
Efficient Learning of Mesh-Based Physical Simulation with
Bi-Stride Multi-Scale Graph Neural Network

Yadi Cao 1 † Menglei Chai 2 † Minchen Li 3 Chenfanfu Jiang 3

Abstract

Learning the physical simulation on large-scale
meshes with flat Graph Neural Networks (GNNs)
and stacking Message Passings (MPs) is challeng-
ing due to the scaling complexity w.r.t. the num-
ber of nodes and over-smoothing. There has been
growing interest in the community to introduce
multi-scale structures to GNNs for physical simu-
lation. However, current state-of-the-art methods
are limited by their reliance on the labor-intensive
drawing of coarser meshes or building coarser
levels based on spatial proximity, which can in-
troduce wrong edges across geometry boundaries.
Inspired by the bipartite graph determination, we
propose a novel pooling strategy, bi-stride to
tackle the aforementioned limitations. Bi-stride
pools nodes on every other frontier of the breadth-
first search (BFS), without the need for the man-
ual drawing of coarser meshes and avoiding the
wrong edges by spatial proximity. Additionally,
it enables a one-MP scheme per level and non-
parametrized pooling and unpooling by interpo-
lations, resembling U-Nets, which significantly
reduces computational costs. Experiments show
that the proposed framework, BSMS-GNN, sig-
nificantly outperforms existing methods in terms
of both accuracy and computational efficiency in
representative physical simulations.

1. Introduction
Simulating physical systems through numerically solving
partial differential equations (PDEs) is a key area in sci-
ence and engineering, with applications ranging from solid
mechanics (Jiang et al., 2016; Li et al., 2020a), to fluid-

1Department of Computer Science, UCLA, Los Angeles, USA
2AR Perception, Google, Los Angeles, USA 3Department of Math-
ematics, UCLA, Los Angeles, USA. Correspondence to: Chen-
fanfu Jiang <cffjiangmath.ucla.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

(Bridson, 2015; Cao & Li, 2018), aerodynamics (Cao et al.,
2022), and heat transfer (Cao et al., 2019). However, tra-
ditional numerical solvers are often computationally ex-
pensive, particularly for time-sensitive applications such as
iterative design optimization, where fast online inference
is desired. In recent years, the machine learning commu-
nity has shown great interest in improving efficiency or
replacing traditional solvers with learned models. These
works include both end-to-end frameworks (Grzeszczuk
et al., 1998; Obiols-Sales et al., 2020) and those utilizing
physics-informed losses (Raissi et al., 2019; Karniadakis
et al., 2021; Sun et al., 2020). Many existing works ap-
ply convolutional neural networks (CNNs) (Fukushima &
Miyake, 1982) to physical systems residing on two- or three-
dimensional structured grids (Guo et al., 2016; Tompson
et al., 2017; Kim et al., 2019; Fotiadis et al., 2020). How-
ever, the strict dependency on regular domain shapes makes
it non-trivial to be applied on unstructured meshes. While
it is possible to deform simple irregular domains into rect-
angular shapes to apply CNNs (Gao et al., 2021; Li et al.,
2022a), the challenge remains for domains with complex
topologies, which are common in practice.

As a result, the use of graph neural networks (GNNs)
in physics-based simulations on unstructured meshes has
gained significant attention in recent years (Battaglia et al.,
2018; Sanchez-Gonzalez et al., 2018; Belbute-Peres et al.,
2020; Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020;
Harsch & Riedelbauch, 2021; Gao et al., 2022). The naive
GNN approach stacks multiple MPs to model information
propagation throughout space. However, as the graph size
increases, this approach faces two major challenges: (1)
Complexity: as both the number of nodes to be processed
and the MP iterations increase linearly, a quadratic com-
plexity becomes inevitable for both the running time and
memory usage of the computational graph (Fortunato et al.,
2022). (2) Oversmoothing: the graph convolution can be
seen as a low-pass filter that suppresses the higher-frequency
signals (Chen et al., 2020; Li et al., 2020c). Then the stacked
MPs iteratively project the information onto the eigenspace
of the graph while all higher-frequency signals are smoothed
out, making the training more difficult.

To address these limitations, researchers have begun intro-

1

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

(a) learnable pooling (b) pooling by rasterization (c) pooling by spatial proximity

Figure 1. Issues of existing multi-level GNNs. (a) A learnable pooling (Gao & Ji, 2019) may lead to loss of connectivity even after
2nd-order enhancement. (b) A pooling by rasterization (Lino et al., 2021; 2022a;b) and (c) by spatial proximity (Liu et al., 2021; Fortunato
et al., 2022) can lead to wrong connections across the boundaries at the coarser level.

ducing multi-scale GNNs (MS-GNNs) for physics-based
simulation (Li et al., 2020c; Liu et al., 2021; Lino et al.,
2021; Fortunato et al., 2022; Lino et al., 2022b;a). The
multi-scale approach mitigates over-smoothing by building
sub-level graphs at coarser resolutions, resulting in longer-
range interactions and fewer MP iterations. The existing ap-
proaches for constructing the multi-scale structure include:
utilizing spatial proximity to generate sub-level graphs at
coarser levels (Lino et al., 2021; Liu et al., 2021; Lino et al.,
2022a); applying Guillard’s coarsening algorithm (Guillard,
1993) (Lino et al., 2022b); manually drawing coarser meshes
for the original geometry (Liu et al., 2021; Fortunato et al.,
2022); or randomly pooling nodes and applying factoriza-
tion to the adjacency matrix (Li et al., 2020c). However,
these solutions all have their limitations. For example, learn-
able or random pooling can introduce artificial partitions
in the sub-level graphs (Fig. 1. (a)), even with adjacency
enhancement, which impedes information exchange across
partitions, spatial proximity can lead to wrong edges across
the boundaries at coarser levels (Fig. 1. (b) and (c)); Guil-
lard’s algorithm only applies to 2D triangle meshes; and
manually drawing tens of thousands of meshes is too labor-
intensive. We observe that all these limitations originate
from the unmatured operations: pooling and building graph
connections at coarser levels. We desire to design opera-
tions that: 1) conserve the correct connections at coarser
levels, 2) do not introduce edges that blur the boundaries, 3)
are general for any mesh type, and 4) are automatic.

We tackle these challenges with two progressive contribu-
tions:

• First, we introduce a novel yet simple pooling strategy,
bi-stride. Bi-stride is inspired by the bi-partition deter-

mination in DAG (directed acyclic graph). It pools all
nodes on every other BFS (breadth-first-search) fron-
tier, such that a 2nd-powered adjacency enhancement
(A ← A2, where A is the adjacency matrix of the
graph) conserves all the correct connectivity. Bi-stride
solely uses the input mesh without the need for spatial
proximity, is general for any mesh type, and is fully
automatic.

• Second, bi-stride pooling conserves direct connections
between pooled/un-pooled nodes; Utilizing this advan-
tage, one MP suffices to exchange the information be-
tween pooled and unpooled nodes before moving into
the adjacent level; We also design a non-parameterized
aggregating and returning method, resembling the in-
terpolation in U-Net, to handle the transition between
adjacent levels. These simplifications significantly re-
duce the computational requirements compared to SO-
TAs.

Together, these two contributions give birth to our Bi-Stride
Multi-Scale GNN (BSMS-GNN), a novel framework rep-
resenting a significant advancement in the field of learned
mesh-based simulations, particularly for the deployment in
real industrial applications where meshes are often complex
in geometry and large in size.

2. Multi-Scale Building as Preprocessing
We first introduce the bi-stride pooling strategy, multi-scale
building, and the corresponding data preprocessing. Note
that all algorithms and preprocessing steps in this section
are deterministic and done in one pass.

2

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

(a) CYLINDERFLOW (b) AIRFOIL (c) DEFORMINGPLATE (d) INFLATINGFONT

Figure 2. Example multi-level graphs produced by bi-stride pooling. Our datasets contain both Eulerian and Lagrangian systems.
Many meshes are highly irregular and contain massive self-contact, challenging to build coarser-level connections by spatial proximity.
Our bi-stride strategy only relies on topological information and is proven to be robust and reliable on arbitrary geometry.

2.1. Motivations

As summarized in Fig. 1. The pooling strategy can be
categorized into two groups by either utilizing spatial prox-
imity (Lino et al., 2021; 2022a) or purely relying on graph
information (Gao & Ji, 2019; Li et al., 2020c). For complex
geometry, it’s preferred to avoid spatial proximity unless
desired by the simulation cases (such as contact or interface
interactions). The only benchmark that uses only graph
information is GRAPHUNETS (Gao & Ji, 2019) with an
obvious drawback: it’s easy to lose the connectivity and
artificially introduce partitions, even with adjacent matrix
enhancement (Fig. 1 (a)).

For a more clear illustration, we first define the adjacency
enhancement by the K th-order matrix power as A← AK ,
where A is the adjacency matrix of the graph. Geomet-
rically, A(i, j) = 1 means the edge (i, j) exists, and
AK(i, j) = 1 means that node j is connected to node i
via at most K hops. Given a pooling strategy P and the
pooled nodes’ indices I, we define a Kth-order outlier set
as OK , where the nodes in OK are not connected to any
pooled nodes even after K th-order adjacency enhancement:
AK(i, j) = 0, ∀i ∈ I,∀j ∈ OK .

We finally define that a pooling strategy P is K th-order con-
nection conservative (K-CC) if OK is empty. Empirically,
the larger K in K th-order adjacency enhancement is harmful
to distinguish the node features: as K increases, AK(i, j)
(converted to boolean) approaches a matrix with all its en-
tries equal to 1, representing a fully connected graph; then a
single convolution will average all node features and make
them indistinguishable. The most preferred, i.e. the smallest
possible K we seek is naturally 2. With such reason, Gao &
Ji (2019) uses the smallest 2nd order enhancement to help

1 4

2 3

5

6

1 4 2 3 5 6

1

3

3

3
4

4

2

2

2
2

2

(a) Bi-partition of a DAG (b) Bi-stride of a mesh

Figure 3. The similarity between Bi-partition and Bi-stride. The
number in the circle means the depth of the frontiers of either
topological sorting or BFS. The red-bounded circle (number 1)
means the starting node, i.e. the seed.

conserve the connectivity. Nonetheless, there is no theoreti-
cal guarantee that a learnable pooling module is consistently
2-CC for any graph. These limitations motivate us to create
a consistent 2-CC pooling strategy, as followed in Sec. 2.2.

2.2. Bi-Stride Pooling and Adjacency Enhancement

We draw the initial inspiration from the bi-partition determi-
nation algorithm (Asratian et al., 1998) in a directed acyclic
graph (DAG). As shown in Fig. 3(a), after topological sort-
ing, pooling on every other depth (yellow and green) gen-
erates a bi-partition where all edges reside between two
partitions, and pooling either partition is obviously 2-CC.
To resemble bi-partition determination on a mesh, which is
not bi-partite due to cycles, we can conduct a breadth-first
search (BFS) to compute the geodesic distances from a seed
to all other nodes, and then stride and pool all nodes at ev-
ery other BFS frontier (bi-stride). A bi-stride example is
shown in Fig. 3(b), where the number in each vertex repre-
sents the geodesic distance to the seed (node 1 in the red
circle) by BFS. This pooling is 2-CC by construction and
conserves direct connections between pooled and unpooled

3

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

nodes. As a result, we avoid building edges by using spatial
proximity or handling cumbersome corner cases such as
cross-boundary connections while also using the smallest
adjacency enhancement.

Seeding Heuristics We claim that there should exist some
freedom as long as the seeding is balanced to a certain
degree. For training datasets, we choose two deterministic
seeding heuristics: 1) closest to the center of a cluster (Close-
Center) for INFLATINGFONT, and 2) the minimum average
distance (MinAve) for all other cases, and we preprocess
the multi-level building in one pass. One can consider the
cheaper heuristic CloseCenter during the online inferring
phase if an unseen geometry is encountered. The details
of the algorithms can be found in Sec.A.7. The sensitivity
study on choosing a different seeding heuristic in the test
phase is presented in Sec.A.4.2.

Contact Edges For problems involving contacts, such
as DEFORMINGPLATE (Fig. 2(c)) and INFLATING-
FONT (Fig. 2(d)), the finest-level contact edges AC are
built dynamically by spatial proximity between nodes. Note
the edge-building by the spatial proximity does not apply to
the internal elastic mechanics, whose edge is defined by the
mesh only. The enhancement of the contact edges should be
handled properly for multi-scale GNN, which, to the best
of our knowledge, has not been addressed in prior works.
At any level l, given adjacent matrices Al obtained by the
input mesh and the enhancement rule, and the contact edge
AC

l at this level, we first apply bi-stride pooling to select
nodes I, then enhance Al+1 and AC

l+1 using the following
rule, where [I, I] means striding on the matrix rows and
columns:

A′
l+1 ← AlAl, Al+1 ← A′

l+1[I, I],
A′C

l+1 ← AlA
C
l Al, AC

l+1 ← A′C
l+1[I, I].

(1)

The enhancement of contact edges can be geometrically in-
terpreted as contact edge (i, j) should exist if j is reachable
from i in 2 hops and at least one of them is a contact edge at
the finer level. We prove in Sec. A.6 that bi-stride pooling
with the enhancement in Eq. 1 also conserves all contact
edges.

3. Bi-Stride Multi-Scale (BSMS)-GNN
Here we formally introduce BSMS-GNN, a hierarchical
GNN where the multi-level structure has been determined
by the input mesh and the preprocessing in Sec. 2.

3.1. Definitions

Figure. 4 presents the overall structure of BSMS-GNN.
We consider the evolution of a physics-based system dis-
cretized on a mesh, which is converted to an bi-directed

graph G1 = (V1, E1). Here, with subscript 1, V1, and E1
label the nodal fields and the edges at the finest level (the
input mesh), respectively. Specifically for edges, we de-
fine E1 = {E11 , · · · , ES1 }, where E11 is the edge set directly
copied from the input mesh and {Ek1 |Sk=2} are the optional
problem-dependent edge sets. For example, both DEFORM-
INGPLATE (Fig. 2(c)) and INFLATINGFONT (Fig. 2(d))
benchmarks have a contact edge set E21 for the colliding
vertices. We use {p, q}, stacked vectors of {pi, qi} of all
nodes i ∈ V1, to denote the input and output nodal fields,
respectively. Given an input field pj at a time tj , one
pass of BSMS-GNN returns the output field qj+1 at time
tj+1 = tj + ∆t, where ∆t is a fixed time step size. The
output q can contain more physical fields than the input p
and must be able to derive the input for the next pass. The
rollout refers to iteratively conducting BSMS-GNN from
the initial state p0 → q1 → p1 → · · · → qn and producing
the temporal sequence output {q1, q2, · · · , qn} within the
time range of (t0, t0 + n∆t], where n is the total number of
evaluations.

Message Passing In general, we follow the encode-
process-decode fashion in MESHGRAPHNETS, where en-
coder and decoder only appear at the top level G1, mapping
the nodal input p and output q to/from the latent feature
v, respectively (see Table A.1 for the domain-specific in-
formation). As for the processor, unlike (Fortunato et al.,
2022), we observe that a single MP per level is sufficient
for all experiments. We do not separately encode the edge
offsets ∆xij = xi −xj , instead, simply prepend this to the
stacked sender/receiver latent as the input to calculate edge
flow. For a problem involving S edge sets, an MP pass at
level l is formulated as:

esl,ij ← fsl
(
∆xl,ij ,vl,i,vl,j

)
, s = 1, · · · , S,

v′
l,i ← vl,i + fVl

(
vl,i,

∑
j

e1l,ij , · · · ,
∑
j

eSl,ij

)
, (2)

where f is a MLP function, e is the latent information flow
through an edge, and v is the latent node feature. Please
refer to Sec. A.2 for the detailed architecture of the model.

3.2. Transition Between Levels

We handle information transition between two adjacent lev-
els with non-parametrized downsampling and upsampling
modules to reduce the overhead of the learnable transition
modules between every pair of adjacent levels. Here we
define downsampling as the sequence of pooling nodes and
then aggregating the information from the neighbors to the
coarser level, and upsampling as the sequence of unpooling
and then returning the information of the pooled nodes to
their neighbors at the finer level.

4

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

update

1xMP

1xMP

downsample

downsample upsample

upsample

1xMP

1xMP

1xMP

encoding decoding

Figure 4. BSMS-GNN pipeline is trained with one-step supervision. G1,G2, · · · ,Gd are graphs at different levels (fine to coarse).
Encoder/decoder only connects the input/output fields with the latent fields at G1. Latent nodal fields are updated by one MP at each level.
The bi-stride pooling selects the pooled nodes for the adjacent coarser level, and the transition is conducted in a non-parameterized way.

Figure 5. Schematic plot of transition between adjacent levels.

Downsampling Let A be the unweighted, boolean adja-
cency matrix. We initiate a nodal weight field w, which is
one on the finest level and will be aggregated during down-
sampling. With the receiver j and its sender i, the formal
procedure of downsampling is formulated as (Fig. 5):

• Normalize by row as in a standard graph convolution
Âij ← Aij/

∑
j Aij , and then convolve the weight

once ŵij ← wiÂij (Fig. 5(a));
• Calculate edge weights Cij ← ŵij/

∑
i ŵij , where C

can be viewed as a contribution table with Cij as the
share of weights in receiver j contributed by sender i
(Fig. 5(b));

• Convolve the latent information by contribution table
vj ←

∑
i viCij , which is equivalent to equally split-

ting and sending the weighted information out from
senders, and then conducting the weighted average on
receivers (Fig. 5(c)).

Upsampling After unpooling, all nodes except pooled
ones have zero information. A returning process, resembling
transposed convolution in U-Net, can help distinguish the
information between receivers. With the contribution table
C recording edge weights, a natural choice is vi ← vjC

T
ij

(Fig. 5(d)).

4. Experiments
4.1. Experiment Setup

Datasets We adopt three representative public datasets
from GraphMeshNets (Pfaff et al., 2020): 1) CYLINDER-
FLOW: incompressible fluid around a cylinder; 2) AIRFOIL:
compressible flow around an airfoil; and 3) DEFORMING-
PLATE: deforming an elastic plate with an actuator. In addi-
tion, we create a new dataset, INFLATINGFONT, featuring
the inflation of enclosed elastic surfaces (Fang et al., 2021).
The example plots of them are plotted in Fig. 2. Compared
to existing datasets, INFLATINGFONT has more complex
geometric shapes, 2 to 8 times the number of nodes, and 70
times the number of contact edges. Hence it is very suit-
able for testing the capability of competing GNNs in terms
of scalability and compatibility with complex geometries.
More details are included in Sec. A.1.

5

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Baselines On all datasets, we compare the computa-
tional complexity, training/inference time, and memory
footprint of BSMS-GNN to baselines: 1) MESHGRAPH-
NETS (Pfaff et al., 2020): the single-level GNN architecture
of GraphMeshNets; 2) MS-GNN-GRID (Lino et al., 2021;
2022a;b): a representative work for those building the hier-
archy with spatial proximity; and 3) GRAPHUNETS (Gao
& Ji, 2019): a representative work for those using learnable
modules for pooling. The reimplementation details can be
found in Sec. A.2. We note again that methods such as (Liu
et al., 2021; Fortunato et al., 2022) are not practical because
they require manually drawing coarser meshes for every tra-
jectory instance with CAE software. For all cases combined,
this means manually drawing about 20, 000 meshes.

Implementation We implement our framework with Py-
Torch (Paszke et al., 2019) and PyG (PyTorch Geomet-
ric) (Fey & Lenssen, 2019). We train the entire model by
supervising the single-step L2 loss between the ground truth
and the nodal field output of the decoding module. More
details, such as the network structures and hyperparameters
are included in A.2. Our datasets and code are publicly
available at https://github.com/Eydcao/BSMS-GNN.

MISCs The ablation study is conducted for the specific
choice of our transition method in Sec. A.4. The ablation
study concerning whether or not to use learnable pooling
modules is not standalone listed but covered by compar-
ing to GRAPHUNETS in full-scale experiments (details in
Sec. 4.2).

4.2. Results and Discussions

By evaluating BSMS-GNN and other competitors on all the
baselines (Sec. 4.1), we observe the following conclusions:

• We experimentally show the learnable pooling method
is not applicable for the deployment of large-scale,
complex geometries;

• We design a small-scale experiment where pooling by
spatial proximity leads to wrong edge and inference;

• BSMS-GNN shows dominant advantages in signifi-
cantly less memory footprint, training time to reach the
desired accuracy, and the inference time;

• BSMS-GNN also reaches the highest accuracy, reduc-
ing the rollout RMSE approximately by half on IN-
FLATINGFONT with the largest mesh size and the most
complex geometries; we also zero-shoot the trained
model on a teaser with approximately 7x more nodes
with the same level of accuracy.

For conciseness, we plot the detailed results in Table. 1 and
Table. 2 in Sec. A.3.

High error

Low error

Figure 6. BSMS-GNN Comparison between pooling methods.
Unlike bi-stride pooling, which generalizes to any input graph, a
learnable module leads to unfair pooling on unseen geometries,
impeding the information exchange for unselected nodes. The
inferred results show larger errors than bi-stride pooling.

Disadvantages of Learnable Pooling Compared to other
competitors, GRAPHUNETS shows a significantly higher
RMSE in both 1-step and global rollouts on all datasets,
except for the AIRFOIL dataset, where the mesh is consis-
tent across trajectories. To confirm varying mesh leads to
poor inference with learnable pooling, we apply the trained
GRAPHUNETS model to an unseen test trajectory of the
DEFORMINGPLATE dataset. Fig 6 clearly reveals the un-
fair pooling distribution by the learnable module, which
impedes information passing on coarser levels and results in
poor inference. In comparison, bi-stride generates uniform
pooling and accurate inference.

Additionally, GRAPHUNETS has to conduct the adjacency
matrix multiplication in the forward pass, which results in
a 2-40x increase in the training and inference times, partic-
ularly in larger datasets. In the largest INFLATINGFONT,
one training epoch requires nearly 50 hours to complete,
making the convergence of the model infeasible. Given
its poor performance in both accuracy and efficiency, we
conclude that GRAPHUNETS is not suitable for simulation
cases with large-scale, complex geometries. By default, we
will not specifically make comparisons to GRAPHUNETS in
the following discussions.

Failure Cases for Spatial Proximity To illustrate the ad-
versarial impact of wrongly constructed edges by spatial
proximity, we design a simple 1-D steady-state heat trans-
fer simulation on sticks (Figure 7 left), on which BSMS-
GNN and MS-GNN-GRID are trained and evaluated. The
training set consists of two mirrored instances, where one
end of the stick is fixed at a certain temperature and the other
end has a fixed heat flux, resulting in a linear temperature
distribution. In the test set, we simply align two sticks in a
head-to-tail configuration with a tiny space between them
to prevent heat diffusion across the boundary. MS-GNN-
GRID, utilizing spatial proximity, incorrectly constructs an
edge between the two sticks. As a result, in half of the test
cases, MS-GNN-GRID shows wrong results at the bound-
ary due to the erroneous edge(Figure 7 right, leading two

6

https://github.com/Eydcao/BSMS-GNN

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Figure 7. Failure cases for MS-GNN-GRID. Left: the configuration of the simplest failure case for multi-level GNNs by spatial
proximity: steady-state 1-D heat transfer. Right, leading two columns: two tests showing that even if trained to convergence, the erroneous
edge across the boundary can still result in the wrong inference. Right, last two columns: the erroneous edge coincidentally does not
affect the results due to the symmetry of the solution, and no heat will diffuse between two nodes with the same temperature.

(a) training time
 per epoch [hr]

(b) inference time per step [ms]
 vs. # nodes

(c) memory footprint [GB] vs. batch size

Figure 8. Performance comparison between BSMS-GNN, MS-
GNN-GRID, and MESHGRAPHNETS. GRAPHUNETS is not
included because of poor performance. Full results are plotted in
Table. 1 and Table. 2 in Sec. A.3.

columns). Although only in simple cases, one can alleviate
this issue by marking the two sticks as separate clusters and
making inferences independently; a similar fix is unfeasible
for connected, complex geometries. For instance, in a long,
thin U-shaped tunnel, two nodes located on the parallel sides
of the “U” are spatially close but geodesically distant, and
hence should not be connected by an edge.

Accuracy and Generalization In terms of accuracy, our
method has the smallest rollout RMSE for all cases except
for the DEFORMINGPLATE dataset, where all three com-
petitors have similar results. We assume the main reason
is that the mesh size for DEFORMINGPLATE is too small,
so the flat architecture does not show any disadvantage. In
the largest and most complex dataset, INFLATINGFONT, our
method achieves the highest accuracy, cutting down 40%
of the rollout RMSE compared to the competitors (Fig. 9.
Left.). Additionally, our model demonstrates the ability to
perform zero-shot inference on larger meshes than those in
the training set, and still produce accurate global rollouts,
even when the characters are written in a different language.

Performance Advantages of BSMS-GNN Our method
has a simplified and lightweight model architecture, char-
acterized by a reduced number of MPs at each level and
the absence of learnable transition modules. This results
in a significant reduction in memory footprint during train-
ing (in Fig.8. (c) and Table.2); BSMS-GNN consumes
43% ∼ 87% memory in training as MS-GNN-GRID,
48% ∼ 53% as MESHGRAPHNETS, and only 10% as GRA-
PHUNETS. our method also uses the least memory during
inference, except for the DEFORMINGPLATE dataset where
the consumption is slightly higher (20MBs) than MESH-
GRAPHNETS.

Memory reduction also contributes to improved training
efficiency, as it allows for larger batch sizes, more random
sampling, and fewer times of data swapping between CPU
and GPU. Combined, our method has the fastest unit train-
ing speed (per epoch) among all competitors (Fig.8. (a) and
Table.1), where it consumes only 26% ∼ 58% unit training
time as that of MS-GNN-GRID and MESHGRAPHNETS.

In terms of inference time, our method exhibits similar per-
formance to MS-GNN-GRID on smaller mesh size datasets
(CYLINDERFLOW and DEFORMINGPLATE), both outper-
forming MESHGRAPHNETS. However, as the mesh size
increases, BSMS-GNN surpasses MS-GNN-GRID, show-
ing better scalability. In large mesh size cases (AIRFOIL and
INFLATINGFONT), our method shows a 1.5× and 1.9× im-
provement over MS-GNN-GRID and MESHGRAPHNETS,
respectively (Fig.8. (b) and Table.1).

Concerning the total training cost to reach a desired global
rollout RMSE, we observe that all methods reach the target
with a similar number of epochs. This is because that all
these methods learn to resist rollout noise by seeing differ-
ent, random noises at each epoch; enough noise patterns
(proportional to epoch number) is the key for accurate roll-
out; as such, the total wall time is roughly proportional to
the unit training time, given similar epoch numbers, making
our method the most efficient.

Scaling Analysis By training and evaluating compet-
ing methods on INFLATINGFONT with varying resolutions
(5K,15K,30K, and 45K), we observe that both BSMS-
GNN and MS-GNN-GRID scale up with a near-linear

7

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Low error High error

Figure 9. Left: Comparing the rollout RMSE between BSMS-GNN and existing SOTAs on benchmarks INFLATINGFONT. Our
framework reaches the highest accuracy, showing a stronger capability for complex, large geometries with massive contacts. Right: Our
trained model can zero-shot infer on never-seen fonts, with about 7x size in mesh size with the same accuracy.

Figure 10. Scaling analysis. With the growing size of INFLATING-
FONT, BSMS-GNN shows a progressive advantage over MESH-
GRAPHNETS and MS-GNN-GRID.

growing rate; still, our method is more efficient than MS-
GNN-GRID as illustrated earlier(Fig. 10). We leave the
details of scaling analysis in A.5.

5. Related Works
GNNs for Physics-Based Simulation The application of
GNNs to physics-based simulation has first been applied
to deformable solids and fluids (both represented by parti-
cles) (Sanchez-Gonzalez et al., 2018). A notable milestone
in this field is MESHGRAPHNETS (Pfaff et al., 2020), which
enables the general scheme for learning mesh-based sim-
ulations. Subsequently, several variants of MESHGRAPH-
NETS have been proposed: such as combining GNNs with
Physics-Informed Neural Networks (PINNs) (Gao et al.,
2022), making long-term predictions by combining the
GraphAutoEncoder (GAE) and Transformer (Han et al.,
2022), directly predicting the steady-states through the
multi-layer readouts (Harsch & Riedelbauch, 2021), and
accelerating the finer-level simulation by feeding the up-
sampled coarser results inferred by GNN (Belbute-Peres
et al., 2020).

Multi-Scale GNNs Multi-scale GNNs (MS-GNNs) have
been widely used in general graph-related tasks other than
physics (Wu et al., 2020; Mesquita et al., 2020; Zhang et al.,
2019). The GraphUNet(Gao & Ji, 2019) introduces the
UNet structure into GNNs with a trainable scoring module
for pooling, and a 2nd-powered adjacency enhancement to
help conserve the connectivity. Several works have investi-
gated the use of MS-GNNs for physics-based simulations,
including the two- and multi-level GNNs(Fortunato et al.,

2022; Liu et al., 2021), which rely on manually drawing
coarse meshes. Works such as MS-GNN-GRID (Lino et al.,
2021; 2022a) rely on spatial proximity to generate multi-
level structures. Li et al. (2020c) adopts multi-level matrix
factorization to generate the kernels at coarser levels. Lino
et al. (2022b) utilizes Guillard’s coarsening algorithm to
build the coarse-level meshes, but only for 2-D triangle el-
ements. Additionally, there are representative works that
abandon the original mesh and build connections and hier-
archies on point clouds, such as GNS (Sanchez-Gonzalez
et al., 2020), PointNet (Qi et al., 2017a), PointNet++(Qi
et al., 2017b), and GeodesicConv(Masci et al., 2015).

6. Conclusion, Limitations, and Future Work
The Bi-Stride Multi-Scale Graph Neural Network (BSMS-
GNN) utilizes a novel pooling strategy that allows for the
creation of an arbitrary-depth, multi-level graph neural net-
work using the original mesh as the sole input. This ap-
proach eliminates the need for manually drawing coarser
meshes and reduces the potential for wrong edges intro-
duced by spatial proximity. Additionally, Bi-stride pooling
enables a one-MP scheme and a non-parametric transition,
resulting in a significant reduction in computational costs.
Overall, BSMS-GNN improves the capability and generality
of applying GNNs to large-scale physical simulations with
complex geometries.

Further research following our path may include handling
huge graphs through the combination of multi-level GNNs
with batched and distributed training (Strönisch et al., 2023).
Combining the neural operators (Li et al., 2020b;c), i.e. the
ability to handle a wide range of PDE parameters, is also
appealing. It would be interesting to combine BSMS-GNNs
with Transformer (Han et al., 2022; Geneva & Zabaras,
2022; Li et al., 2022b) for stable roll-outs. Regarding
more precise contact modeling, the point-point approach
can be improved by face pairs (Allen et al., 2023). Fi-
nally, it is worth investigating strategies to score and prunes
edges (Ding et al., 2006; Yu et al., 2014) at coarser levels.

8

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

ACKNOWLEDGMENTS

Yadi Cao would like to thank Na Li for her remote sup-
port and companionship throughout his research and study.
We thank Neil Shah, Tong Zhao, and Sergey Tulyakov for
their invaluable discussions on general GNNs. Yadi Cao
would like to acknowledge Dr. Shaowu Pan for the initial
inspiration of this work. We extend our appreciation to
our reviewers for their valuable feedback on this work and
manuscript. This work has been supported in part by NSF
CAREER 2153851, CCF-2153863, ECCS-2023780.

References
Allen, K. R., Rubanova, Y., Lopez-Guevara, T., Whitney,

W. F., Sanchez-Gonzalez, A., Battaglia, P., and Pfaff,
T. Learning rigid dynamics with face interaction graph
networks. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.
net/forum?id=J7Uh781A05p.

Asratian, A. S., Denley, T. M., and Häggkvist, R. Bipartite
graphs and their applications, volume 131. Cambridge
university press, 1998.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Belbute-Peres, F. D. A., Economon, T., and Kolter, Z. Com-
bining differentiable pde solvers and graph neural net-
works for fluid flow prediction. In international confer-
ence on machine learning, pp. 2402–2411. PMLR, 2020.

Bridson, R. Fluid simulation for computer graphics. AK
Peters/CRC Press, 2015.

Cao, Y. and Li, R. A liquid plug moving in an annular
pipe—flow analysis. Physics of Fluids, 30(9):093605,
2018.

Cao, Y., Gao, X., and Li, R. A liquid plug moving in an
annular pipe–heat transfer analysis. International Journal
of Heat and Mass Transfer, 139:1065–1076, 2019.

Cao, Y., Chen, Y., Li, M., Yang, Y., Zhang, X., Aan-
janeya, M., and Jiang, C. An efficient b-spline la-
grangian/eulerian method for compressible flow, shock
waves, and fracturing solids. ACM Transactions on
Graphics (TOG), 41(5):1–13, 2022.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 3438–3445, 2020.

Ding, C., He, X., Xiong, H., Peng, H., and Holbrook,
S. R. Transitive closure and metric inequality of weighted
graphs: detecting protein interaction modules using
cliques. International journal of data mining and bioin-
formatics, 1(2):162–177, 2006.

Fang, Y., Li, M., Jiang, C., and Kaufman, D. M. Guaranteed
globally injective 3d deformation processing. ACM Trans.
Graph., 40(4):75–1, 2021.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Fortunato, M., Pfaff, T., Wirnsberger, P., Pritzel, A., and
Battaglia, P. Multiscale meshgraphnets. In ICML 2022
2nd AI for Science Workshop, 2022.

Fotiadis, S., Pignatelli, E., Valencia, M. L., Cantwell, C.,
Storkey, A., and Bharath, A. A. Comparing recurrent
and convolutional neural networks for predicting wave
propagation. arXiv preprint arXiv:2002.08981, 2020.

Fukushima, K. and Miyake, S. Neocognitron: A self-
organizing neural network model for a mechanism of
visual pattern recognition. In Competition and coopera-
tion in neural nets, pp. 267–285. Springer, 1982.

Gao, H. and Ji, S. Graph u-nets. In international conference
on machine learning, pp. 2083–2092. PMLR, 2019.

Gao, H., Sun, L., and Wang, J.-X. Phygeonet: Physics-
informed geometry-adaptive convolutional neural net-
works for solving parameterized steady-state pdes on
irregular domain. Journal of Computational Physics, 428:
110079, 2021.

Gao, H., Zahr, M. J., and Wang, J.-X. Physics-informed
graph neural galerkin networks: A unified framework
for solving pde-governed forward and inverse problems.
Computer Methods in Applied Mechanics and Engineer-
ing, 390:114502, 2022.

Geneva, N. and Zabaras, N. Transformers for modeling
physical systems. Neural Networks, 146:272–289, 2022.

Grzeszczuk, R., Terzopoulos, D., and Hinton, G. Neuroan-
imator: Fast neural network emulation and control of
physics-based models. In Proceedings of the 25th an-
nual conference on Computer graphics and interactive
techniques, pp. 9–20, 1998.

Guillard, H. Node-nested multi-grid method with Delaunay
coarsening. PhD thesis, INRIA, 1993.

Guo, X., Li, W., and Iorio, F. Convolutional neural networks
for steady flow approximation. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

9

https://openreview.net/forum?id=J7Uh781A05p
https://openreview.net/forum?id=J7Uh781A05p

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Han, X., Gao, H., Pffaf, T., Wang, J.-X., and Liu, L.-P.
Predicting physics in mesh-reduced space with temporal
attention. arXiv preprint arXiv:2201.09113, 2022.

Harsch, L. and Riedelbauch, S. Direct prediction of steady-
state flow fields in meshed domain with graph networks.
arXiv preprint arXiv:2105.02575, 2021.

Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., and Selle,
A. The material point method for simulating continuum
materials. In ACM SIGGRAPH 2016 Courses, pp. 1–52.
2016.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M.,
and Solenthaler, B. Deep fluids: A generative network
for parameterized fluid simulations. In Computer graph-
ics forum, volume 38, pp. 59–70. Wiley Online Library,
2019.

Li, M., Ferguson, Z., Schneider, T., Langlois, T. R., Zorin,
D., Panozzo, D., Jiang, C., and Kaufman, D. M. Incre-
mental potential contact: intersection-and inversion-free,
large-deformation dynamics. ACM Trans. Graph., 39(4):
49, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart,
A., Bhattacharya, K., and Anandkumar, A. Multipole
graph neural operator for parametric partial differential
equations. Advances in Neural Information Processing
Systems, 33:6755–6766, 2020c.

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A. Fourier
neural operator with learned deformations for pdes on
general geometries. arXiv preprint arXiv:2207.05209,
2022a.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. arXiv
preprint arXiv:2205.13671, 2022b.

Lino, M., Cantwell, C., Bharath, A. A., and Fotiadis, S.
Simulating continuum mechanics with multi-scale graph
neural networks. arXiv preprint arXiv:2106.04900, 2021.

Lino, M., Fotiadis, S., Bharath, A. A., and Cantwell, C.
Towards fast simulation of environmental fluid mechanics
with multi-scale graph neural networks. arXiv preprint
arXiv:2205.02637, 2022a.

Lino, M., Fotiadis, S., Bharath, A. A., and Cantwell, C. D.
Multi-scale rotation-equivariant graph neural networks
for unsteady eulerian fluid dynamics. Physics of Fluids,
34(8):087110, 2022b.

Liu, W., Yagoubi, M., and Schoenauer, M. Multi-resolution
graph neural networks for pde approximation. In Inter-
national Conference on Artificial Neural Networks, pp.
151–163. Springer, 2021.

Masci, J., Boscaini, D., Bronstein, M., and Vandergheynst,
P. Geodesic convolutional neural networks on riemannian
manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pp. 37–45,
2015.

Mesquita, D., Souza, A., and Kaski, S. Rethinking pooling
in graph neural networks. Advances in Neural Informa-
tion Processing Systems, 33:2220–2231, 2020.

Obiols-Sales, O., Vishnu, A., Malaya, N., and Chan-
dramowliswharan, A. Cfdnet: A deep learning-based
accelerator for fluid simulations. In Proceedings of the
34th ACM international conference on supercomputing,
pp. 1–12, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. arXiv preprint arXiv:2010.03409, 2020.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017a.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++:
Deep hierarchical feature learning on point sets in a met-
ric space. Advances in neural information processing
systems, 30, 2017b.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T.,
Merel, J., Riedmiller, M., Hadsell, R., and Battaglia, P.

10

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Graph networks as learnable physics engines for infer-
ence and control. In International Conference on Machine
Learning, pp. 4470–4479. PMLR, 2018.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In International Con-
ference on Machine Learning, pp. 8459–8468. PMLR,
2020.

Strönisch, S., Sander, M., Meyer, M., and Knüpfer, A. Multi-
gpu approach for training of graph ml models on large
cfd meshes. In AIAA SCITECH 2023 Forum, pp. 1203,
2023.

Sun, L., Gao, H., Pan, S., and Wang, J.-X. Surrogate mod-
eling for fluid flows based on physics-constrained deep
learning without simulation data. Computer Methods in
Applied Mechanics and Engineering, 361:112732, 2020.

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin,
K. Accelerating eulerian fluid simulation with convolu-
tional networks. In International Conference on Machine
Learning, pp. 3424–3433. PMLR, 2017.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020.

Yu, Z., Xu, C., Meng, D., Hui, Z., Xiao, F., Liu, W., and Liu,
J. Transitive distance clustering with k-means duality. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 987–994, 2014.

Zhang, Z., Bu, J., Ester, M., Zhang, J., Yao, C., Yu, Z.,
and Wang, C. Hierarchical graph pooling with structure
learning. arXiv preprint arXiv:1911.05954, 2019.

11

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

A. Appendix
A.1. Dataset details

We adopt three existing test cases: Cylinder (Flow), Airfoil, and (Deforming) Plate from MESHGRAPHNETS. The Cylinder
includes the transient incompressible flow field around a fixed cylinder at varying locations. The Airfoil includes the
transient compressible flow field at varying Mach numbers around the airfoil with varying angles of attack (AOA). The Plate
includes hyperelastic plates squeezed by moving obstacles. In addition to these three cases, our Font(INFLATINGFONT) case
involves the quasi-static inflation of enclosed elastic surfaces (3D surface mesh) possibly with self-contact. We create the
INFLATINGFONT cases using the open-source simulator (Fang et al., 2021), with the same material properties and inflation
speed. The input geometries for INFLATINGFONT are 1, 400 2× 2-character matrices in Chinese. All the datasets are split
into 1000 training, 200 validation, and 200 testing instances. In the following table, the second entries with superscript∗ in
the average edge number column are for the contact edges:

Case Ave # nodes Ave # edges Mesh type Seed method # Levels # Steps
Cylinder 1886 5424 triangle, 2D MinAve 7 600
Airfoil 5233 15449 triangle, 2D MinAve 9 600
Plate 1271 4611, 94∗ tetrahedron, 3D MinAve 6 400
Font 13177 39481, 6716∗ triangle, 3D CloseCenter 6 100

Below we list the model configurations: 1) the offset inputs to prepend before the material edge processor eMij , and eWij ,
and 2) nodes pi, as well as the nodal outputs qi from the decoder for each experiment cases, where X and x stand for
the material-space and world-space positions, v is the velocity, ρ is the density, P is the absolute pressure, and the dot
ȧ = at+1 − at stands for temporal change for a variable a. All the variables involved are normalized to zero-mean and unit
variance via pre-processing.

Case Type Offset inputs eMij Offset inputs eWij Inputs pi Outputs qi
Cylinder Eulerian Xij , |Xij | NA vi, ni v̇i

Airfoil Eulerian Xij , |Xij | NA ρi,vi, ni v̇i, ρ̇i, Pi

Plate Lagrangian Xij , |Xij |,xij , |xij | xij , |xij | ẋi, ni ẋi

Font Lagrangian Xij , |Xij |,xij , |xij | xij , |xij | ni ẋi

As for time integration, Cylinder, Airfoil, and Plate inherited the first-order integration from MESHGRAPHNETS. For
INFLATINGFONT, the first-order quasi-static integration (Fang et al., 2021) is used in the solver. Hence, we also adopt the
first-order integration for INFLATINGFONT.

A.2. Additional Model details

A.2.1. BASIC MODULES AND ARCHITECTURES

The MLPs for the nodal encoder, the processor, and the nodal decoder are ReLU-activated two-hidden-layer MLPs with the
hidden-layer and output size at 128, except for the nodal decoder whose output size matches the prediction q. All MLPs
have a residual connection. A LayerNorm normalizes all MLP outputs except for the nodal decoder.

A.2.2. BASELINE: MESHGRAPHNETS

Our MESHGRAPHNETS implementation uses the same MLPs as above but with an additional module: the edge encoder.
Also, the edge latent is updated and carried over throughout the end of multiple MPs. We use 15 times MP for all cases to
keep it consistent with MESHGRAPHNETS.

A.2.3. BASELINE: MS-GNN-GRID

Our re-implementation of MS-GNN-GRID uses the same MLPs as above but with four additional modules: the edge
encoder at the finest level, the aggregation modules for nodes and edges at every level for the transitions, and the returning
modules for nodes at every level. This method also requires assigning the regular grid nodes for each level. We assign these
grid nodes by defining an initial grid resolution and an inflation rate between levels. As for the MP times at each level, we

12

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

follow Lino et al. (2022a) to use four at the top and bottom levels and two for the others.

Case # Levels Initial grid dx dx inflation Level-wise # MPs
Cylinder 4 [5e-2, 5e-2] 2 [4, 2, 2, 4]
Airfoil 4 [4.5, 4.5] 2 [4, 2, 2, 4]
Plate 4 [4e-3, 4e-3, 4e-3] 2 [4, 2, 2, 4]
Font 4 [1.5e-2, 1.5e-2, 1e-3] 2 [4, 2, 2, 4]

A.2.4. BASELINE: GRAPHUNETS

Our re-implementation of GRAPHUNETS uses the same number of levels as those of BSMS-GNN. Likewise, we make the
following modifications to the original GRAPHUNETS : (1) We change the information passing from GCN to our message
passing module for consistency and translational invariance. (2) GraphUNet was intended for tiny graphs (100 nodes) and
used dense matrix multiplications. This design is not scalable as it can break the memory limit and slow down the training to
take more than 30 days per epoch in our graph size (1500 to 15000 nodes). We thus optimize the operations such as matrix
multiplication and aggregation with sparse implementations.

A.2.5. NOISE AND BATCH NUMBER

For each of these benchmarks, we generated Gaussian noise with a specific scale and added it to the original trajectory at the
beginning of every epoch. The purpose of noise injection was to mimic the effects of noise generated by the model, thereby
improving the model’s ability to correct its output when fed with noisy inputs. Furthermore, we carefully tuned the batch
size under smaller subset experiments for each method to achieve optimal convergence rates.

Case Batch size Noise scale
BSMS-GNN MS-GNN-GRID MESHGRAPHNETS GRAPHUNETS

Cylinder 32 16 16 2 velocity: 2e-2
Airfoil 8 4 8 1 velocity: 2e-2, density: 1e1
Plate 8 2 2 1 pos: 3e-3
Font 2 1 1 1 pos: [5e-3, 5e-3, 3.33e-4]

A.3. Detailed results

We plot the detailed measurements in Table. 1 and Table. 2. All experiments are conducted using a single Nvidia RTX 3090.

A.4. Ablation study

A.4.1. TRANSITION METHOD

While exploring the non-parametric transition solutions, we started with no transition because our method is adopted directly
from GUN (Gao & Ji, 2019). The no-transition strategy produces low enough 1-step RMSE and visually correct rollouts for
INFLATINGFONT. However, in the global rollouts of CYLINDERFLOW and AIRFOIL cases, we observed stripe patterns
(Figure. 11 (c), column None) where the stripes are aligned with the edges at the coarser levels (Figure. 11 (d)). We
suspect that this error results from the fact that the unpooled nodes all have zero information before MP, making them
indistinguishable from the processor modules and exaggerating the difference between pooled and unpooled nodes over
rollouts.

The no-transition strategy resembles no interpolation during the super-resolution phase of CNN+UNet. Naturally, we then
tried a single step of graph convolution (without activation) to resemble the interpolation in regular grids. However, this
turns out to over-smooth the features (Figure. 11 (e), column Graph Conv), and the information propagation was smeared
out except for the area near the generator (in this case, near the cylinder).

We believe the over-smoothing issue arises from the ignorance of the irregularity of the mesh. Unlike CNN, where the
fine nodes regularly lie at the center of coarser grids, irregular meshes have varying topology and element sizes. The
element sizes are almost always smaller near the interface for higher precision in simulations; hence an unweighted graph
convolution can smear the finer information near the cylinder and their adjacent neighbors during returning. The natural
choice to account for the irregularity is to include reasonable nodal weights (such as the size). In the end, we arrive at the

13

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Table 1. Detailed measurements of our method, MS-GNN-GRID, MESHGRAPHNETS, and GRAPHUNETS. BSMS-GNN consistently
generates stable and competitive global rollouts with the smallest training cost. BSMS-GNN is also lightweight and has the fastest
inference time. It is also free from the large RMSE due to poor pooling on unseen geometries where the learnable pooling module of
GRAPHUNETS suffers. The 2nd column of entries in Infer time is the speed up compared to the numerical solver. The 2nd column of
entries in Training cost is the epoch for achieving the converged model.

Measurements Case Our’s (Lino et al., 2021) (Pfaff et al., 2020) (Gao & Ji, 2019)

Training time/step
[ms]

Cylinder 10.14 15.36 19.29 16.20
Airfoil 18.82 25.26 36.72 55.08
Plate 15.58 49.65 49.15 31.88

INFLATINGFONT 45.96 107.16 117.48 1,833.37

Infer time/step
[ms]

Cylinder 6.75, 121x 6.18, 133x 14.50, 57x 24.30, 34x
Airfoil 8.64, 1275x 20.40, 540x 24.20, 455x 33.60, 328x
Plate 14.01, 207x 18.12, 160x 15.70, 184x 16.20, 179x

INFLATINGFONT 33.33, 210x 41.66, 168x 82.35, 85x 629.33, 11x

Training cost
[hrs],

Final epoch

Cylinder 21.41, 19 35.84, 21 64.30, 30 76.15, 39
Airfoil 122.33, 39 176.82, 42 275.40, 45 206.55, 37
Plate 56.07, 27 125.78, 19 176.94, 27 127.50, 30

INFLATINGFONT 2.68E+01, 21 5.66E+01, 19 6.20E+01, 19 NA

RMSE-1
[1e-2]

Cylinder 2.04E-01 2.20E-01 2.26E-01 8.09E-01
Airfoil 2.88E+01 2.68E+01 4.35E+01 2.93E+01
Plate 2.87E-02 2.20E-02 1.98E-02 2.03E-02

INFLATINGFONT 1.77E-02 1.87E-02 1.95E-02 NA

RMSE-50
[1e-2]

Cylinder 2.42 2.74 4.39 1.87E+01
Airfoil 1.10E+03 1.22E+03 1.66E+03 1.17E+03
Plate 3.18E-02 2.78E-02 2.88E-02 5.19E-02

INFLATINGFONT 1.08E-01 3.24E-01 1.78E-01 NA

RMSE-all
[1e-2]

Cylinder 8.37 8.49 1.07E+01 1.65E+02
Airfoil 4.21E+03 5.56E+03 6.95E+03 6.11E+03
Plate 1.60E-01 1.48E-01 1.51E-01 5.46E-01

INFLATINGFONT 2.20E-01 3.78E-01 3.65E-01 NA

solution proposed in Sec. 3.2 by utilizing the nodal weights during aggregation and recording the shares of contribution for
later returning. Our transition method works consistently for all experiment cases and produces the lowest RMSE for global
rollouts (Figure. 11 (b)).

Comparing to alternative transition methods Additionally, we compare our transition methods to two alternatives
extracted from previous works: (1) calculating the edge weights (kernel) for the information flow using the inverse of its
length (node position offset), which we refer to as Pos-Kernel (Liu et al., 2021); and (2) the level-wise learnable transition
modules implemented by additional MP, which we refer to as Learnable (Fortunato et al., 2022).

In addition to the high RMSE of None and Graph-Conv shown in Figure. 11, we can also observe that: (1) the training/infer
time and RAM consumption for all non-parametric transitions (including None) are similar, which supports the statement
that our transition method is light-weighted. (2) Learnable transition can reach slightly higher accuracy but at the price
of ∼ 70% more training/infer time and RAM. As mentioned in Sec. 4.2, higher training RAM can limit the batch number
and increase the frequency of data communication between CPU and GPU, slowing down the training process even further
when the scale goes up. (3) Pos-Kernel results in a slightly higher RMSE compared to our method, making it a competitive
alternative in production.

A.4.2. SENSITIVITY ANALYSIS ON SEEDING HEURISTICS

In this section, we investigated the impact of using different seeding heuristics during the training and testing phases on the
sensitivity of a converged model. We deliberately altered the heuristics used on each benchmark and evaluated the RMSEs.
The results showed that the inconsistency in seeding heuristics led to higher roll-outs compared to the results obtained when
using consistent seeding, as shown in Table 4. Specifically, the roll-outs were 1.01x to 2.04x and 1.13x to 2.21x for random
seeding and inverse seeding, respectively, with respect to consistent seeding. However, the RMSEs remained in the same
magnitude, indicating that our method is not sensitive to the initial seeding. It should be also noted that this is not a practical
issue, as the seeding can easily be kept consistent during different phases.

14

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Table 2. Memory footprint under multi-batches, BSMS-GNN consistently cuts RAM consumption by approximately half in all cases
in the training stage, and also has the smallest (except for DEFORMINGPLATE) inference RAM.

Case Method Training RAM (GBs) with different Batch # Infer RAM (GBs)
2 4 8 16 32 64

CYLINDERFLOW

Our’s 2.41 2.92 4.37 6.06 11.4 22.27 1.92
(Lino et al., 2021) 2.79 3.60 5.31 8.56 15.10 - 1.97
(Pfaff et al., 2020) 3.25 4.46 6.91 11.84 21.60 - 1.94
(Gao & Ji, 2019) 23.33 - - - - - 2.18

AIRFOIL

Our’s 3.66 5.46 8.88 15.70 - - 2.02
(Lino et al., 2021) 4.18 6.25 10.65 19.25 - - 2.02
(Pfaff et al., 2020) 5.53 8.90 16.08 - - - 2.06
(Gao & Ji, 2019) - - - - - - 2.67

DEFORMINGPLATE

Our’s 2.36 2.87 3.85 5.78 9.28 16.85 1.95
(Lino et al., 2021) 3.41 4.81 7.75 13.20 - - 2.00
(Pfaff et al., 2020) 3.10 4.29 6.59 11.49 20.80 - 1.93
(Gao & Ji, 2019) - - - - - - 2.18

INFLATINGFONT

Our’s 6.28 10.80 - - - - 2.23
(Lino et al., 2021) 10.87 19.79 - - - - 2.45
(Pfaff et al., 2020) 12.48 23.39 - - - - 2.28
(Gao & Ji, 2019) - - - - - - 4.51

Table 3. Detailed measurements of different transition methods. Ours and Pos-Kernel are the only two non-parametric transitions that
are light-weighted and produce reliable rollouts compared to the expensive Learnable transition.

Measurements Ours None Graph-Conv Pos-Kernel Learnable
Training time/step [ms] 10.14 9.30 10.07 10.06 17.75
Infer time/step [ms] 6.75 5.70 6.46 6.90 11.28
Training RAM [GBs] 11.041 11.041 11.041 11.041 18.033
Infer RAM [GBs] 1.923 1.923 1.923 1.923 1.931
RMSE-1 [1e-2] 2.85E-01 1.49E-01 3.41E-01 6.38E-01 4.70E-01
RMSE-50 [1e-2] 1.43E+01 2.05E+02 2.40E+02 1.77E+01 1.35E+01
RMSE-all [1e-2] 1.68E+01 2.59E+02 5.51E+02 2.01E+01 1.57E+01

A.5. Details for scaling analysis on INFLATINGFONT

We generate the downscale and the upscale version of INFLATINGFONT with different average node numbers for the initial
geometry, and then use the same settings to simulate the sequence. As reported in Fortunato et al. (2022), the low-resolution
model suffers from converging to very small RMSE; hence we loosen the termination criteria by enlarging the target RMSE
relative to the average edge length to prevent convergence failures. Similarly, the noise injection is also adjusted to be
relative to the average edge length. Moreover, with a smaller number of nodes, the number of levels required to achieve the
same bottom resolution also reduces. We make the corresponding adjustments to the levels of our model d1 and that of the
MS-GNN-GRID d2. The adjustments are plotted below.

A.6. The Proof of conservation of contact edges

With Bi-stride pooling, our pooling conserves all the contact edges under the enhancement in Eq. 1. We assume the graph is
undirected and unweighted, such that the adjacent matrix is a boolean matrix.

Formally speaking, given any contact edge (i, j) at level l (i.e. AC
l [i, j] = 1) and a Bi-stride pooling P which pools nodes

I, there exists a contact edge (i′, j′) that remains in the coarser level (i.e. A′C
l+1[i

′, j′] = 1, i′, j′ ∈ I) and i/i′, j/j′ are
connected (i.e. Al[i, i

′] = Al[j, j
′] = 1). There are only four scenarios concerning the pooling nodes I and the contact

edge nodes i, j, under which the assertion always holds:

1. Both i, j are pooled, i.e. i, j ∈ I. Obviously A′C
l+1[i

′, j′] = 1 by letting i′ = i, j′ = j.
2. Only i is pooled, i ∈ I, j /∈ I. Since we use Bi-stride pooling, j can either be the seed at level 0 (Bi-stride can select

either even or odd levels) that directly connects to all nodes at level 1, or must have at least one direct connection from
the previous level. I.e, at least one neighbor of j in the adjacent level is pooled, we let it be j′: Al[j, j

′] = 1, j′ ∈ I.

15

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Table 4. Sensitivity analysis of seeding heuristics on model performance. The “Random” heuristic refers to choosing a random seed
for every cluster, while “Inverse w.r.t. Train” refers to choosing the inverse seeding heuristic compared to that used during the training
phase. For example, if the MinAve heuristic was used during training, the CloseCenter heuristic was chosen during the testing phase.

Seeding @ Test Ratio in RMSE Cylinder Airfoil Plate Font

Random
1-step 2.06 14.04 2.95 1.15
50-step 1.06 2.16 5.21 1.04
Rollout 1.01 2.04 1.53 1.04

Inverse w.r.t. Train
1-step 1.96 12.77 3.14 1.15
50-step 1.07 1.76 7.52 1.02
Rollout 1.13 2.21 1.46 1.06

Table 5. The adjustment for multi-scale parameters, the target RMSE and noise injection for scaling analysis.
Nodes d1 d2 Initial grid dx Target RMSE Noise in pos

5k 4 2 [6e-2 6e-2 4e-3] 1.73e-4 [8.5e-3, 8.5e-3, 5.7e-4]
15k 6 4 [1.5e-2 1.5e-2 1e-3] 1e-4 [5e-3, 5e-3, 3.33e-4]
30k 7 5 [7.5e-3 7.5e-3 5e-4] 1e-4 [3.5e-3, 3.5e-3, 2.4e-4]
45k 7 5 [7.5e-3 7.5e-3 5e-4] 1e-4 [2.9e-3, 2.9e-3, 1.9e-4]

Then AC
l Al[i, j

′] ≥ AC
l [i, j] ∗Al[j, j

′] = 1, and Al(A
C
l Al)[i, j

′] ≥ Al[i, i] ∗ (AC
l Al)[i, j

′] = 1. Let i′ = i, then
A′C

l+1[i
′, j′] = 1.

3. Only j is pooled, i /∈ I, j ∈ I. Similarly we have at least one i′ such that: Al[i
′, i] = 1, i′ ∈ I. Then AlA

C
l [i

′, j] ≥
Al[i

′, i] ∗AC
l [i, j] = 1, and (AlA

C
l)Al[i

′, j] ≥ (AlA
C
l)[i

′, j] ∗Al[j, j] = 1. Let j′ = j, then A′C
l+1[i

′, j′] = 1.
4. None of i, j is pooled, i, j /∈ I. We select one direct pooled neighbor for i, j, respectively, that Al[i

′, i] = Al[j, j
′] =

1, i′, j′ ∈ I. Then AlA
C
l [i

′, j] ≥ Al[i
′, i] ∗AC

l [i, j] = 1, and (AlA
C
l)Al[i

′, j′] ≥ (AlA
C
l)[i

′, j] ∗Al[j, j
′] = 1.

A.7. Algorithms for the seeding heuristics

Here we elaborate our two seeding heuristics for the bi-stride pooling at every level: picking the seed that 1) is closest to
the center of a cluster (CloseCenter), and 2) with the minimum average geodesic distance to its neighbors (MinAve). The
complexity for MinAve is O(N2) as we need to conduct BFS for every node to find the one with the minimum average
distance to neighbors. In our experiments, the quadratic cost of MinAve is tolerable for all cases but INFLATINGFONT.

Algorithm 1 MinAve: seeding by minimum average geodesic distance to neighbors
Input:Unweighted, Bi-directional graph, G = (N,E)
{List of seeds in each clusters Ls}
Lc ← DetermineCluster(G)
Ls ← ∅
{BFS(s) returns the list of distances to all other neighbors from s}
{if unreachable, the distance is set to infinity}
D ← {BFS(s) for s in N}
for idx in Lc do
Dc ← D[idx, idx]
D̄c ← average(Dc, dim = 1)
s← idx[argmin(D̄c)]
Ls.append(s)

end for
output Ls

For INFLATINGFONT, the largest mesh has around 47K nodes, and the time for pre-processing with MinAve becomes
intolerable. We switch to CloseCenter with the linear complexity.

For both heuristics, we search seeds in a per-cluster fashion to avoid the information from other clusters that could pollute

16

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

Algorithm 2 CloseCenter: seeding by minimum distance to the center of cluster
Input: Unweighted, Bi-directional graph, G = (N,E); Positions of the nodes, X
{List of seeds in each clusters Ls}
Lc ← DetermineCluster(G)
Ls ← ∅
for idx in Lc do
X̄ ← average(X[idx], dim = 0)
∆X ← X − X̄
D ← ||∆X||2
s← idx[argmin(D)]
Ls.append(s)

end for
output Ls

the search result. For example, when determining the center of an isolated part of the input geometry, the positions of nodes
from other clusters could pollute this process. The determination of clusters given in a graph is elaborated below.

Algorithm 3 DetermineCluster
Input: Unweighted, Bi-directional graph, G = (N,E)
{R stands for remaining nodes that are not inside any cluster}
R← N
Lc ← ∅
while R ̸= ∅ do
s← R.pop()
if |R| = 0 then
LC .append({c})

else
D ← BFS(s)
C ← ∅
R∗ ← ∅
for n in R do

if D[n] =∞ then
R∗.append(n)

else
C.append(n)

end if
end for
LC .append(C)
R← R∗

end if
end while

output Lc

17

Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN

GT Ours

Ours

None

None

Graph conv

(a) Training loss

(b) Global rollout error

(d) Global rollout error distribution

(c) Visual comparison

step 0

step 50

step 20

step 600

step 20

step 50

step 100

step 200

step 600

Figure 11. (a) All three transition methods can reach the target training RMSE given 200 iterations. (b) However, our weighted graph
aggregration+returning has the strongest resistance to the noise during the rollout. (c) The visual comparisons show that no transition
produces mosaic-like patterns, while the graph convolution transition smeared out the information and ceased propagating downstream.
(d) The global rollout error distribution of no transition (Left) shows the edge of the mosaic patterns look similar to the simulation mesh;
The error of our transition (Right) travels with the generated vortices downstream and leaves the domain after step 200, which explains
the RMSE drop in (b).

18

