expression:

KR(κ̃a, κ̃b) = ΨR(κ̃a, κ̃a) =

∫
R
eiω(κ̃a−κ̃b)p(ω)dω = Eω[ξω(κ̃a)ξω(κ̃b)∗], (26)

22

Published as a conference paper at ICLR 2025

where ξω(κ̃) = eiωκ̃. Since kernel KR and measure p(ω) are real, we extract the real part of (26):

KR(κ̃a, κ̃b) = Eω
[
cos(ω(κ̃a − κ̃b))

]
= Eω

[
cos(ωκ̃a) cos(ωκ̃b) + sin(ωκ̃a) sin(ωκ̃b)

]
. (27)

The above formulation suggests approximating the expectation by the Monte Carlo integral, i.e. KR(κ̃a, κ̃b) ≈
1
dC

∑dC
i=1 cos(ωiκ̃a) cos(ωiκ̃b)+sin(ωiκ̃a) sin(ωiκ̃b), with ω1, . . . , ωdC

i.i.d∼ p(ω). Therefore, we propose the
finite dimensional functional mapping to RdC as:

ΦRdC (κ̃) =

√
1

dC

[
cos(ω1κ̃), sin(ω1κ̃), . . . , cos(ωdC κ̃), sin(ωdC κ̃)

]
(28)

The unknown probability distribution p(ω) is estimated using the inverse cumulative distribution function
(CDF) transformation as in Xu et al. (2020). Since our GNN is operating in the mixed-curvature space, we
must map our defined curvature kernel based representations to the product manifold. We do so using the
exponential map, for a node x with ORC curvature κ̃(x) as:

ΦPdC (κ̃(x)) = gθ
(
∥Qq=1exp

κ(q)

0 (ΦRdC (κ̃(x)))
)

(29)

= gθ
(
∥Qq=1ΦM

κ(q),d(q)
q

(κ̃(x))
)

(30)

where exp
κ(q)

0 : RdC → Mκ(q),d(q)
q denotes the exponential map on the qth component manifold with

curvature κ(q), || is the concatenation operator and gθ : Pdf → PdC is a Riemannian projector. We need
gθ because we maintain a single product manifold for CUSP with total dimension df . So, upon taking the
exponential map with respect to this product manifold, we are required to project the curvature embeddings to
the required dimension dC .

7.5.2 PROOF OF THEOREM 2

Proof. We begin by recalling that in Euclidean space, the curvature kernel KR is:

KR(κ̃a, κ̃b) =
〈
ΦRdC (κ̃a),ΦRdC (κ̃b)

〉
= ΨR(κ̃a − κ̃b).

The key property here is translation invariance:

KR(κ̃a + c̃, κ̃b + c̃) = KR(κ̃a, κ̃b) = ΨR(κ̃a − κ̃b).

Next, we move to the product manifold PdC , which consists of multiple components of different curvatures,
such as hyperbolic, spherical, and Euclidean spaces.

For each component manifold Mκ(q),d(q)
q with curvature κ(q), the stereographic inner product ⟨., .⟩κx :

TxMn
κ × TxMn

κ → R, is defined on the tangent plane of the Riemannian manifold as:

⟨u,v⟩κx = uTgκxv = (λκx)
2 ⟨u,v⟩,

where the conformal factor λκx is defined as:

λκx =
2

1 + κ∥x∥22
.

This conformal factor modulates the stereographic projection in the curved space, and it ensures that distances
are mapped correctly in the manifold space. Now, consider the inner product between the curvature embeddings
ΦPdC (κ̃a) and ΦPdC (κ̃b) in the mixed-curvature space.

KP(κ̃a, κ̃b) =

Q∑
q=1

⟨Φ
M

κ(q),d(q)
q

(κ̃a),Φ
M

κ(q),d(q)
q

(κ̃b)⟩κ(q)
,

where each component manifold Mκ(q),d(q)
q contributes to the overall inner product in the product manifold

PdC . Using the stereographic inner product in each component, we can write:

KP(κ̃a, κ̃b) =

Q∑
q=1

(
λ
κ(q)
x

)2
⟨ΦRdC (κ̃a),ΦRdC (κ̃b)⟩.

We now need to show that translation invariance holds in the mixed-curvature product manifold. Since the
conformal factor λκx depends only on the norm ∥x∥2, any translation by a constant c̃ does not affect the relative
difference between curvature embeddings. Specifically, for any constant shift c̃:

KP(κ̃a + c̃, κ̃b + c̃) =

Q∑
q=1

(
λ
κ(q)
x

)2
ΨR((κ̃a + c̃)− (κ̃b + c̃)) = ΨP(κ̃a − κ̃b).

Thus, the kernel in the mixed-curvature space remains invariant to translation, completing the proof.

23

Published as a conference paper at ICLR 2025

7.6 EXPERIMENTATION

7.6.1 DATASETS

The performance of CUSP is evaluated over eight benchmark datasets for two primary tasks: Node Classifi-
cation (NC) and Link Prediction (LP). These datasets encompass both homophilic and heterophilic domains.
Detailed descriptions of each dataset are provided below.

1. Citation Networks. Cora, PubMed, and Citeseer (Sen et al., 2008; Yang et al., 2016) are citation networks
in which nodes symbolize research papers, and edges denote citation links between them. Each node is
labeled with its subject category. This dataset is commonly utilized for node classification because of its
pronounced homophilic properties.

2. Wikipedia graphs. Chameleon and Squirrel (Rozemberczki et al., 2021) are heterophilic graphs derived
from Wikipedia articles. Nodes represent articles, and edges represent hyperlinks between them. Node
labels correspond to website traffic levels.

3. Actor Co-occurrence Network. Actor (Tang et al., 2009) is a heterophilic graph dataset where nodes depict
actors and edges signify co-occurrences on the same Wikipedia page. The node labels correspond to the
professional background of the actors.

4. Webpage graphs. Texas and Cornell4 are parts of the WebKB dataset, and are sparsely connected het-
erophilic graphs. Here, nodes represent web pages, and edges represent hyperlinks between them. Labels
reflect different types of webpages.

7.6.2 BASELINES

This part offers an in-depth discussion of the baseline models against which CUSP is compared. We classify
the baseline models into three categories: Spatial, Riemannian, and Spectral methods, which each address a
distinct facet of graph neural network architectures.

■ Spatial baselines. The first kind of baselines includes the traditional spatial methods, which directly operate
on the node features and their immediate neighborhoods.

1. GCN (Kipf & Welling, 2016). Graph Convolutional Networks (GCNs) represent one of the foundational
graph neural networks that utilize spectral graph convolution in the spatial domain. They derive node em-
beddings by combining features from neighboring nodes via a linear combination involving the adjacency
matrix and the nodes’ features.

2. GAT (Veličković et al., 2017). Graph Attention Network (GAT) introduces attention mechanisms to graph
neural networks. Each node assigns learnable attention weights to its neighbors and aggregates their fea-
tures based on these weights.

3. GraphSAGE (Hamilton et al., 2017). GraphSAGE is an inductive technique designed to learn node em-
beddings by sampling and aggregating features from a fixed set of neighboring nodes, instead of processing
the entire graph. This method enables GraphSAGE to create embeddings for nodes not encountered during
training by using efficient neighborhood sampling.

■ Riemannian Baselines. Riemannian models function within non-Euclidean spaces (such as hyperbolic
or spherical manifolds) and are tailored for graph data characterized by intricate geometric properties (e.g.
hierarchical or cyclic structures).

1. HGCN (Chami et al., 2019). Hyperbolic Graph Convolutional Networks utilize hyperbolic geometry to
represent the hierarchical and tree-like characteristics of graphs. This approach extends GCN to hyperbolic
space by introducing a hyperbolic variant of the convolutional operation. It is especially suitable for datasets
that exhibit hierarchical or tree-like configurations.

2. HGAT (Zhang et al., 2021b). Hyperbolic Graph Attention Network (HGAT) extends Graph Attention
Networks (GAT) into hyperbolic space by integrating attention mechanisms with hyperbolic geometry, and
calculates the attention weights among the nodes in the hyperbolic space to enhance the aggregation of
features.

3. κGCN (Bachmann et al., 2020). κGCN allows for learning the curvature of each node in a graph and
generalizes GCN to operate in mixed-curvature spaces. The curvature parameter κ determines whether
a node lies in hyperbolic, spherical, or Euclidean space. By learning curvature adaptively, κGCN offers
flexibility in modeling graphs with regions of different geometries, providing a better fit for graphs with
complex structures.

4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

24

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

Published as a conference paper at ICLR 2025

4. QGCN (Xiong et al., 2022). Pseudo-Riemannian GCN extends a GCN to a pseudo-Riemannian manifold,
enabling functionality in mixed-curvature spaces. This network is capable of modeling graph regions with
both positive and negative curvature.

5. SelfMGNN (Sun et al., 2022). SelfMGNN generates embeddings within a mixed-curvature space through
self-supervision. It dynamically allocates varied curvatures to different regions of the graph by utilizing a
mixed-curvature embedding space. This approach incorporates both self-supervision and mixed-curvature
learning to improve performance on heterogeneous graphs.

■ Spectral Baselines. These techniques utilize the eigenvalues of either the graph Laplacian or adjacency
matrix to establish convolutional filters that function in the frequency domain.

1. ChebyNet (Defferrard et al., 2016). ChebyNet implements spectral convolutions through a polynomial
approximation of the graph Laplacian, sidestepping the expensive process of eigenvalue decomposition.
Instead, it approximates the convolution using Chebyshev polynomials. This approach allows ChebyNet to
execute localized graph convolutions efficiently, making it well-suited for handling larger graphs.

2. BernNet (He et al., 2021). BernNet employs Bernstein polynomials to approximate graph filters, providing
flexible management over the filter’s frequency response. This method extends polynomial-based graph
filters and is adaptable to various frequency elements in graphs.

3. GPRGNN (Chien et al., 2020). The Generalized PageRank Graph Neural Network (GPRGNN) builds
upon the Personalized PageRank (PPR) approach, integrating it into the framework of graph neural net-
works. It propagates node features through the graph by using a weighted sum of adjacency matrix powers,
dynamically adjusting to both homophilic and heterophilic graphs.

4. FiGURe (Ekbote et al., 2024). FiGURe employs adaptive filters to capture various sections of the graph
spectrum, enabling it to learn both high-pass and low-pass filters specific to the task. It dynamically selects
the optimal filter bank to accurately represent the graph’s architecture.

7.6.3 EXPERIMENTAL RESULTS FOR LINK PREDICTION

Baseline Cora Citeseer PubMed Chameleon Actor Squirrel Texas Cornell Av. ∆ Gain
GCN 88.54±0.51 85.42±0.89 91.31±0.73 86.07±0.64 85.12±0.78 90.01±0.15 69.08±0.99 73.09±0.92 9.58
GAT 85.45±0.66 87.23±0.11 87.65±0.04 88.99±0.13 87.33±0.08 90.23±0.14 68.79±0.72 75.12±0.77 9.31
SAGE 87.12±0.82 90.71±0.65 90.09±0.90 90.01±0.58 86.06±0.73 91.02±0.61 76.54±0.69 77.98±0.88 6.97

HGCN 91.63±0.55 94.13±0.67 91.04±0.79 91.45±0.62 90.01±0.80 92.34±0.01 69.99±0.84 74.03±0.57 6.34
HGAT 90.43±0.03 91.02±0.16 88.99±0.89 89.77±0.02 90.99±0.01 89.22±0.04 71.58±0.89 72.03±0.22 7.66
κGCN 92.04±0.70 93.33±0.57 92.45±0.85 92.03±0.63 90.45±0.88 91.35±0.60 76.09±0.76 73.05±0.71 5.56
QGCN 92.17±0.79 92.75±0.52 92.16±0.09 91.67±0.05 91.07±0.06 90.98±0.92 75.44±0.10 73.89±0.26 5.65
SelfMGNN 93.12±0.04 92.99±0.91 90.99±0.17 93.51±0.14 91.98±0.19 95.01±0.16 74.51±0.62 78.99±0.81 4.28

ChebyNet 88.23±0.85 89.22±0.06 86.54±0.29 90.01±0.23 88.09±0.44 92.13±0.57 73.45±0.01 79.01±0.18 7.33
BernNet 86.34±0.13 87.09±0.60 85.34±0.82 87.15±0.37 87.22±0.15 91.22±0.55 77.65±0.87 78.34±0.19 8.12
GPRGNN 91.16±0.72 93.05±0.81 92.03±0.01 91.22±0.16 89.76±0.62 92.34±0.23 76.05±0.18 80.04±0.12 4.96
FiGURe 91.98±0.69 94.33±0.15 92.67±0.83 93.09±0.31 90.11±0.29 95.43±0.65 76.99±0.16 80.12±0.58 3.82

CUSP 95.08±0.13 96.88±0.65 96.01±0.01 97.66±0.33 96.04±0.38 97.17±0.11 81.23±0.14 85.23±0.05 0
Imp. ∆ 1.96 2.55 3.34 4.15 4.06 1.74 3.58 5.11

Table 8: Performance comparision of CUSP with baselines for LP task (Mean AUC Score ± 95%
confidence interval). First, Second and Third best performing models are highlighted.

Dataset CUSP CUSPeuc CUSPlap CUSPenc CUSPpool CUSPfil

Cora 95.08±0.13 92.45±0.25 93.21±0.42 93.78±0.33 92.13±0.40 93.02±0.27

Citeseer 96.88±0.65 94.03±0.30 95.34±0.22 94.08±0.29 94.01±0.31 94.56±0.26

PubMed 96.01±0.01 93.52±0.60 94.81±0.40 94.92±0.38 94.11±0.35 94.16±0.39

Chameleon 97.66±0.33 95.02±0.44 96.23±0.52 96.13±0.28 95.13±0.40 95.67±0.57

Actor 96.04±0.38 91.45±0.55 93.99±0.32 92.81±0.42 91.98±0.47 92.13±0.49

Squirrel 97.17±0.11 93.14±0.22 95.56±0.37 94.33±0.43 93.75±0.32 92.89±0.14

Texas 81.23±0.14 78.45±0.36 79.88±0.52 80.12±0.42 79.23±0.37 77.81±0.54

Cornell 85.23±0.05 82.89±0.32 83.91±0.39 84.23±0.37 82.31±0.48 82.45±0.42

Avg. ∆ Gain 0 3.0437 1.5462 1.8625 2.8312 2.8262

Table 9: Ablation study (LP) results. CUSPeuc is the Euclidean variant, CUSPlap uses the traditional
Laplacian, CUSPenc gets rid of curvature encoding, CUSPpool replaces Cusp pooling with concate-
nation, and CUSPfil uses a single filter instead of a filter bank. Av. ∆ Gain represents the average
gain of CUSP over the ablation model in that column, averaged across the different datasets.

25

Published as a conference paper at ICLR 2025

CUSP Cora Citeseer PubMed Chameleon Actor Squirrel Texas Cornell

H24 × S24 93.10±0.22 94.33±0.35 95.41±0.25 97.28±0.45 95.25±0.44 96.05±0.51 75.43±0.31 76.95±0.38

(H8)2 × (S8)2 × E16 93.00±0.27 95.11±0.28 94.52±0.34 96.66±0.39 95.34±0.38 95.40±0.57 80.95±0.42 84.80±0.43

H8 × S8 × E32 93.20±0.24 93.25±0.30 95.65±0.30 97.11±0.37 94.92±0.40 95.51±0.45 81.23±0.14 85.23±0.05

H16 × (S16)2 93.50±0.25 94.12±0.33 95.32±0.45 97.66±0.33 95.20±0.34 97.17±0.11 80.30±0.45 78.02±0.47

(H16)2 × E16 93.25±0.21 93.05±0.32 96.01±0.01 96.80±0.40 96.04±0.38 96.15±0.55 79.50±0.38 84.60±0.40

H24 × E24 92.70±0.30 94.71±0.35 95.45±0.42 96.51±0.47 95.00±0.37 88.95±0.53 79.70±0.54 81.20±0.60

S24 × E24 88.50±0.39 91.23±0.35 89.99±0.44 91.12±0.43 79.90±0.52 91.20±0.51 79.08±0.52 83.75±0.48

H16 × S16 × E16 95.08±0.13 96.88±0.65 95.55±0.41 94.44±0.34 95.55±0.35 96.25±0.38 81.07±0.29 84.60±0.30

(S8)2 × E32 88.05±0.40 90.35±0.42 86.30±0.48 89.34±0.45 93.33±0.54 90.25±0.48 80.10±0.43 82.01±0.55

(H16)3 89.10±0.44 91.01±0.50 93.93±0.55 96.19±0.50 95.25±0.49 92.30±0.52 77.77±0.53 79.44±0.58

Table 10: Performance comparison of CUSP with different manifold signatures for Link Prediction
(LP). Best performing signatures are in Bold, and cases with a large decline in performance because
of manifold mismatch are in Blue.

Dataset Signature

Cora H16(−0.21, 0.31)× S16(+0.49, 0.38)× E16(0, 0.31)
Citeseer H16(−0.78, 0.29)× S16(+0.55, 0.39)× E16(0, 0.32)
PubMed H16(−0.76, 0.56)×H16(−0.28, 0.41)× E16(0, 0.03)
Chameleon H16(−0.34, 0.09)× S16(+0.71, 0.25)× S16(+0.55, 0.34)
Actor H16(−0.77, 0.17)×H16(−0.39, 0.42)× E16(0, 0.41)
Squirrel H16(−0.17, 0.23)× S16(+0.54, 0.38)× S16(+0.38, 0.39)
Texas H8(−0.38, 0.31)× S8(+0.18, 0.19)× E32(0, 0.50)
Cornell H8(−0.41, 0.19)× S8(+0.09, 0.26)× E32(0, 0.55)

Table 11: Learning results of CUSP on Link Prediction (LP) task for the best performing product
signature. Format of entries − manifold type (dim) (learnt curvature, learnt manifold weight).

Dataset I Z(1) Z(2) Z(3) Z(4) Z(5) Z(6) Z(7) Z(8) Z(9) Z(10)

Cora 0.1125 0.2393 0.0520 0.0504 0.0676 0.0272 0.1531 0.1251 0.0939 0.0095 0.0694
Citeseer 0.2131 0.0150 0.2195 0.0283 0.0922 0.1530 0.0350 0.0320 0.0282 0.1254 0.0582
PubMed 0.0279 0.1793 0.0285 0.0296 0.0563 0.3870 0.0603 0.0324 0.0612 0.0271 0.1104
Chameleon 0.0601 0.1136 0.1694 0.0924 0.1329 0.1605 0.1026 0.0157 0.0475 0.0344 0.0709
Actor 0.1230 0.0321 0.0324 0.1147 0.1287 0.3700 0.0136 0.0389 0.0604 0.0691 0.0172
Squirrel 0.0182 0.0289 0.1056 0.2099 0.0209 0.0355 0.0854 0.2159 0.0475 0.1042 0.1279
Texas 0.0890 0.1983 0.0179 0.4570 0.0035 0.1429 0.0177 0.0087 0.0474 0.0131 0.0046
Cornell 0.0886 0.2026 0.0181 0.4460 0.0034 0.1472 0.0183 0.0089 0.0487 0.0134 0.0048

Table 12: Learned filter weights (Link Prediction) for the top-performing split, distinguishing be-
tween homophilic (favoring low-pass filters) and heterophilic (favoring high-pass filters). First,
second, and third highest filter weights are highlighted.

7.6.4 ESTIMATING PRODUCT MANIFOLD SIGNATURE

In our model, the mixed-curvature product manifold PdC is essential for representing the geometric structure
of the data. The curvature configuration needed for each dataset depends on the intrinsic geometry of its graph.
To generalize across various datasets, we aim to determine the optimal signature of the product manifold,
specifically the proportions of hyperbolic, spherical, and Euclidean components. This estimation is based on
analyzing the Ollivier-Ricci curvature (ORC) distribution as a heuristic. See Figures 4 and 5 in Appendix 7.2.1
for the ORC distribution of multiple datasets. For datasets with many positively curved edges, we select a
Spherical component, and for those with negatively curved edges, we choose a Hyperbolic component. For
example, the curvature distribution of PubMed’s edges in Figure 4 shows two significant peaks around −0.45
and +0.25. Given this distribution, we opt for Spherical and Hyperbolic components when evaluating CUSP
on PubMed. Empirically, the best performance for PubMed is achieved with the signature (H16)2 × E16. We
initialize the curvatures of PubMed’s component manifolds with these prominent values: H with −0.45 and S
with +0.25. We select two hyperbolic manifolds to capture different curvature ranges.

An overview of this simple idea is provided in Algorithm 1. By systematically analyzing the curvature distribu-
tion, our heuristic-based algorithm identifies the manifold signature that best represents the dataset’s underly-
ing geometric structure. We heuristically cluster the curvature distribution and identify the centroid curvatures
without altering their order or frequencies. The use of predefined dimensions allows for flexibility based on
experimental settings. Since optimal dimension allocations can vary and are complex to analyze, we manually
set the dimensions of the component manifolds as a hyperparameter. This ensures fair and uniform comparison
across multiple datasets, as different datasets may perform best with different configurations. We do not claim
that this algorithm finds the best possible, optimal combination of component manifolds, rather, it estimates a
potential signature that might be a good fit for a particular dataset.

26

Published as a conference paper at ICLR 2025

Algorithm 1 Product manifold signature estimation and curvature initialisation

Require: • Edge curvature histogram C = {(κi, fi)}Ni=1

• Threshold ϵ to distinguish between curved and flat regions
• Maximum number of Hyperbolic (Hmax) and Spherical (Smax) components.
• Total product manifold dimension dM
• (Optional) Preferred component manifold dimensions dpre

(h), d
pre
(s), d

pre
(e)

Ensure: Product manifold signature PdM = ×Q
q=1M

κ(q),d(q)
q

1: Normalize frequencies: f ′
i =

fi∑N
j=1 fj

2: Construct weighted curvature set: C′ = {(κi, f ′
i)}Ni=1

3: Determine optimal number of clusters K using methods like the elbow method, constrained by K ≤
Hmax + Smax + 1 ▷ There can be only 1 Euclidean component

4: Cluster C′ into K clusters using weighted clustering (e.g., weighted K-means)
5: Initialize empty lists H,S, E
6: for each cluster c in clusters do
7: Compute cluster centroid curvature κc =

∑
(κi,f

′
i
)∈c κi

|c|
8: Compute total frequency weight wc =

∑
(κi,f

′
i)∈c

f ′
i

9: if κc < −ϵ and |H| ≤ Hmax then ▷ Negative curvature
10: Assign manifold component: Mq = Hκc ▷ Curvature initialization
11: Add (Mq, wc) to H
12: else if κc > ϵ and |S| ≤ Smax then ▷ Positive curvature
13: Assign manifold component: Mq = Sκc ▷ Curvature initialization
14: Add (Mq, wc) to S
15: else
16: Assign manifold component: Mq = E ▷ Approximate zero curvature, i.e. κc ∈ [−ϵ, ϵ]
17: Add (Mq, wc) to E
18: end if
19: end for
20: if Predefined dimensions dpre

(h), d
pre
(s), d

pre
(e) are provided then

21: Assign dimensions d(q) to each component q as per predefined values ▷ Dimension assignment
22: else
23: Set total number of components Q = |H|+ |S|+ |E| ▷ Dimension assignment

24: Allocate dimensions d(q) to each component q: d(q) =
⌊
dM × wq∑Q

p=1 wp

⌋
▷ Proportional to weights

25: Adjust d(q) to ensure
∑Q
q=1 d(q) = dM

26: end if
27: Formulate manifold signature:

PdM =
(
×|H|
h=1H

κ(h),d(h)

h

)
×
(
×|S|
s=1S

κ(s),d(s)
s

)
× Ed(e)

7.6.5 MORE EXPERIMENTAL SETTINGS

Hyperparameter Tuning Configurations Description
L {5, 10, 15, 20, 25} Total number of graph filters.
δ {0.2, 0.5, 0.7} Neighbourhood weight distribution parameter for ORC
α {0.1, 0.3, 0.5, 0.9} Alpha (initialization) parameter for GPR propagation
dC {8, 16, 32, 64} Total dimension of curvature embeddings.
dM {32, 48, 64, 128, 256} Total dimension of the product manifold.
dropout {0.2, 0.3, 0.5} Dropout rate
epochs {50, 100, 300} Number of training epochs
lr {1e− 4, 4e− 3, 0.001, 0.01} Learning rate
weight decay {0, 1e− 4, 5e− 4} Weight decay

Table 13: Hyperparameter configurations used in the experiments for all baselines. Some of the
hyperparameters are specific to CUSP. We highlight the final configuration of CUSP for NC in Red.

27

	Appendix
	Notation Table
	More on Preliminaries
	Analysis of Real-world Graphs
	Ollivier-Ricci Curvature (ORC)
	Product Manifolds
	Kappa-Stereographic Model
	Spectral Graph Theory

	More on Cusp Laplacian
	Relevent Theorems for Cusp Laplacian

	Generalised Pageranks and GPRGNN
	Proof of Theorem 1
	Why GPRGNN as the backbone of CUSP?

	Theorems for Curvature Encoding
	Proof of Definition 2
	Proof of Theorem 2

	Experimentation
	Datasets
	Baselines
	Experimental Results for Link Prediction
	Estimating Product Manifold Signature
	More Experimental Settings

