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7 APPENDIX

7.1 NOTATION TABLE

Notation Reference

H Hyperbolic manifold

S Spherical manifold

E Euclidean manifold

Pim Product manifold of dimension d a4

K Continous manifold curvature

K Ollivier-Ricci Curvature (ORC)

k(z,y) ORC of edge {z,y}

k(x) ORC of node x

ms Probability mass assigned to node = for ORC computation

0ij Kroneckner delta function

N(z) Neighbourhood set of node

T~y This implies that « and y are adjacent nodes

0 ORC neighbourhood weighting parameter

Wi(.) Wasserstein-1 distance

dg(z,y) Shortest path (graph distance) between nodes x and y on graph G

Mfi’d‘ Constant-curvature manifold with dimension d; and curvature x,. M; € {H, S, E}
L,DA Cusp Laplacian operator; L = D — A

L., A, Normalized Cusp Laplacian and Adjacency matrices; A,, = DZ ADZ
L,D A Traditional graph Laplacian, Adjacency and Degree matrices; L =D — A
ds Input graph feature dimension

dm Total dimension of the product manifold

de Total dimension of the curvature embedding

F ¢ R™*% Input feature matrix

expg : RIM 5 A" Exponential map, to map from tangent plane (Euclidean) to the product manifold

€l

C c ]P;nx(dM+dc)
Ba

Tq

L

Q

l

Z()@)

pdm
K(q)

d(g)
(1)

M@ @)

v

o

Signature

Y: V=R

Ppac (F(z))

Kp(Ra, ko)

Ai

A

fo() : R — RIMm

go(.) : RIM _y R

Mobius addition

K-right-matrix-multiplication

k-left-matrix-multiplication

Final node representation for node x

Learnable weight of " filter

Matrix containing final node embeddings

Learnable weight of ¢** component manifold

Relative importance of manifold M, in Cusp Pooling

Total number of filters

Total number of components in product manifold

Used to denote the I*" filter

The GPR-based node representation for filter with L layers, on manifold P4t
Manifold curvature of ¢*" component in product manifold

Manifold dimension of ¢** component in product manifold

Hidden state representation after [ layers of GPR, on ¢*" manifold component with
curvature 4y and dimension dg)

GPR weight for I*" layer in the filter, while propagation GPR score.
Initialising parameter for GPR

Pim — XEIQ:lMZm)vd(q) _ (Xzleﬂz(h)’d(m) v (szlgguwd(a») « Ee)
A function defined on vertex set V'

Curvature encoding on product manifold

Ke(Ra, Fb) := (Ppac (Fa), Ppac (Fp)) is the curvature kernel

ith eigenvalue of 11”

it" eigenvalue of L,

Neural network with parameter set {6} that generates the hidden state features be-
fore feeding input to Cusp Filtering.

Neural network projector used in curvature encoding
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7.2 MORE ON PRELIMINARIES

7.2.1 ANALYSIS OF REAL-WORLD GRAPHS
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Figure 4: Distribution of Ollivier-Ricci curvatures k(z,y) of edges across different datasets. The
histograms illustrate the frequencies of edge-based Ollivier-Ricci curvature values for each dataset,
highlighting the topological diversity in both homophilic and heterophilic settings, and hence the
need of learning representations in manifolds with different curvatures.

Cora Citeseer PubMed Chameleon
400 I‘ I
300 4 ol ‘I 300 1 T 4000 I 1
> > > 2 4000 -
g .thl g ‘] || ‘ | I‘ g g
3 200 4 2 2004 g m 2
g -Il. g .."‘ g 20001 £ 2000
£ 100 4 £ 100 4 | & =

0+ 0+ 0+ 0+
-1.0 =05 0.0 0.5 10 -1.0 =05 0.0 0.5 L0 -1.0 -0.5 0.0 0.5 10 -1.0 =05 0.0 0.5 1.0
Edge Ricci Curvature Edge Ricci Curvature Edge Ricci Curvature Edge Ricci Curvature
Actor Squirrel Texas Cornell
40 4 60 4
3000, 60000 - 1 ||
) z ] 730 5
< 2000 £ 40000 c I | c
g g v - A g
4 2 2ol Lk 4
£ 1000 4 £ 20000 4 £ | = 209 J
0+ 0+ 0+ 0+
-1.0 -05 00 0.5 10 -1.0 -05 0.0 0.5 Lo -1.0 -05 0.0 0.5 10 -1.0 -05 00 0.5 1.0

Edge Ricci Curvature Edge Ricci Curvature Edge Ricci Curvature Edge Ricci Curvature

Figure 5: Distribution of Ollivier-Ricci curvatures (2) of nodes across different datasets.
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Figure 6: Distribution of Spectral Energy with the respective eigenvalues of the graph Laplacian.
Spectral Energy, & = 2/ it 2, where f; is the j! Fourier mode of the graph Laplacian. Low
frequency implies homophily and high frequency components correspond to heterophily. These plots
highlight the importance of capturing signals from different parts of the eigenspectrum for designing
a GNN that works well across multiple tasks.
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7.2.2 OLLIVIER-RICCI CURVATURE (ORC)

In an unweighted graph, the neighborhood of each node z, denoted as N(x), is assigned a probability distribu-
tion according to a lazy random walk formulation (Lin et al.,[2011). Specifically, we define the distribution as
follows:

a, if z =,
ms(x) = |j1/_(§)| , ifz e N(x), )
0, otherwise.

Here, « controls the probability that a random walk will remain at the current node, while the remaining
probability mass (1 — «) is uniformly distributed across the neighboring nodes. This formulation connects ORC
with lazy random walks and influences the balance between local exploration and the likelihood of revisiting a
node. In this work, we use o = 0.5, meaning that equal probability mass is distributed between the node itself
and its neighbors, striking a balance between breadth-first and depth-first search strategies. The choice of « is
crucial and depends on the topology of the graph. A smaller o value encourages more local exploration, while
a larger « favors revisiting nodes, thereby promoting a “lazy” walk. For our experiments, @ = 0.5 was chosen
to reflect an equal probability mass distribution between the node and its neighbors.

B Computational Considerations. Computing ORC can be computationally intensive due to the need to
calculate the Wasserstein-1 distance (WW7), between the neighborhood distributions of connected nodes. In a
discrete setting, this corresponds to solving a linear program. Typically, W1 (mg, my) between two nodes x
and y is computed using the Hungarian algorithm (Kuhn,|1955), which has a cubic time complexity. However,
this becomes prohibitively expensive as the graph size increases. Alternatively, the Wasserstein-1 distance can
be approximated using the Sinkhorn algorithm (Sinkhorn & Knopp) [1967), which reduces the complexity to
quadratic time. For this work, we employ the Sinkhorn approximation to compute ORC efficiently. Below,
we provide an alternative to approximate ORC of an edge in linear time, in case of very large (million-scale)
real-world graphs.

B Approximating ORC in Linear Time. Even with the quadratic complexity of the Sinkhorn algorithm,
scaling to large networks remains challenging. To address this, a linear-time combinatorial approximation of
ORC can be employed, as suggested by Tian et al.|(2023)). This method approximates the Wasserstein distance
by utilizing local structural information, making it much more computationally feasible. The approximation
of ORC builds on classical bounds first introduced by [Jost & Liu (2014). Let #(z,y) denote the number of
triangles formed by the edge (z, y), and define a A b = min(a, b), a V b = max(a, b) and d is the degree of
node z. The following bounds on ORC can be derived for an edge e = z, y:

Theorem 3 (Jost & Liu| (2014)). For an unweighted graph, the Ollivier-Ricci curvature of an edge e = x,y
satisfies the following bounds:

1. Lower bound.:

_ 11 #(zv) 11 #(=y) #(z,y)
m(x,y)zf(lffff* _)f(1*£*£*dwwy)++dxvdy'

2. Upper bound:

~ #(z,y)

< . 10
R(z,y) < & d, (10)
The ORC of an edge, can then be approximated as the arithmetic mean of these bounds:

-~ 1 upper ower
Ro,y) = 5 (K72, 9) + £ (2,9)) - an

The proof of these bounds has been detailed in [Tian et al|(2023). This approximation is computationally
efficient, with linear-time complexity, and can be parallelized easily across edges, making it suitable for large-
scale graphs. The computation relies solely on local structural information, such as the degree of the nodes and
the number of triangles.

7.2.3 PRODUCT MANIFOLDS

Let M1, Ma, ..., M denote a set of smooth manifolds. Their Cartesian product forms a product manifold,
denoted by P, such that P = M x Mgz X --- X M. Any point p € P is characterized by its coordinates
p = (p1,p2,.-.,pk), where each p; corresponds to a point on the individual manifold M. Similarly, a tangent
vector v € TP can be expressed as v = (v1,v2,. .., vk), Where each v; € Tp, M, represents the projection
of v in the tangent space of the respective component manifold M. Optimization over manifolds requires the
notion of taking steps along the manifold, which can be achieved by moving in the tangent space and mapping
those movements back onto the manifold through the exponential map. The exponential map at a point p € P,
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denoted exp,, : TpP — P, allows for this transfer. For product manifolds, the exponential map decomposes

into individual component exponential maps. Specifically, given a tangent vector v = (vi,v2,...,Vx) at
p = (p1,p2,.-.,pr) € P, the exponential map on PP can be expressed as:
exp,(v) = (expp1 (v1),exp,, (v2), ... ,exXp,, (vi)) (12)

7.2.4 KAPPA-STEREOGRAPHIC MODEL

The k-stereographic model (Bachmann et al., |2020) unifies Hyperbolic and Spherical geometries under gy-
rovector formalism. This model leverages the framework of gyrovector spaces to represent all three con-
stant curvature geometries—hyperbolic, Euclidean, and spherical—simultaneously. Additionally, it facilitates
smooth transitions between these constant curvature geometries, enabling the joint learning of space curvatures
alongside the embeddings. It is a smooth manifold M™% = {z € R?| — &l|z||3 < 1}, whose origin is
0 € R equipped with a Riemannian metric g5 = (A\%)°I, where A% is given by A% = 2 (1 + &||2|[3)
The Riemannian operations under this model are elaborated in the table below:f

Operation Formalism in E? Unified formalism in «-stereographic model (H?/ S)
Distance Metric | d%,(x,y) = [|x —y||, di(x,y) = ﬁ tan, (\/m |—x ®x YHQ)

Exp. Map expi(v)=x+v expi(v) = x B (tanN (\/W XHVHQ) m)
Log. Map logi(y) =x—-y | logi(y)= \FM (\/\? [—x @yl ) e
Addition XSy =xX+y X By = (”2“;‘ L G T

Table 7: Operations in Hyperbolic H¢, Spherical S¢ and Euclidean space E¢.

B x-right-matrix-multiplication. Given a matrix X € R™*< holding x-stereographic embeddings in its rows
and weights W € R%*°, the Euclidean right multiplication can be written row-wise as (XW)ie = X;eW.
Then the k-right-matrix-multiplication is defined row-wise as

(XW);e

(X @ W)ie = expf ((log§ (X)W)ie) = tans (o tan, (1 XeilD) gy

13)

— UXW)ell
[Xiell

where a; = and exp, and logg denote the exponential and logarithmic map in the x-stereo. model.

W x-left-matrix-multiplication. Given a matrix X € R™*¢ holding k-stereographic embeddings in its rows
and weights A € R™*", the x-left-matrix-multiplication is defined row-wise as

(AR X)io 1= (D Aij) @r ma(Xie, -, Kne; Ava). (14)

J

7.2.5 SPECTRAL GRAPH THEORY

Graph Fourier Transform (GFT) (Sandryhaila & Moural [2013) lays the foundation for Graph Neural Networks
(GNNs). A GFT is defined using a reference operator R which admits a spectral decomposition. Traditionally,
in the case of GNNs, this reference operator has been the symmetric normalized Laplacian L, = I — A,
(Kipf & Welling, 2016). The graph Fourier transform of a signal f € R™ is then defined as f = U f € R™,
and its inverse as f = Uf. A graph filter is an operator that acts independently on the entire eigenspace of a
diagonalisable and symmetric reference operator R, by modulating their corresponding eigenvalues. A graph
filter is defined via the graph filter function g(.) operating on the reference operator as g(R) = Ug(A)U .

7.3 MORE ON CUSP LAPLACIAN

Spectral graph theory has shown significant progress in relating geometric characteristics of graphs to properties
of spectrum of graph Laplacians and related matrices. Several variants of the graph Laplacian matrices have
been shown to capture specific inductive biases for different tasks (Ko et al.,|2023; |Belkin et al.,|[2008; |Jacobson
& Sorkine-Hornung}, 2012).

Proof of Definition[I} Say the function ¢ : V' — R is defined on the vertex set V of the graph. Suppose ¥
describes a temperature distribution across a graph, where ¢ (z) is the temperature at vertex x. According to
Newton’s law of cooling (He}[2024)), the heat transferred from node x to node y is proportional to ¥ (z) — ¥ (y)
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if nodes x and y are connected (if they are not connected, no heat is transferred). Consequently, the heat
diffusion equation on the graph can be expressed as w = =B, Asy(¥(x) —9(y)), where 3 is a constant of
proportionality and A denotes the adjacency matrix of the graph. Further insight can be gained by considering
Fourier’s law of thermal conductance (Liu} [1990), which states that heat flow is inversely proportional to the
resistance to heat transfer. ORC measures the transportation cost (W1 (:, :)) between the neighborhoods of two
nodes, reflecting the effort required to transport mass between these neighborhoods (Bauer et al.| [2011). We
interpret this transportation cost as the resistance between nodes. The vital takeaway here is that — Heat flow
between two nodes in a graph is influenced by the underlying Ollivier-Ricci curvature (ORC) distribution. The
diffusion rate is faster on an edge with positive curvature (low resistance), and slower on an edge with negative

curvature (high re31stance) Thus, the ratio Ry = Wilme,my) represents the resistance from node z to node

dg (z,y)
y, i.e. ﬁf” g Rreb. It can be observed that R’%“ = W‘li(%f:i yrzly) = TRew) (From the definition of ORC)

would tend to mﬁmty when Wl(m;,;7 my) = 0 (i.e. K(z,y) = 1). Thus, to ensure continuity, we create a new

_pres

ratio as =e Ty =el- ) . Thus, we can modify the above heat flow equation as:

'R’

=_-j Z Aay( 7;:. — ) (Inversely proportional to R5,)
Ty

By Auy(lx) — b(y)) e TP = - (W) D Awy - ZAzyw(y))> e TR

—1
—BZ (6wy el—k(sz D,, — eT-7Ew) Axy) Y(y) (day is the Kronecker delta.)
Y

— —1
-8B Z (e T=R(@y) Lzy) Y(y) (L,D, A are Laplacian, Degree and Adjacency matrices.)

— —1 —_
-B (L ® elfﬁ(r’y)) ¥ = —pLy (@ is the element-wise product)

This gives us the standard heat equation on graphs. Here, /3 is the updated constant of proportionality. L=
D — A is the Cusp Laplacian operator, where D and A are the updated Degree and Adjacency matrices,
1

to represent that the graph is transformed under edge weights wg, = R% = e!-#(=v) . Finally, our Cusp

cY
Laplacian operator can be written as (z ~ y means xy is an edge in the graph):

2) =ty (P(x) —Y(y) = > eTFED ) () — v(y)) (15)

y~z y~z

= _ 1
B Why is e Rey = T g the right choice? To mathematically justify that e ™—%(=.») is an appropriate
choice, we must verify its properties:

_ 1
1. Asymptotics. As k(z,y) — 1,e === — 0, indicating that nodes with high positive curvature

1
experience very fast heat diffusion (minimal resistance). Conversely, as k(z,y) — —1,e I-*Ev — ﬁ
, meaning that nodes with high negative curvature have slow heat diffusion (higher resistance).

2. Continuity. The exponential function is smooth and continuous, ensuring that even small changes in
the curvature result in smooth changes in the heat flow dynamics, which is crucial for stable numerical
simulations and theoretical consistency.

[ . . . ~ .
3. Monotonicity. For k(z,y) > 0,e 1-#=) is a decreasing function with respect to x(x, y). This means
as curvature increases, the resistance decreases, aligning with the physical intuition of heat flow.

O

7.3.1 RELEVENT THEOREMS FOR CUSP LAPLACIAN

Theorem 4 (Positive Semidefiniteness of Cusp Laplacian). The normalized Laplacian operator Lis positive
semidefinite, i.e., for any real vector u € R", we have uT L,u > 0.
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Proof. We start by showing that the normalized Cusp Laplacian

L.=1-D '?AD "2 =1-A, (16)
is positive semi-definite. Let u be any real vector of unit norm and f = D '/?u, then we have

WLiu=u"u-u"DV?AD ?u= Z ul — Z fwfy;&l.y a7

x=1 x,y=1
:ZDmf - Z £o6, AL, = = ZDme—QZ ffAIy—&—ZDyyf (18)

z,y=1 z,y=1

1 ~ N — s 2
=3 Z A, (f, —£,)° = 3 Z eT7 @0 Ay (f, — £,)%, (19)
z,y=1 z,y=1

—1
where the last step follows from the definition of the degree. We know that e == v) > 0 Vk(z, y), hence our
Cusp Laplacian is positive semidefinite. O

Theorem 5. The eigenvalues {\:}}, of the normalized Cusp Laplacian L, lie in the interval [0, 2].

Proof. We begin by noting that Theorem E] shows that the normalized Cusp Laplacian L, has real, non-
negative eigenvalues, meaning we need only to prove that the largest eigenvalue, denoted as \,, is less than

or equal to 2. Before moving to that, we show that O is indeed an eigenvalue of L associated with the unit

eigenvector T where T = —Y2ii__
g V Zv Dyy

Let 1 be the all one vector. Then, a direct calculation reveals that

Lynr =7 - D YV?AD Y27 =7 — D V2AD V2DV x — L (20)
Zv D'U'U
—r D VPA1x L s D VD1x L @1)
\/ Zv D'U"-’ Z’u D'uv

D1 0 (22)

\/ Zv fj”"’
Combining this result with the positive semi-definite property of the Laplacian shows that 0 is indeed the

smallest eigenvalue of f‘sym associated with the eigenvector 7. For the second part, using the Courant-Fischer
theorem, we know that the largest eigenvalue can be expressed as:

u'L,u

An = max -
uZ0 u'uUu

Substituting the definition of the normalized Cusp Laplacian L, = I — A, into this expression, and letting
f = D~ /2u, we have:
u' D V/2LD/?u fTLf
An = max = max ———.
u£0 u'u ££0 £TDFf

The degree matrix, can be expressed in the quadratic form as f ' Df = > D..|f. |2

For the numerator involving L, we expand the quadratic form:

FTEE= 5 30 Ayt —£)° = 5 3 €700 Ay (£ — 1, 23)
z,y=1 x,y=1
< Z TR, TR0 Ay (£, <22|f 2 (ZAMJ =2 Dy.[f(z)]. (24)
z,y=1 y=1 z=1
The last inequality follows from the fact that e 1~ e — f as k(z,y) — —1 implies that it is always < 1.

Thus, we can conclude that, f ' Lf < 2f " Df, and the Rayleigh quotient is bounded Lf < 2. This shows

that the largest eigenvalue of the normalized Cusp Laplacian L, is bounded by 2, completmg the proof that the
eigenvalues of L, are contained within the interval [0, 2]. O
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Figure 7: Architecture of GPRGNN.

7.4 GENERALISED PAGERANKS AND GPRGNN

M Equivalence of the GPR method and polynomlal graph filtering. If we truncate the infinite series in the
GPR definition at some integer K, Z k0 ’YkA becomes a polynomial graph filter of degree K. Consequently,
optimizing the GPR weights is tantamount to optimizing the polynomial graph filter. It is important to note that
any graph filter can be approximated using a polynomial graph filter, enabling the GPR method to handle a
wide variety of node label patterns. Additionally, increasing K enhances the approximation of the optimal
graph filter. This again illustrates the advantage of large-step propagation.

B GPRGNN architecture. GPR-GNN initially derives hidden state features for each node and subsequently
employs GPR to disseminate them. The GPR-GNN procedure can be represented as:

P = softmax(Z), ny H® H® = A,H* Y HO = f£,(X,.), (25)
k=0

Here, fo(.) denotes a neural network parametrized by {6}, which produces the hidden state features H. The
GPR weights v, are optimized alongside {6} in an end-to-end manner. The GPR-GNN model is straightfor-
ward to interpret: As previously mentioned, GPR-GNN is capable of adaptively managing the contribution of
each propagation step to fit the node label pattern. Analyzing the trained GPR weights also aids in understand-
ing the topological properties of a graph, such as identifying the optimal polynomial graph filter.

7.4.1 PROOF OF THEOREMII]

We first state the formal version of Theorem/[T]

Theorem 6 (Formal version of Theorem. Assume the graph G is connected. Let \1 > A2 > ... > A\ and
M < X2 < ... <\, be the eigenvalues of A, and L, respectively. If v, > 0 VI € {0,1,...,L}, Zl on =1
9y, L(Ni)

and A’ > 0 such that vy > 0, then ;

< 1Vi> 2. Also, ify1 = (—a)', a € (0, 1) and L — oo, then

limp 00 9~, 0 (N4) .

o g O] > L Vi 2

1. Note that g”f E;;; < 1 Vi > 2 implies the low-pass case as after applying the graph filter g1, the
ke

lowest frequency component (correspond to A1) further dominates.

2. Unfiltered case. Recall that in the unfiltered case, we do not multiply with A,. It can also be viewed as

10—
1[0

multiplying the identity matrix I, where the eigenvalue ratio is = 1. Hence g4, 1, acts like a low pass

filter in this case.

limp, 00 94,1 (N4)
limp 00 94,0 (A1)
component (correspond to A1) no longer dominates. This corresponds to the high pass filter case.

3. In contrast, > 1 Vi > 2 implies that after applying the graph filter, the lowest frequency

Proof. We start with the low pass filter result. From Theorem we know that 0 < Xl < Xg <. < Xn < 2.
Given the spectrum of A,,, we know that — A, has spectrum negatives of A, and I — A,, adds one to each
eigenvalue of —A,, . Hence, 1 > A1 > X2 > ... > A\, > —1 follows directly. Now, we know that A\ = 1

and |\;| < 1,Vi > 2. Further, we have assumed that gy, 0 (A1) = Zl ot = 1. Hence, proving TheoremE]ls
equivalent to show

lgy.o (X)) < 1Vi>2.
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This is obvious since g,z (A) = ZIL:O ~ Al is a polynomial of order L with nonnegative coefficients. It is easy
to check that VI > 1, |A|' < 1,V|A| < 1. Combine with the fact that all ;s are nonnegative we have

L L L
(a)
gy, <D N =D wA <D =1
=0 =0 =0

Finally, note that the only possibility that the equality holds is v, = Jo,; since VI > 1, |A]' < 1,V|)\| < 1.
However, by assumption ZZL:O v = 1and 3’ > 0 such that 7;; > 0 we know that this is impossible. Hence
(a) is a strict inequality <.

For the high pass filter result, it can be observed that:

L L
. T I 1 7 r_ 1
i, gy = fim D wX = fim ) (—ad) = 105
where the last step is due to the fact that & € (0, 1) and thus limz 0 (—a\)Y = 0,V|A| < 1. Thus we have

| 1+«
- 1+ aX;

()

limpz, o0 gy,0 (M) >1Vi> 2.

limL—)oo g'y,L(Al)

_1

The strict inequalities (b) is from the fact that |[\;| < 1,Vi > 2. Notably, SUPjc[1,—1) Tyax Dappens at the
boundary A = —1, which corresponds the the bipartite graph. It further shows that the graph filter with respect
to the choice v; = (—a)' emphasizes high frequency components and thus it is indeed acting as a high pass
filter. O

7.4.2 WHY GPRGNN AS THE BACKBONE OF CUSP?

In this section, we elaborate on why GPR is an ideal backbone when compared to other Spectral GNNs.

1. Adaptive Filter Design. GPR learns the filter coefficients directly, allowing the spectral response to adapt
to the task and dataset. This flexibility is critical for modeling both homophilic and heterophilic graphs.

2. Universality. Unlike fixed low-pass filters like ChebNet, which excel primarily in homophilic settings,
GPR’s learnable filters enable it to balance low-pass and high-pass components, making it suitable for
both homophilic and heterophilic graphs. This is one of the main goals of our paper - to achieve superior
performance on homophilic and heterophilic tasks. Fixed polynomial filters in ChebNet and Bernstein-
based methods approximate spectral responses up to a fixed order, limiting their ability to model complex
spectral properties.

3. GPRGNN escapes oversmoothing. GPR weights are adaptively learnable, which allows GPR-GNN to
avoid over-smoothing and trade node and topology feature informativeness. See Section 4 of |Chien et al.
(2020) for more theoretical analysis on the same and proofs, which is beyond the scope of this work. GPR
not only mitigates feature over-smoothing, but also works on highly diverse node label patterns (See Section
4 and 5 of |(Chien et al.|(2020)).

4. Capturing node features and graph topology. In many important graph data processing applications, the
acquired information includes both node features and observations of the graph topology. GPRGNN jointly
optimizes node feature and topological information extraction, regardless of the extent to which the node
labels are homophilic or heterophilic.

5. Filter Bank Construction. Using GPR based spectral filters, helps us to effectively construct a filter
bank where each adaptive filter contributes to a specific spectral profile, enabling the model to aggregate
information across different spectral bands. This approach captures diverse patterns in node features and
topology, unlike ChebNet or Bernstein-based methods, which rely on fixed polynomial approximations and
lack such flexibility.

7.5 THEOREMS FOR CURVATURE ENCODING
Theorem 7 (Bochner’s Theorem). (Moeller et al.||2016) A continuous, translation-invariant kernel K(x,y) =

U(x—y)on R< is positive definite if and only if there exists a non-negative measure on R such that U is the
Fourier transform of the measure.

7.5.1 PROOF OF DEFINITION[2]

Proof. Using the Bochner’s theorem stated above, our curvature kernel g has the expression:

Kg(Fa,Fb) = Vg (Fa, Ra) = / e Fa=Fo) p(w)dw = B [€w (Fa)éw (7)), (26)
R
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where £, (%) = €', Since kernel Kz and measure p(w) are real, we extract the real part of :

Kg(Fa,Fb) = B [ cos(w(Ra — Rb))] = Eu [ cos(wka) cos(wks) + sin(wka) sin(wks)] . (27)

The above formulation suggests approximating the expectation by the Monte Carlo integral, i.e. Kr(Ka, ko) ~
% Z?ﬁl cos(wika) cos(wikp) +sin(wikq ) sin(wiks), withwi, . . ., wd, £ p(w). Therefore, we propose the
finite dimensional functional mapping to R as:

Dpac (R) =4/ i [cos(wlﬁ), sin(wikK), . .., cos(wa, K), sin(wa, E)} (28)

The unknown probability distribution p(w) is estimated using the inverse cumulative distribution function
(CDF) transformation as in Xu et al.| (2020). Since our GNN is operating in the mixed-curvature space, we
must map our defined curvature kernel based representations to the product manifold. We do so using the
exponential map, for a node x with ORC curvature k() as:

Dyie (7(2)) = g0 (|| Z1expo ™ (e (R(2))) 29)
= 0 (IZ1®  rcp iy (R())) (30)

,d . . .
where expg(q) : R - MZ(") (9 denotes the exponential map on the ¢*" component manifold with

curvature £(q), || is the concatenation operator and gg : P% — P9 is a Riemannian projector. We need
go because we maintain a single product manifold for CUSP with total dimension dy. So, upon taking the
exponential map with respect to this product manifold, we are required to project the curvature embeddings to
the required dimension dc. O

7.5.2 PROOF OF THEOREM

Proof. We begin by recalling that in Euclidean space, the curvature kernel Cr is:
Kg(Ra,Fb) = (Pgac (Ra), Prac (R)) = Ur(Ka — Kb).
The key property here is translation invariance:
Kr(Ra + ¢ kb + ¢) = Kr(Ra, Kb) = Yr(Ka — Rb)-
Next, we move to the product manifold P9¢, which consists of multiple components of different curvatures,
such as hyperbolic, spherical, and Euclidean spaces.

. ,d . .
For each component manifold My ““ with curvature K(q)» the stereographic inner product (.,.)x

TeMp X To M) — R, is defined on the tangent plane of the Riemannian manifold as:
(u,v)% =u"giv = (\)? (u,v),
where the conformal factor A% is defined as:
_ 2
 L+slx]l3
This conformal factor modulates the stereographic projection in the curved space, and it ensures that distances

are mapped correctly in the manifold space. Now, consider the inner product between the curvature embeddings
®pac (Ra) and Ppac (Kp) in the mixed-curvature space.

Q
Kp(Ka, k) = Z@M:(qwd(q) (Ra), q’M:mvd(q) (Eb»*‘(q)’

q=1

Ax

. ,d . . . .
where each component manifold MZ(Q) (9 contributes to the overall inner product in the product manifold
IP4c . Using the stereographic inner product in each component, we can write:

o) = 3 (K0) (0 (). e ().

g=1
We now need to show that translation invariance holds in the mixed-curvature product manifold. Since the

conformal factor A\ depends only on the norm ||x||2, any translation by a constant ¢ does not affect the relative
difference between curvature embeddings. Specifically, for any constant shift ¢:

Q 2
Ke(Fa+ 70+ = Y (M) Wa((Fa +72) = (R +0) = We(Fa — o).
a=1
Thus, the kernel in the mixed-curvature space remains invariant to translation, completing the proof. O
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7.6 EXPERIMENTATION

7.6.1 DATASETS

The performance of CUSP is evaluated over eight benchmark datasets for two primary tasks: Node Classifi-
cation (NC) and Link Prediction (LP). These datasets encompass both homophilic and heterophilic domains.
Detailed descriptions of each dataset are provided below.

1. Citation Networks. Cora, PubMed, and Citeseer (Sen et al.; 2008;|Yang et al.,[2016) are citation networks
in which nodes symbolize research papers, and edges denote citation links between them. Each node is
labeled with its subject category. This dataset is commonly utilized for node classification because of its
pronounced homophilic properties.

2. Wikipedia graphs. Chameleon and Squirrel (Rozemberczki et al.| 2021) are heterophilic graphs derived
from Wikipedia articles. Nodes represent articles, and edges represent hyperlinks between them. Node
labels correspond to website traffic levels.

3. Actor Co-occurrence Network. Actor (Tang et al.;2009) is a heterophilic graph dataset where nodes depict
actors and edges signify co-occurrences on the same Wikipedia page. The node labels correspond to the
professional background of the actors.

4. Webpage graphs. Texas and Cornelﬂ are parts of the WebKB dataset, and are sparsely connected het-
erophilic graphs. Here, nodes represent web pages, and edges represent hyperlinks between them. Labels
reflect different types of webpages.

7.6.2 BASELINES

This part offers an in-depth discussion of the baseline models against which CUSP is compared. We classify
the baseline models into three categories: Spatial, Riemannian, and Spectral methods, which each address a
distinct facet of graph neural network architectures.

W Spatial baselines. The first kind of baselines includes the traditional spatial methods, which directly operate
on the node features and their immediate neighborhoods.

1. GCN (Kipf & Welling} 2016). Graph Convolutional Networks (GCNs) represent one of the foundational
graph neural networks that utilize spectral graph convolution in the spatial domain. They derive node em-
beddings by combining features from neighboring nodes via a linear combination involving the adjacency
matrix and the nodes’ features.

2. GAT (Velickovic et al.| 2017). Graph Attention Network (GAT) introduces attention mechanisms to graph
neural networks. Each node assigns learnable attention weights to its neighbors and aggregates their fea-
tures based on these weights.

3. GraphSAGE (Hamilton et al.l|2017). GraphSAGE is an inductive technique designed to learn node em-
beddings by sampling and aggregating features from a fixed set of neighboring nodes, instead of processing
the entire graph. This method enables GraphSAGE to create embeddings for nodes not encountered during
training by using efficient neighborhood sampling.

B Riemannian Baselines. Riemannian models function within non-Euclidean spaces (such as hyperbolic
or spherical manifolds) and are tailored for graph data characterized by intricate geometric properties (e.g.
hierarchical or cyclic structures).

1. HGCN (Chami et al.| [2019). Hyperbolic Graph Convolutional Networks utilize hyperbolic geometry to
represent the hierarchical and tree-like characteristics of graphs. This approach extends GCN to hyperbolic
space by introducing a hyperbolic variant of the convolutional operation. It is especially suitable for datasets
that exhibit hierarchical or tree-like configurations.

2. HGAT (Zhang et al.| 2021b). Hyperbolic Graph Attention Network (HGAT) extends Graph Attention
Networks (GAT) into hyperbolic space by integrating attention mechanisms with hyperbolic geometry, and
calculates the attention weights among the nodes in the hyperbolic space to enhance the aggregation of
features.

3. kGCN (Bachmann et al., |2020). <GCN allows for learning the curvature of each node in a graph and
generalizes GCN to operate in mixed-curvature spaces. The curvature parameter x determines whether
a node lies in hyperbolic, spherical, or Euclidean space. By learning curvature adaptively, KGCN offers
flexibility in modeling graphs with regions of different geometries, providing a better fit for graphs with
complex structures.

*nttp://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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4. QGCN (Xiong et al.,[2022). Pseudo-Riemannian GCN extends a GCN to a pseudo-Riemannian manifold,
enabling functionality in mixed-curvature spaces. This network is capable of modeling graph regions with
both positive and negative curvature.

5. SelfMGNN (Sun et al.,|2022). SelftMGNN generates embeddings within a mixed-curvature space through
self-supervision. It dynamically allocates varied curvatures to different regions of the graph by utilizing a
mixed-curvature embedding space. This approach incorporates both self-supervision and mixed-curvature
learning to improve performance on heterogeneous graphs.

H Spectral Baselines. These techniques utilize the eigenvalues of either the graph Laplacian or adjacency
matrix to establish convolutional filters that function in the frequency domain.

1. ChebyNet (Defferrard et al., [2016). ChebyNet implements spectral convolutions through a polynomial
approximation of the graph Laplacian, sidestepping the expensive process of eigenvalue decomposition.
Instead, it approximates the convolution using Chebyshev polynomials. This approach allows ChebyNet to
execute localized graph convolutions efficiently, making it well-suited for handling larger graphs.

2. BernNet (He et al.,2021). BernNet employs Bernstein polynomials to approximate graph filters, providing
flexible management over the filter’s frequency response. This method extends polynomial-based graph
filters and is adaptable to various frequency elements in graphs.

3. GPRGNN (Chien et al., [2020). The Generalized PageRank Graph Neural Network (GPRGNN) builds
upon the Personalized PageRank (PPR) approach, integrating it into the framework of graph neural net-
works. It propagates node features through the graph by using a weighted sum of adjacency matrix powers,
dynamically adjusting to both homophilic and heterophilic graphs.

4. FiGURe (Ekbote et al.| [2024). FiGURe employs adaptive filters to capture various sections of the graph
spectrum, enabling it to learn both high-pass and low-pass filters specific to the task. It dynamically selects
the optimal filter bank to accurately represent the graph’s architecture.

7.6.3 EXPERIMENTAL RESULTS FOR LINK PREDICTION

Baseline Cora Citeseer PubMed  Chameleon Actor Squirrel Texas Cornell  Av. A Gain
GCN 88.54+051 85.42+089 91.31+073  86.07+064  85.12+078  90.01+0.15 69.08+099  73.09+0.92 9.58
GAT 85.45+066 87.23+0.11  87.65+004  88.99+0.3  87.33+008 90.23+0.14 68.79+072  75.12+0.77 9.31
SAGE 87.12+082  90.71+065 90.09+090 90.01+058  86.06+073 91.02+061 76.544069 77.98+0.88 6.97
HGCN 91.63+055 94.13+067 91.04+079  91.45+062  90.01+080 92.34+001 69.99+084 74.03+0.57 6.34
HGAT 90.43+003 91.02+0.16  88.99+089  89.77+002  90.99+001 89.22+004 71.58+089 72.03+0.22 7.66
kGCN 92.04+070 93.33+057 92.45+085  92.03+063 90.45+088 91.35+060 76.09+076 73.05+0.71 5.56
QGCN 92.17+079 92754052  92.16+009 91.67+005 91.07+006 90.98+092 75.44+0.10 73.89+026 5.65
SelfMGNN  93.12+004  92.994091  90.99+017  93.51+014  91.98+0.19 95.01+016 74.51+062 78.99+0.81 4.28
ChebyNet 88.23+085 89.22+006 86.54+029 90.01+023  88.09+044 92.13+057 73.45+001 79.01x0.18 7.33
BernNet 86.34+0.13  87.09+060 85.34+082  87.15+037  87.22+0.15 91.22+055 77.65+087  78.34+0.19 8.12
GPRGNN 91.16+072  93.05+081 92.03+001  91.22+0.16  89.76+062 92.34+023 76.05+0.18 80.04+0.12 4.96
FiGURe 91.98+069 94.33+0.15 92.67+083  93.09+031  90.11+029 95.43+065 76.99+0.16 80.12+0.58 3.82
CUsP 95.08+0.13  96.88+0.65 96.01+0.01  97.66+033  96.04+038 97.17+0a1 81.23+0.14 85.23+0.05 0
Imp. A 1.96 2.55 3.34 4.15 4.06 1.74 3.58 5.11

Table 8: Performance comparision of CUSP with baselines for LP task (Mean AUC Score + 95%
confidence interval). First, Second and Third best performing models are highlighted.

Dataset CUSP  CUSPeye CUSPlqp CUSPene CUSPpoo  CUSP
Cora 95.08+0.13 92.45+025 93.21+042 93.78+033 92.13+040 93.02+0.27
Citeseer 96.88+0.65 94.03+030 95.34+022 94.08+029 94.01+031 94.56+0.26

PubMed 96.01+0.01 93.52+060 94.81+040 94.92+038 94.11+035 94.16+0.39
Chameleon  97.66+0.33 95.02+044 96.23+052 96.13+028 95.13+0.40 95.67+0.57

Actor 96.04+0.38 91.45+055 93.99+032 92.81+042 91.98+047 92.13+049
Squirrel 97174011 93.14+022 95.564037 94.33+043 93.75+032 92.89+0.14
Texas 81.23+0.14 78.45+036 79.88+0.52 80.12+042 79.23+037 77.81+0.54
Cornell 85.23+0.05 82.89+032 83.91+039 84.23+037 82.31+048 82.45+042
Avg. A Gain 0 3.0437 1.5462 1.8625 2.8312 2.8262

Table 9: Ablation study (LP) results. CUSP,,,, is the Euclidean variant, CUSP,,,, uses the traditional
Laplacian, CUSP.y, gets rid of curvature encoding, CUSP,,,,; replaces Cusp pooling with concate-
nation, and CUSP y;; uses a single filter instead of a filter bank. Av. A Gain represents the average
gain of CUSP over the ablation model in that column, averaged across the different datasets.
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CUsP Cora Citeseer ~ PubMed Chameleon Actor Squirrel Texas Cornell

H2* x S 93.104022 94.33+035 95.41+025 97.28+045 95.25+044 96.05+051 75.43+031 76.95+038
(H®)? x (S®)2 x E'®  93.00+027 95.11+028 94.52+034 96.66+039 95.34+038 95.40+057 80.95+042 84.80+043
H® x S8 x E32 93.20+024 93.254030 95.65+030 97.11+037 94.92+040 95.51+045 81.23+0.14 85.23+0.05
HI6 x (S16)2 93.50+025 94.12+033 95.32+045 97.66+033 95.20+034 97.17+011 80.30+045 78.02+047
(H16)% x E16 93.25+021 93.05+032 96.01:£0.01 96.80+040 96.04+038 96.15+055 79.50+038 84.60+0.40
H2* x E24 92.70+030 94.71+035 95.45+t042 96.512047 95.00+037 88.95+053 79.70+054 81.20+0.60
S x E24 88.50£039 91.234035 89.99+044 91.124043 79.90x052 91.20+051 79.08+052 83.75+048
H!6 x S16 x E16 95.08+0.13 96.88+0.65 95.55+041 94.444034 95554035 96.25+038 81.07+029 84.60+030
(S8)? x E32 88.05+040 90.35+042 86.30+048 89.34+045 93.33+054 90.25+04s 80.10+043 82.01+055
(H6)3 89.10+044 91.014050 93.93+055 96.19+050 95.25+049 92.30+052 77.77+053 79.44+058

Table 10: Performance comparison of CUSP with different manifold signatures for Link Prediction
(LP). Best performing signatures are in Bold, and cases with a large decline in performance because
of manifold mismatch are in Blue.

Dataset Signature

Cora H'6(—0.21,0.31) x S¥6(+0.49,0.38) x E'5(0,0.31)
Citeseer ~ H'6(—0.78,0.29) x S'6(+0.55,0.39) x E'6(0,0.32)
PubMed ~ HI0(—0.76,0.56) x H6(—0.28,0.41) x E®(0,0.03)
Chameleon H'6(—0.34,0.09) x S'6(+0.71,0.25) x S16(+0.55, 0.34)
( )
( )

Actor H6(—0.77,0.17) x H(-0.39,0.42) x E6(0,0.41)
Squirrel  H¥(—0.17,0.23) x S'6(+0.54,0.38) x S'0(+0.38,0.39)
Texas H8(—0.38,0.31) x S¥(+0.18,0.19) x E32(0,0.50)
Cornell H8(—0.41,0.19) x S¥(+0.09,0.26) x E32(0,0.55)

Table 11: Learning results of CUSP on Link Prediction (LP) task for the best performing product
signature. Format of entries — manifold type ™™ (learnt curvature, learnt manifold weight).

Dataset 1 FAS) 7(2) 7(3) VA 7(5) 7,(6) VA 7(8) FAS 7,(10)

Cora 0.1125  0.2393  0.0520  0.0504 0.0676 ~ 0.0272  0.1531  0.1251  0.0939  0.0095  0.0694
Citeseer 0.2131  0.0150 0.2195 0.0283  0.0922  0.1530 0.0350  0.0320 0.0282  0.1254  0.0582
PubMed 0.0279  0.1793  0.0285 0.0296 0.0563 0.3870 0.0603 0.0324 0.0612 0.0271  0.1104
Chameleon  0.0601  0.1136  0.1694  0.0924  0.1329 0.1605 0.1026  0.0157 0.0475 0.0344  0.0709

Actor 0.1230  0.0321  0.0324  0.1147 0.1287 0.3700 0.0136  0.0389  0.0604 0.0691  0.0172
Squirrel 0.0182 0.0289 0.1056  0.2099 0.0209 0.0355 0.0854 0.2159 0.0475 0.1042 0.1279
Texas 0.0890  0.1983  0.0179  0.4570 0.0035 0.1429 0.0177 0.0087 0.0474 0.0131  0.0046
Cornell 0.0886  0.2026  0.0181 0.4460 0.0034 0.1472  0.0183  0.0089 0.0487 0.0134  0.0048

Table 12: Learned filter weights (Link Prediction) for the top-performing split, distinguishing be-
tween homophilic (favoring low-pass filters) and heterophilic (favoring high-pass filters). First,
second, and third highest filter weights are highlighted.

7.6.4 ESTIMATING PRODUCT MANIFOLD SIGNATURE

In our model, the mixed-curvature product manifold P%¢ is essential for representing the geometric structure
of the data. The curvature configuration needed for each dataset depends on the intrinsic geometry of its graph.
To generalize across various datasets, we aim to determine the optimal signature of the product manifold,
specifically the proportions of hyperbolic, spherical, and Euclidean components. This estimation is based on
analyzing the Ollivier-Ricci curvature (ORC) distribution as a heuristic. See Figures[d]and[5]in Appendix [7.2-1]
for the ORC distribution of multiple datasets. For datasets with many positively curved edges, we select a
Spherical component, and for those with negatively curved edges, we choose a Hyperbolic component. For
example, the curvature distribution of PubMed’s edges in Figure ] shows two significant peaks around —0.45
and +0.25. Given this distribution, we opt for Spherical and Hyperbolic components when evaluating CUSP
on PubMed. Empirically, the best performance for PubMed is achieved with the signature (H'®)? x E'®. We
initialize the curvatures of PubMed’s component manifolds with these prominent values: H with —0.45 and S
with 4-0.25. We select two hyperbolic manifolds to capture different curvature ranges.

An overview of this simple idea is provided in Algorithm[I] By systematically analyzing the curvature distribu-
tion, our heuristic-based algorithm identifies the manifold signature that best represents the dataset’s underly-
ing geometric structure. We heuristically cluster the curvature distribution and identify the centroid curvatures
without altering their order or frequencies. The use of predefined dimensions allows for flexibility based on
experimental settings. Since optimal dimension allocations can vary and are complex to analyze, we manually
set the dimensions of the component manifolds as a hyperparameter. This ensures fair and uniform comparison
across multiple datasets, as different datasets may perform best with different configurations. We do not claim
that this algorithm finds the best possible, optimal combination of component manifolds, rather, it estimates a
potential signature that might be a good fit for a particular dataset.
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Algorithm 1 Product manifold signature estimation and curvature initialisation

Require: + Edge curvature histogram C = {(;, fi) Y12,
» Threshold € to distinguish between curved and flat regions
* Maximum number of Hyperbolic (Hmax) and Spherical (Smax) components.

* Total product manifold dimension dq
pre dpre dpre

* (Optional) Preferred component manifold dimensions d(h), (s)> ey

. . »d
Ensure: Product manifold signature P4M = x qQ:l./\/lZ(q) (@
1: Normalize frequencies: f, = L
> j=1 ! J

2: Construct weighted curvature set: ' = { (i, f{) }ie,

3: Determine optimal number of clusters K using methods like the elbow method, constrained by K <
Hmax + Smax + 1 > There can be only 1 Euclidean component

4: Cluster C' into K clusters using weighted clustering (e.g., weighted K-means)

5: Initialize empty lists H, S, E

6: for each cluster c in clusters do .

7 Compute cluster centroid curvature k. = %

8

I
Compute total frequency weight w, = Z(M’ #ee fi

9: if ke < —cand |H| < Hmax then > Negative curvature
10: Assign manifold component: M, = H"¢ > Curvature initialization
11: Add (Mq,we) to H
12: else if k. > e and |S| < Smax then > Positive curvature
13: Assign manifold component: M, = S"¢ > Curvature initialization
14: Add (Mg, w.) to S
15: else
16: Assign manifold component: My, =E > Approximate zero curvature, i.e. k. € [—¢, €]
17: Add (Mq,we) to €
18: end if
19: end for
20: if Predefined dimensions dE;f), d‘gr;), dl(’ree) are provided then
21: Assign dimensions d(4) to each component g as per predefined values > Dimension assignment
22: else
23: Set total number of components Q = |H| + |S| + |£] > Dimension assignment
24: Allocate dimensions d(4) to each component g: d(g) = |dm X Zgwi‘l’pr > Proportional to weights

e

25: Adjust d4) to ensure ZqQ:1 digy = dm
26: end if
27: Formulate manifold signature:

. )5l
pim — (XL@lH:(h) (h)) % (XISS:I1§:< )2 >> « B4

7.6.5 MORE EXPERIMENTAL SETTINGS

Hyperparameter |  Tuning Configurations | Description

L {5,10,15,20,25} Total number of graph filters.

1) {0.2,0.5,0.7} Neighbourhood weight distribution parameter for ORC
« {0.1,0.3,0.5,0.9} Alpha (initialization) parameter for GPR propagation
d°¢ {8,16, 32,64} Total dimension of curvature embeddings.

aM {32,48, 64,128,256} Total dimension of the product manifold.

dropout {0.2,0.3,0.5} Dropout rate

epochs {50, 100, 300} Number of training epochs

1r {le — 4,4¢ — 3,0.001,0.01} | Learning rate

weight_decay {0,1e — 4,5e — 4} Weight decay

Table 13: Hyperparameter configurations used in the experiments for all baselines. Some of the
hyperparameters are specific to CUSP. We highlight the final configuration of CUSP for NC in Red.
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