
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Set Graph

���������������������������� �����������������������������������

Combinatorial
complex HypergraphSimplicial

complex
Cellular

complex

is part of not necessarily part of

��������

��������

����	�����

��������

���	����

��������

��

�������

: Nodes : Edges

Figure 6: Topological Deep Learning Domains. Nodes in blue, (hyper)edges in pink, and faces in
dark red. Figure adopted from Papillon et al. (2023).

A DOMAINS OF TOPOLOGICAL DEEP LEARNING

We summarize the different discrete domains leveraged within TDL and, in doing so, contextualize
how combinatorial complexes generalize all of them. To that end, we will closely follow the
description of Papillon et al. (2023), using as well its very clarifying Figure 6. We recommend this
survey for a high-level overview of TDL literature, and the more extensive work of Hajij et al. (2023)
for a detailed formulation of the field. We also refer to Appendix C of Battiloro et al. (2024) for
a concise mathematical description of each domain. From left to right in Figure 6, the different
domains in TDL are:

TRADITIONAL DISCRETE DOMAINS

Set / Pointcloud. A collection of points called nodes without any additional structure.

Graph. A set of points (nodes) connected with edges that denote pairwise relationships.

SET + PART-WHOLE RELATIONS

Simplicial Complex. A generalization of a graph that incorporates hierarchical part-whole relations
through the multi-scale construction of cells. Nodes are rank 0-cells that can be combined to form
edges (rank 1 cells). Edges are, in turn, combined to form faces (rank 2 cells), which are combined
to form volumes (rank 3 cells), and so on. In particular, each cell σ in a simplicial complex must
contain all lower dimensional cells τ such that τ ⊆ σ. Therefore, faces must be triangles, volumes
must be tetrahedrons, and so forth.

Cellular Complex. A generalization of an simplicial complex in which cells are not limited to
simplexes, but may instead take any shape: faces can involve more than three nodes, volumes more
than four faces, and so on. This flexibility endows CCs with greater expressivity than simplicial
complexes (Bodnar et al., 2021a), but still edges only connect pairs of nodes.

SET + SET-TYPE RELATIONS

Hypergraph: A generalization of a graph, in which higher-order edges called hyperedges can
connect arbitrary sets of two or more nodes. Connections in HGs represent set-type relationships, in
which participation in an interaction is not implied by any other relation in the system. This makes
HGs an ideal choice for data with abstract and arbitrarily large interactions of equal importance, such
as semantic text and citation networks.

SET + PART-WHOLE AND SET-TYPE RELATIONS

Combinatorial Complex: A structure that combines features of hypergraphs and cellular com-
plexes. Like a hypergraph, edges may connect any number of nodes. Like a cellular complex, cells
can be combined to form higher-ranked structures. Hence, combinatorial complexes generalize all
other topological domains.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PROOFS

B.1 PROOF OF GENERALITY

The proof is straightforward. It is sufficient to set ωN (Hl
N ,GN) to

{
⊕

y∈N (σ) ψN ,rk(σ)
(
hl
σ,h

l
τ

)
}σ∈C in (8) as all y ∈ N (σ) are part of the node set CN of the

strictly augmented Hasse graph of N by definition.

B.2 PROOF OF EQUIVARIANCE

As for GNNs, an amenable property for GCCNNs is the awareness w.r.t. relabeling of the cells. In
other words, given that the order in which the cells are presented to the networks is arbitrary -because
CCs, like (undirected) graphs, are purely combinatorial objects-, one would expect that if the order
changes, the output changes accordingly. To formalize this concept, we need the following notions.

Matrix Representation of a Neighborhood. Assume again to have a combinatorial complex C
containing C := |C| cells and a neighborhood function N on it. Assume again to give an arbitrary
labeling to the cells in the complex, and denote the i-th cell with σi. The matrix representation of
the neighborhood function is a matrix NN ∈ RC×C such that Ni,j = 1 if the σj ∈ N (σi) or zero
otherwise. We notice that the submatrix ÑN ∈ R|CN |×|CN | obtained by removing all the zero rows
and columns is the adjacency matrix of the strictly augmented Hasse graph GCN induced by N .

Permutation Equivariance. Let C be combinatorial complex,NC a collection of neighborhoods on it,
and N = {NN }N∈NC the set collecting the corresponding neighborhood matrices. Let P ∈ RC×C

be a permutation matrix. Finally, denote by PH the permuted embeddings and by {PNNPT }N∈NC ,
the permuted neighborhood matrices. We say that a function f :

(
Hl,B

)
7→ Hl+1 is cell permutation

equivariant if f
(
PHl, {PNNPT }N∈NC

)
= Pf

(
Hl, {NN }N∈NC

)
for any permutation matrix

P. Intuitively, the permutation matrix changes the arbitrary labeling of the cells, and a permutation
equivariant function is a function that reflects the change in its output.

Proof of Proposition 2. We follow the approach from (Bodnar et al., 2021a). Given any permuta-
tion matrix P, for a cell σi, let us denote its permutation as σP(i) with an abuse of notation. Let
hl+1
σi

be the output embedding of cell σi for the l-th layer of a GCCN taking (Hl, {NN }N∈NC)

as input, and hl+1
σP(i)

be the output embedding of cell σP(i) for the same GCCN layer taking(
PHl, {PNNPT }N∈NC

)
as input. To prove the permutation equivariance, it is sufficient to show

that hl+1
σi

= hl+1
σP(i)

as the update function ϕ is row-wise, i.e., it independently acts on each cell. To do
so, we show that the (multi-)set of embeddings being passed to the neighborhood message function,
aggregation, and update functions are the same for the two cells σi and σP(i). The neighborhood
message functions act on the strictly augmented Hasse graph of GCN of N , thus we work with the
submatrix ÑN . The neighborhood message function is assumed to be node permutation equivariant,
i.e., denoting again the embeddings of the cells in GCN with Hl

CN
∈ R|CN |×F l

and identifying
GCN with ÑN , it holds that ωN (PCNHl

CN
,PCN ÑNPT

CN
) = PCNωN (Hl

CN
, ÑN), where PCN is

the submatrix of P given by the rows and the columns corresponding to the cells in GCN . This
assumption, together with the assumption that the inter-neighborhood aggregation is assumed to be
cell permutation invariant, i.e.

⊗
N∈NC

PCNωN (Hl
CN
, ÑN) =

⊗
N∈NC

ωN (Hl
CN
, ÑN), trivially

makes the overall composition of the neighborhood message function with the inter-neighborhood ag-
gregation cell permutation invariant. This fact, together with the fact that the (labels of) the neighbors
of the cell σi in N are given by the nonzero elements of the i-th row of NN , or the corresponding
row of ÑN , and that the columns and rows of ÑN are permuted in the same way the rows of the
feature matrix Hl

CN
are permuted, implies

[ÑN]i,j = [PCN ÑNPT
CN

]PCN (i),PCN (j), (9)

thus that σi and σP(i) receive the same neighborhood message from the neighboring cells in N , for
all N ∈ NC .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

k-GNN HasseGNN Hasse

k-WL HasseWL Hasse

k-CCWLCCWL

k-CCNNCCNN GCNN

De�nition 7De�nition 5

Eq. 8Eq. 3 De�nition 8, Eq. 11

<

<

<

<

Increasing expressive power

Proposition 5

Proposition 6 Proposition 7

Propositions 8-9 Propositions 10-11

Proposition 3

Theorems 1-2
from Morris et al. 2019

Propositions 3-4
from Morris et al. 2019

Grohe 2017

Figure 7: Graphical summary of the definitions and propositions related to the expressivity of CCNNs
and GCNNs and of the different WL tests. Neural networks expressivity is in red, and WL test
expressivity is in blue.

B.3 PROOF OF EXPRESSIVITY

We provide the theory required to prove Proposition 3, i.e., to prove that GCNNs are strictly more
expressive than CCNNs. The definitions and propositions from this subsection are summarized in
Figure 7. This figure serves as a graphical reading guide for the subsection.

B.3.1 HOMOMORPHISM AND ISOMORPHISM INDUCED BY NEIGHBORHOODS

We first recall the notion of homomorphism of a combinatorial complexes (CC) from (Hajij et al.,
2023) and generalize it to the notions of homomorphism and of isomorphism of combinatorial
complexes induced by a neighborhood N .

Definition 1 (CC-Homomorphism (Hajij et al., 2023)). A homomorphism from a CC (V1, C1, rk1)
to a CC (V2, C2, rk2), also called a CC-homomorphism, is a function f : C1 → C2 that satisfies the
following conditions:

1. If σ, τ ∈ C1 satisfy σ ⊆ τ , then f(σ) ⊆ f(τ).

2. If σ ∈ C1, then rk1(σ) ≥ rk2(f(σ)).

Definition 1 proposes a CC-homomorphism that respects the incidence structures of the CCs, denoted
by the symbol⊆ in the definition above. We generalize Definition 1 by allowing CC-homomorphisms
to take into account a labeling of the cells and to be defined in terms of general neighborhood
structures beyond incidence. We first define a labeled combinatorial complex.

Definition 2 (Labeled Combinatorial Complex). A labeled combinatorial complex (C, ℓ) is a CC C
equipped with a cell coloring ℓ : C 7→ Σ with arbitrary codomain Σ. We say that ℓ(σ) is a label or
color of cell σ ∈ C.

Next, we provide our definitions of homomorphisms.

Definition 3 (CC-Homomorphism induced by (N1,N2)). A homomorphism from a CC (V1, C1, rk1)
with neighborhoodN1 to a CC (V2, C2, rk2) with neighborhoodN2, also called a CC-homomorphism
induced by (N1,N2), is a function f : C1 → C2 that satisfies: If σ, τ ∈ C1 are such that τ ∈ N1(σ),
then f(τ) ∈ N2(f(σ)). A labeled CC-homomorphism induced by (N1,N2) is a CC-homomorphism
induced by (N1,N2) that additionally respects labeling of the cells, that is: if σ, τ ∈ C1 have the
same label, then f(σ), f(τ) ∈ C2 also have the same label.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We prove that a CC-homomorphism induced by (N1,N2) is equivalent to a homomorphism of the
respective strictly augmented Hasse graphs GN1

, GN2
.

Proposition 4. For every CC-homomorphism f from C1 to C2 induced by (N1,N2), there exists a
unique graph homomorphism between their respective strictly augmented Hasse graphs GN1 and
GN2 .

Proof. Consider f a CC-homomorphism from C1 to C2 induced by (N1,N2) as in Definition 3.
Define the function f̃ from nodes of GN1

to the nodes of GN2
corresponding to f , i.e., f̃ : CN1

7→ CN2

defined as f̃(σ̃) = ˜f(σ) where σ̃ is the node in GN1 corresponding to the cell σ in C1, and ˜f(σ) is the
node in GN2

corresponding to the cell f(σ) in C2. We show that f̃ is a graph homomorphism from
GN1

to GN2
, i.e., a function from the nodes of GN1

to the nodes of GN2
that preserves edges.

By definition of the CC-homomorphism induced by (N1,N2), we have: if τ ∈ N1(σ) then f(τ) ∈
N2(f(σ)). Recognizing that N1 defines edges of GN1

, and N2 defines edgess of GN2
, we have: if

(σ̃, τ̃) is an edge in GN1
, then (f̃(σ̃), f̃(τ̃)) is an edge in GN2

. Thus, a CC-homomorphism induced
by (N1,N2) gives a homomorphism of the strictly augmented Hasse graphs.

Conversely, if f̃ is a graph homomorphism from GN1
to GN2

, then we similarly construct a CC-
homomorphism f between C1 and C2. This concludes the proof.

Lastly, we can define a notion of CC-isomorphism induced by neighborhood structures.

Definition 4 (CC-Isomorphism induced by (N1,N2)). A isomorphism from a CC (V1, C1, rk1)
with neighborhood N1 to a CC (V2, C2, rk2) with neighborhood N2, also called a CC-isomorphism
induced by (N1,N2), is an invertible CC-homomorphism induced by (N1,N2) whose inverse is
a CC-isomorphism induced by (N2,N1). A labeled CC-isomorphism induced by (N1,N2) is a
CC-isomorphism that additionally respects labels.

B.3.2 WEISFEILER-LEMAN (WL) TESTS ON COMBINATORIAL COMPLEXES

We propose two WL tests, called CCWL and (set-based) k-CCWL that generalize the WL and the
(set-based) k-WL tests to labeled combinatorial complexes. We start with the generalization of the
WL test to labeled combinatorial complexes.

Definition 5 (The CC Weisfeiler-Leman (CCWL) test on labeled combinatorial complexes). Let
(C, ℓ) be a labeled combinatorial complex. Let N be a neighborhood on C. The scheme proceeds as
follows:

• Initialization: Cells σ are initialized with the labels given by ℓ, i.e.: for all σ ∈ C, we set:
c0σ,ℓ = ℓ(σ).

• Refinement: Given colors of cells at iteration t, the refinement step computes the color of cell σ at
the next iteration ct+1

σ,ℓ using a perfect HASH function as follows:

ctN (σ) =
{{
ctσ′,ℓ | ∀σ′ ∈ N (σ)

}}
,

ct+1
σ,ℓ = HASH

(
ctσ,ℓ, c

t
N (σ)

)
.

• Termination: The algorithm stops when an iteration leaves the coloring unchanged.

Next, we generalize the set-based k-WL test to labeled combinatorial complexes, called the k-CCWL
test. The set-based k-WL test is employed in (Morris et al., 2019) where colors are defined on k-sets
of nodes, as opposed to k-tuples of nodes in the standard k-WL test. Specifically, we denote [C]k
the set of k-sets formed with cells of C. We generalize the definition of neighborhood of k-sets of
vertices from (Morris et al., 2019) to neighborhood of k-sets of cells.

Definition 6 (Neighborhood of k-sets of cells). Given a k-set of cells s = {σ1, . . . , σk} in [C]k, we
define its neighborhood as the function Nk : [C]k 7→ P([C]k) defined as:

Nk(s) =
{
t ∈ [C]k | |s ∩ t| = k − 1

}
. (10)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

...
...cells

k-sets

... ...

...
...

features on the k-set
that contains

features on other k-sets
that contains

Figure 8: Notations for Proposition 5. Denote |C| the number of cells. The number of k-sets that
contain a given cell σ is equal to

(|C|−1
k−1

)
. The feature on one k-set that contains a given cell has

dimension d. Thus, Hl ∈ R|C|×F for F =
(|C|−1

k−1

)
d. We note that the k-sets for one row do not

correspond to the k-sets of another row. However, for every row, there is the same number of k-sets
that contain the cell σ characteristic of that row.

Definition 7 (The CC k-Weisfeiler-Leman (k-CCWL) test on combinatorial complexes). Let (C, ℓ)
be a labeled combinatorial complex. LetN be a neighborhood on C. The scheme proceeds as follows:

• Initialization: Every k-set s in [C]k is initialized with a color that corresponds to the CC-
isomorphism type of the sub-CC defined by s = {σ1, . . . , σk} induced by N|s where N|s is
the neighborhood N restricted to s. This means that two k-sets s and s′ get the same color if
and only if there is a labeled CC-isomorphism (for labeling function ℓ) between the sub-CCs
corresponding to the cells in s and s′, respectively.

• Refinement: Given colors of k-sets at iteration t, the refinement step computes the color of the
k-set s at the next iteration ct+1

s,ℓ using a perfect HASH function, as follows:

ctNk(s),ℓ
=
{{
cts′,ℓ | ∀s′ ∈ Nk(s)

}}
,

ct+1
s,ℓ = HASH

(
cts,ℓ, c

t
Nk(s),ℓ

)
.

• Termination: The algorithm stops when an iteration leaves the coloring unchanged.

Two combinatorial complexes are deemed non-isomorphic according to the CCWL and k-CCWL
respectively, if their color histograms differ upon termination of the scheme. If the histograms are the
same, we cannot conclude.

B.3.3 DEFINITIONS OF k-GNNS AND k-CCNNS

We generalize the definition of k-GNNs by (Morris et al., 2019) into a definition of k-CCNNs.

Definition 8 (k-CCNNs). Let (C, ℓ) be a labeled CC. In each k-CCNN layer t, the feature vector
h
(t)
k (s) ∈ Rd for each k-set s in [C]k is updated into h(t+1)

k (s) as follows:

h
(t+1)
k (s) = U

h(t)k (s) ·W (t)
1 +

∑
u∈Nk(s)

h
(t)
k (u) ·W (t)

2

 ∈ Rd, (11)

where W (t)
1 ,W

(t)
2 are matrices of parameters for layer t, Nk the neighborhood structure on k-sets,

and U is an update function.

Then, we show that k-CCNNs of Definition 8 form a subclass of GCNNs.

Proposition 5. GCNNs generalize and subsume k-CCNNs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. Let be given a k-CCNN defined by equation 11. We show that we can recover equation 11
by an appropriate choice of feature dimensionality F , update function ϕ and sub-module ωN in
equation 8 defining GCNNs, and thus that any k-CCNN can be expressed as a GCNN.

For simplicity of notations, we assume that the layers of the k-CCNN have same feature dimensional-
ity, denoted d. Given that there are

(|C|−1
k−1

)
k-sets containing a given cell σ, we define F =

(|C|−1
k−1

)
d

to be the feature dimensionality of the layers of a GCNN. Denote Hl(σ) the row of Hl contain-
ing F -dimensional feature corresponding to cell σ, as well as Hl(σ, s) the subrow containing the
d-dimensional feature corresponding to one k-set s to which σ belongs. Figure 8 illustrates these
notations. We then define:

Hl+1 = ϕ
(
Hl, ω(Hl)

)
by defining ϕ and ω on (σ, s)-blocks of the matrix Hl. Specifically, we have:

Hl+1(σ, s) = ϕ(σ,s)
(
Hl(σ, s), ω(σ,s)(H

l)
)

= U

Hl(σ, s) ·W (t)
1 +

∑
u∈Nk(s)

Hl(σ, u) ·W (t)
2

 ,

where:

ω(σ,s)(H
l) =

∑
u∈Nk(s)

Hl(σ, u) ·W (t)
2 , ϕ(σ,s)(A,B) = U(A ·W (1)

1 +B). (12)

In other words, we first use ω defined as a sequence of ω(σ,s) to update each (σ, s)-block of Hl into an
auxiliary feature B = H̃l. Then, we use ϕ as a sequence of ϕ(σ,s) to perform a block-wise operations.
Thus, we have built a GCNN that reproduces the computations of the k-CCNN. Therefore, GCNNs
generalize and subsume k-CCNNs.

B.3.4 RELATIONSHIPS BETWEEN CCWL/GCWL TESTS AND CCNNS/GCNNS

We prove relationships between the expressivity of the WL tests and the expressivity of the corre-
sponding neural networks. We first recall results on WL tests on graphs and GNNs (Morris et al.,
2019). In what follows, (G, ℓ) is a labeled graph, and W (t) denote the parameters of a GNN up to
layer t. We encode the initial labels ℓ(v), for a vertex v, by vectors h(0)(v) ∈ R1×d.

WL/GNNs and k-WL/k-GNNs Theorem 1 in (Morris et al., 2019) states that, for every encoding
of the graph labels ℓ(v) as d-vectors h(0)(v), and for every choice of parameters W (t), the coloring
c(t)ℓ of the WL test always refines the coloring h(t) induced by the GNN parameterized by W (t).
Theorem 2 in (Morris et al., 2019) states that there exists parameter matrices W (t) such that GNNs
have exactly the same power as the WL test. Consequently, we say that GNNs have the same
expressivity as the WL test. Similarly, Propositions 3 and 4 from (Morris et al., 2019) show that
k-GNNs have the same expressivity as the WL test.

CCWL/CCNNs and k-CCWL/GCNNs We generalize the equivalence between WL tests and
GNNs to the framework of CCs. First, we prove two propositions establishing equivalence of WL
tests between CCs and Hasse graphs.

Proposition 6 (CCWL and WL on the Hasse graph). Let (C, ℓ) be a labeled CC. Let N be one
neighborhood on this CC and GN the associated strictly augmented Hasse graph. The CCWL test
defined in Def. 5 is equivalent to the WL test defined on GN .

Proof. We prove the equivalence between the CCWL and the WL on GN .

Equivalence of initializations. The CCWL test initializes cell colors using the labels given by ℓ. The
labeling function ℓ labels cells of C and therefore its restriction to CN labels nodes of the associated
Hasse graph GN . This turns GN into a labeled graph (GN , ℓCN). We initialize the WL test on GN
with colors from ℓCN .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Equivalence of refinements. By construction of the strictly augmented Hasse graph GN , nodes in GN
are cells in CN and edges in GN are neighbors in CN for the neighborhood N . Thus, the refinement
equation of the CCWL test is equal to the refinement equation of the WL test on GN . This proves
that CCWL and the WL on GN are equivalent.

Proposition 7 (k-CCWL and k-WL on the Hasse graph). Let (C, ℓ) be a labeled CC. Let N be one
neighborhood on this CC and GN the associated strictly augmented Hasse graph. The k-CCWL
defined in Def. 7 is equivalent to the k-WL test on GN .

Proof. We prove the equivalence between the k-CCWL and the k-WL on GN .

Equivalence of initializations. The k-CCWL test initializes colors of k-sets based on the CC-
isomorphism class of every sub-CC defined by every k-set. Using Proposition 4, the CC-isomorphism
class of a sub-CC s corresponds to the graph isomorphism class on the associated subgraph in the
strictly augmented Hasse graph. We initialize the k-WL test on GN with colors on k-sets associated
with this isomorphism class.

Equivalence of refinements. By construction of the strictly augmented Hasse graph GN , k-sets of
nodes in GN are k-sets of cells in CN , and the neighborhoods of k-sets of nodes defined in (Morris
et al., 2019) are the neighborhoods of k-sets of cells defined in Definition 6. Thus, the refinement
equation of the k-CCWL test is equal to the refinement equation of the k-WL test on GN .

This proves that k-CCWL and the k-WL on GN are equivalent.

Given the equivalence between the computations in C and in GN provided by Proposition 6, we
can pull the results from Theorems 1 and 2 from (Morris et al., 2019) and provide the following
propositions.
Proposition 8. Let (C, ℓ) be a labeled CC. Then for all t ≥ 0 and for all choices of initial colorings
h(0) consistent with ℓ, and weights W(t), c(t)ℓ ⊑ h(t), i.e., the coloring c(t)l induced by the CCWL
test refines the coloring induced by the CCNN h(t).

Proposition 9. Let (C, ℓ) be a labeled CC. Then for all t ≥ 0 there exists a sequence of weights W(t),
and a CCNN architecture such that c(t)ℓ ≡ h(t)., i.e., the coloring of the CCWL and the CCNN are
equivalent.

Consequently, CCNNs have the same power as the CCWL. Next, by Proposition 7, we can also
pull the results from Propositions 3 and 4 from (Morris et al., 2019) and provide the following
propositions.
Proposition 10. Let (C, ℓ) be a labeled CC and let k ≥ 2. Then, for all t ≥ 0, for all choices of
initial colorings h(0)k consistent with ℓ and for all weights W(t), c(t)s,k,ℓ ⊑ h

(t)
k .

Proposition 11. Let (C, ℓ) be a labeled CC and let k ≥ 2. Then, for all t ≥ 0 there exists a sequence
of weights W(t), and a k-CCNN architecture such that c(t)s,k,ℓ ≡ h

(t)
k .

Consequently, k-CCNNs have the same power as the k-CCWL.

B.3.5 PROOF

We now provide the proof for Proposition 3 that states that GCCNs are strictly more expressive than
CCNNs.

Proof. We prove that GCNNs are strictly more powerful than CCNNs in distinguishing non-
isomorphic combinatorial complexes. We leverage the propositions of this subsection summarized on
Figure 7.

By Proposition 5, GCNN have at least the same expressive power as k-CCNNs. By Propositions 10-
11, k-CCNNs have the same expressive power as the k-CCWL. By Proposition 7, the k-CCWL test
is equivalent to the k-WL test on the associated strictly augmented Hasse graph. It is known (e.g.,
(Grohe, 2017)) that the k-WL test on graph is strictly more powerful than the WL test. Thus, the
k-WL test on the strictly augmented Hasse graph is strictly more powerful than the WL test on that

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Strictly augmented
Hasse graph for

Combinatorial
complex

��

��

Figure 9: a. Pair of combinatorial complexes: C1 is an icosahedron polygon, and C2 is five tetrahe-
drons. b. Strictly augmented Hasse graphs corresponding to each combinatorial complex, given a
choice of neighborhood N 2

A,↑.

same graph. By Proposition 6, the WL test on the strictly augmented Hasse graph is equivalent to the
CCWL test on the corresponding CC. By Propositions 8-9, the CCWL test on the CC has the same
expressive power as CCNNs.

Consequently, we have shown that GCNN are strictly more powerful than CCNNs in distinguishing
nonisomorphic CCs.

Additionally, we construct two combinatorial complexes C1 and C2 that are indistinguishable by
CCNNs but distinguishable by GCNNs.

Let C1 and C2 be two combinatorial complexes with a neighborhood structure NC = N 2
A,↓ (down-

adjacency of faces). These complexes are illustrated in Figure 9a.

The corresponding strictly augmented Hasse graphs G1 and G2 (Fig. 9b) represent the 20 faces of
each complex as nodes, where each node has degree 3. Thus:

• Both G1 and G2 are 3-regular graphs.
• It is known that regular graphs of the same order are indistinguishable by the WL test (see,

e.g., (Kiefer, 2020; Morris et al., 2023)).
• Every pair of graphs with n nodes are distinguishable by the n-WL test (Morris et al., 2023).

Since CCWL is equivalent to WL on GN (Proposition 6), the two complexes C1 and C2 are indistin-
guishable by CCWL. Since CCWL has the same expressive power as CCNNs (Propositions 8-9), the
two complexes C1 and C2 are indistinguishable by CCNNs.

Since k-CCWL is equivalent to k-WL on GN (Proposition 7), the two complexes C1 and C2 are
distinguishable by k-CCWL. Since k-CCWL has the same expressive power as k-CCNNs (Proposi-
tions 10-11), the two complexes C1 and C2 are distinguishable by k-CCNNs. Since GCNNs generalize
and subsume k-CCNNs (Proposition 5), C1 and C2 are distinguishable by GCNNs.

Thus, we have constructed two combinatorial complexes C1 and C2 that are indistinguishable by
CCNNs, but are distinguishable by GCNNs.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C TIME COMPLEXITY

To analyze the time complexity (in terms of FLOPs) of the Generalized Combinatorial Complex
Neural Network (GCCN), we derive the complexity of its submodule ωN and then compute the
complexity of a GCCN layer. We then compare it with GNN and CCNN complexity.

C.1 KEY DEFINITIONS

• Message Complexity (M): The complexity of a single message computation along a route
(e.g., node → node). For example, in a Graph Convolutional Network (GCN), a single
message is defined as:

mx→y = axyhyΘ,

where hy is a 1×F vector, Θ is an F×F weight matrix, and axy is a scalar. This involves a
matrix-vector multiplication, contributing a complexity of O(F 2) per message.

• Update Complexity (U): The complexity of the update function in the reference GNN. For
simplicity, we assume the update is an element-wise function, giving U = O(|N |), where
|N | is the number of nodes.

C.2 COMPLEXITY OF ωN

Assuming each ωN submodule is a single-layer GNN, the complexity of ωN can be decomposed into
three components: message computation, aggregation, and update.

CωN = Cmessage + Caggregation + Cupdate

This breaks down as:
CωN = 2|E|M +

∑
n∈N

deg(n)A+ |N |U,

where:

• |E|: Number of edges in the graph,

• M : Complexity per message (O(F 2)),

• deg(n): Degree of node n,

• A: Complexity of aggregation (e.g., assuming sum/average, O(F)),

• U : Complexity of the update function (O(1) per node).

Substituting assumptions for convolutional message passing, summation aggregation, and constant
node degree d:

CωN = 2|E|F 2 +
∑
n∈N

deg(n)F +O(|N |),

CωN = 2|E|F 2 + |N |dF +O(|N |),

CωN = O(|E|F 2 + |N |dF + |N |).

C.3 COMPLEXITY USING COMBINATORIAL COMPLEX NOTATIONS

Up until now, we have expressedCωN in terms of the nodes and edges making up the strictly expanded
Hassse graph it receives as input. To be able to write the complexity of a whole GCCN layer, we
must express CωN in terms of the original cells represented as nodes in the graph. Specifically, we
will denote the source cells (cells sending messages) as cells of rank r and the destination cells (cells
receiving messages) as cells of rank r′. The relationships governing adjacency between the nodes
representing these cells will come from the neighborhood N to which the submodule ωN is assigned.

Rewriting in terms of combinatorial complex notations, where:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• ∥N∥0: Total number of relationships in N (i.e. number of nonzero entries in matrix
corresponding to N),

• nr′ : Number of r′-cells.
• dr′ : Assumed constant degree of r′-cells,

The complexity becomes:

CωN = O(∥N∥0F 2 + nrows(N)dr′F + nr′),

CωN = O(∥N∥0F 2 + nrows(N)dr′F + nrows(N)).

C.4 COMPLEXITY OF A GCCN LAYER

A GCCN layer is composed of a set of ωN ’s, one for eachN ∈ NC . The complexity of a GCCN layer
is the sum of all the complexities of its submodules, plus the complexity of the module responsible for
aggregating the outputs of each neighborhood, i.e. the inter-neighborhood aggregation. We assume
this inter-aggregation to be a sum. The layer complexity is:

CGCCN =
∑

N∈NC

CωN + Cinter-agg,

where:
Cinter-agg =

∑
r′∈[0,R′]

nr′nNr′F,

and nNr′ is the number of neighborhoods sending messages to r′-cells.

C.5 TAKEAWAYS

• GNN Comparison: GCCNs increase complexity compared to traditional GNNs due to :
– the introduction of multiple neighborhoods. A GCCN considers many N ∈ NC , going

beyond the simple node-level adjacency NC = A0 of a GNN. This is what allows TDL
models (GCCNs and CCNNs) to operate on a richer topological space than GNNs.

– inter-neighborhood aggregation.
• CCNN Comparison: Unlike traditional CCNNs, GCCNs allow per-rank neighborhoods,

enabling many smaller possible sets of neighborhoods NC . This more selective inclusion of
neighborhoods reduces redundancy. Concretely, this means the sum

∑
N∈NC

CωN can be
smaller.

• Tradeoff: GCCNs’ time complexity are a compromise between GNNs and CCNNs. While
they do introduce Cinter-agg (like CCNNs) and additional elements to the sum

∑
N∈NC

CωN ,
they can introduce less elements to this sum than CCNNs.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D SOFTWARE

Algorithm 1 shows how the TopoTune module instantiates a GCCN by taking a choice of model
ωN and neighborhoods NC as input. Given an input complex x, TopoTune first expands it into an
ensemble of strictly augmented Hasse graphs that are then passed to their respective ωN models
within each GCCN layer.

Remark. We decided to design the software module of TopoTune, i.e., how to implement GCCNs, as
we did for mainly two reasons: (i) the full compatibility with TopoBenchmark (implying consistency
of the combinatorial complex instantiations and the benchmarking pipeline), and (ii) the possibility of
using GNNs as neighborhood message functions that are not necessarily implemented with a specific
library. However, if the practitioner is interested in entirely wrapping the GCCN implementation into
Pytorch Geometric or DGL, they can do it by noticing that a GCCN is equivalent to a heterogeneous
GNN where the heterogeneous graph the whole augmented Hasse graph, with node types given by
the rank of the cell (e.g. 0-cells, 1-cells, and 2-cells) while the edge type is given by the per-rank
neighborhood function (e.g. "0-cells to 1-cells" or "2-cells to 1-cells" forN 0

I,↑ andN 2
I,↓, respectively).

Algorithm 1 TopoTune
Class TopoTune(torch.nn.Module):

1: procedure INIT(neighborhoods, ωn, ωn_params, layers)
2: self.omega_n_submodels← []
3: for l← 1 to layers do
4: layer_models← []
5: for each nb in neighborhoods do
6: model← ωn(ωn_params)
7: layer_models.append(model)
8: end for
9: self.omega_n_submodels.append(layer_models)

10: end for
11: end procedure
12: procedure FORWARD(x)
13: for each layer in self.omega_n_submodels do
14: outputs← []
15: for each ωn_model in layer do
16: hasse_graph← self.expand_to_strictly_aug_hasse_graph(x)
17: outputs.append(ωn_model(hasse_graph))
18: end for
19: x← self.aggregate_rank_wise(outputs)
20: end for
21: return x
22: end procedure

Example Instantiation:
23: neighborhoods← [[[0, 0], up_adjacency], [[2, 1], incidence]]
24: ωn ← torch_geometric.nn.models.GAT
25: ωn_params← {num_layers : 2, heads : 4}
26: layers← 4
27: model← TopoTune(neighborhoods, ωn, ωn_params, layers)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E ADDITIONAL DETAILS ON EXPERIMENTS

In this section, we delve into the details of the datasets, hyperparameter search methodology, and
computational resources utilized for conducting the experiments.

E.1 NEIGHBORHOOD STRUCTURES

In order to build a broad class of GCCNs, we consider X different neighborhood structures on
which we perform graph expansion. Importantly, three of these structures are lightweight, per-rank
neighborhood structures, as proposed in Section 4. The neighborhood structures are:

{
N 0

A,↑,N 1
A,↑

} {
N 0

A,↑,N 2
I,↓

}
{NA,↑,NI,↑} {NA,↑,NA,↓,NI,↓} {NA,↑}{

NA,↑,N 1
A,↓

}
{NA,↑,NA,↓} {NA,↑,NI,↓} {NA,↑,NA,↓,NI,↑} {NA,↑,NA,↓,NI,↓,NI,↑}

E.2 DATASETS

DATASET STATISTICS

Table 3 provides the statistics for each dataset lifted to three topological domains: simplicial complex,
cellular complex, and hypergraph. The table shows the number of 0-cells (nodes), 1-cells (edges),
and 2-cells (faces) of each dataset after the topology lifting procedure. We recall that:

• the simplicial clique complex lifting is applied to lift the graph to a simplicial domain, with
a maximum complex dimension equal to 2;

• the cellular cycle-based lifting is employed to lift the graph into the cellular domain, with
maximum complex dimension set to 2 as well.

Table 3: Descriptive summaries of the datasets used in the experiments.
Dataset Domain # 0-cell # 1-cell # 2-cell

Cora Cellular 2,708 5,278 2,648
Simplicial 2,708 5,278 1,630

Citeseer Cellular 3,327 4,552 1,663
Simplicial 3,327 4,552 1,167

PubMed Cellular 19,717 44,324 23,605
Simplicial 19,717 44,324 12,520

MUTAG Cellular 3,371 3,721 538
Simplicial 3,371 3,721 0

NCI1 Cellular 122,747 132,753 14,885
Simplicial 122,747 132,753 186

NCI109 Cellular 122,494 132,604 15,042
Simplicial 122,494 132,604 183

PROTEINS Cellular 43,471 81,044 38,773
Simplicial 43,471 81,044 30,501

ZINC (subset) Cellular 277,864 298,985 33,121
Simplicial 277,864 298,985 769

DATASET SELECTION AND LIMITATIONS

The datasets employed in this work and other TDL studies are predominantly adapted from the GNN
literature. Among these, molecular datasets stand out due to the inherent importance of cycles and

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

hyperedges, which effectively capture chemical rings and functional groups. These are structures that
are naturally represented in topological domains.

While TDL methods are not intrinsically constrained to these datasets, the lifting procedures used
to construct higher-order cells introduce computational bottlenecks, particularly in memory usage.
For instance, operations such as cycle detection and clique enumeration, required for constructing
cellular complexes or simplicial complexes, respectively, become computationally prohibitive for
large or densely connected graphs.

To address these limitations, ongoing research is focused on developing scalable lifting procedures
that can extend TDL methods to broader datasets, including those with more complex structures or
larger scales. For example, Bernárdez et al. (2024) propose innovative topological liftings, paving the
way for more scalable and applicable datasets in TDL.

E.3 HYPERPARAMETER SEARCH

Five splits are generated for each dataset to ensure a fair evaluation of the models across domains.
Each split comprises 50% training data, 25% validation data, and 25% test data. An exception is
made for the ZINC dataset, where predefined splits are used (Irwin et al., 2012).

To avoid the combinatorial explosion of possible hyperparameter sets, we fix the values of all
hyperparameters beyond GCCNs: hence, to name a few relevant parameters, we set the learning
rate to 0.01, the batch size to the default value of TopoBenchmark for each dataset, and the cell
hidden state dimension to 32. Regarding the internal GCCN hyperparameters, a grid-search strategy
is employed to find the optimal set for each model and dataset. Specifically, we consider 10 different
neighborhood structures (see Section E.1), and the number of GCCN layers is varied over {2, 4, 8}.
For GNN-based neighborhood message functions, we vary over {GCN,GAT,GIN,GraphSage}models
from PyTorch Geometric, and for each of them consider either 1 or 2 number of layers. For the
Transformer-based neighborhood message function (Transformer Encoder model from PyTorch), we
vary the number of heads over {2, 4}, and the feed-forward neural network dimension over {64, 128}.
For node-level task datasets, validation is conducted after each training epoch, continuing until
either the maximum number of epochs is reached or the optimization metric fails to improve for 50
consecutive validation epochs. The minimum number of epochs is set to 50. Conversely, for graph-
level tasks, validation is performed every 5 training epochs, with training halting if the performance
metric does not improve on the validation set for the last 10 validation epochs. To optimize the
models, torch.optim.Adam is combined with torch.optim.lr_scheduler.StepLR
wherein the step size was set to 50 and the gamma value to 0.5. The optimal hyperparameter set is
generally selected based on the best average performance over five validation splits. For the ZINC
dataset, five different initialization seeds are used to obtain the average performance.

E.4 HARDWARE

The hyperparameter search is executed on a Linux machine with 256 cores, 1TB of system memory,
and 8 NVIDIA A100 GPUs, each with 80GB of GPU memory.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F MODEL SIZE

We provide details on model size for reported results in Section 6.

Table 4: Model size corresponding to results reported in Table 1.
Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 ZINC Cora Citeseer PubMed

Cellular

CCNN (Best Model on TopoBenchmark) 334.72K 101.12K 63.87K 17.67K 88.06K 451.85K 1032.84K 163.72K

GCCN ωN = GAT 15.11K 46.27K 68.99K 49.63K 39.78K 341.54K 1677.32K 344.83K

GCCN ωN = GCN 45.44K 45.25K 65.92K 30.69K 29.54K 801.16K 1507.59K 443.91K

GCCN ωN = GIN 63.62K 23.49K 49.03K 66.79K 64.35K 669.58K 1674.25K 211.97K

GCCN ωN = GraphSAGE 44.42K 76.99K 47.49K 115.17K 79.71K 1195.14K 741.5K 640.51K

GCCN ωN = Transformer 112.26K 78.79K 82.05K 115.43K 317.02K 249.51K 468.29K 331.59K

GCCN ωN = Best GNN, 1 Hasse graph 14.98K 18.88K 18.05K 15.91K 20.83K 150.12K 367.88K 66.50K

Simplicial

CCNN (Best Model on TopoBenchmark) 398.85K 10.24K 131.84K 135.75K 617.86K 144.62K 737.29K 134.40K

GCCN ωN = GAT 15.11K 46.27K 68.99K 49.63K 67.42K 341.45K 1677.32K 344.83K

GCCN ωN = GCN 45.44K 45.25K 65.92K 30.69K 64.35K 801.16K 1507.59K 443.91K

GCCN ωN = GIN 63.62K 23.49K 49.03K 66.79K 118.11K 669.58K 1674.25K 211.97K

GCCN ωN = GraphSAGE 44.42K 76.99K 47.49K 115.17K 147.30K 1195.14K 741.51K 640.51K

GCCN ωN = Transformer 113.15K 213.70K 82.05K 166.24K 148.83K 284.58K 468.29K 331.59K

GCCN ωN = Best GNN, 1 Hasse graph 19.07K 14.66K 31.11K 15.91K 29.54K 150.12K 367.88K 66.50K

Hypergraph

CCNN (Best Model on TopoBenchmark) 84.10K 14.34K 88.19K 88.32K 22.53K 60.26K 258.50K 280.83K

Table 5: Model sizes corresponding to results in Table 2.
Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN

TopoBenchmark 398.85K 397.31K 131.84K 135.75K 155.88K 782.34K 457.99K

1 Hasse graph / N , ωN = Best(GNN) 852.74K 851.97K 248.58K 291.39K 159.46K 791.56K 510.47K

1 Hasse graph for {N}, ωN = Best(GNN) 104.32K 153.09K 71.17K 54.85K 143.66K 741.51K 376.58K

CWN

TopoBenchmark 334.72K 101.12K 124.10K 412.29K 343.11K 1754.50K 163.72K

1 Hasse graph / N , ωN = Best(GNN) 350.46K 353.54K 95.75K 465.28K 900.23K 177.10K 159.56K

1 Hasse graph for {N}, ωN = Best(GNN) 219.65K 283.91K 78.85K 264.45K 138.95K 163.94K 138.95K

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

G MODEL TRAINING TIME

We provide training times for all experiments reported on in Section 6. We measure these training
times by running each experiment on a single A30 NVIDIA GPU. We note that these times include
the on-the-fly graph expansion method, which slows down the model forward proportionally to
dataset size. We plan on moving this process into data preprocessing in the future.

Table 6: Model training time (seconds) corresponding to results reported in Table 1.
Graph-Level Tasks Node-Level Tasks

Model MUTAG (↑) PROTEINS (↑) NCI1 (↑) NCI109 (↑) ZINC (↓) Cora (↑) Citeseer (↑) PubMed (↑)
Cellular

CCNN (Best Model on TopoBenchmark) 100 ± 23 132 ± 19 238 ± 89 254 ± 39 228 ± 44 75 ± 15 57 ± 4.4 128 ± 50

GCCN ωN = GAT 80 ± 11 64 ± 10 778 ± 118 486 ± 75 3173 ± 954 46 ± 3 63 ± 1 202 ± 22

GCCN ωN = GCN 43 ± 7 67 ± 16 544 ± 40 495 ± 108 4013 ± 620 46 ± 4 65 ± 3 149 ± 12

GCCN ωN = GIN 61 ± 18 59 ± 18 523 ± 119 386 ± 76 3301 ± 440 64 ± 8 77 ± 2 207 ± 33

GCCN ωN = GraphSAGE 43 ± 12 43 ± 3 691 ± 80 364 ± 102 2863 ± 262 49 ± 2 60 ± 3 211 ± 25

GCCN ωN = Transformer 50 ± 19 786 ± 147 1005 ± 27 1484 ± 181 15320 ± 5386 121 ± 20 94 ± 20 5459 ± 1374

GCCN ωN = Best GNN, 1 Aug. Hasse graph 33 ± 7 70 ± 24 451 ± 123 441 ± 130 3162 ± 340 47 ± 5 72 ± 6 194 ± 35

Simplicial

CCNN (Best Model on TopoBenchmark) 123 ± 57 104 ± 28 172 ± 50 183 ± 62 178 ± 86 143 ± 16 75 ± 23 114 ± 18

GCCN ωN = GAT 25 ± 5 70 ± 17 755 ± 158 794 ± 151 2242 ± 275 49 ± 3 68 ± 2 192 ± 38

GCCN ωN = GCN 40 ± 7 138 ± 26 548 ± 185 603 ± 181 2428 ± 833 49 ± 5 67 ± 2 167 ± 22

GCCN ωN = GIN 61 ± 7 66 ± 21 904 ± 180 538 ± 39 3603 ± 475 71 ± 6 77 ± 8 210 ± 42

GCCN ωN = GraphSAGE 31 ± 3 61 ± 27 572 ± 124 511 ± 74 1721 ± 201 51 ± 3 74 ± 8 221 ± 37

GCCN ωN = Transformer 35 ± 5 947 ± 333 1386 ± 404 1360 ± 410 7979 ± 1373 146 ± 58 77 ± 2 5281 ± 827

GCCN ωN = Best GNN, 1 Aug. Hasse graph 25 ± 2 78 ± 27 598 ± 31 312 ± 7 2681 ± 910 52 ± 4 72 ± 8 156 ± 16

Hypergraph

CCNN (Best Model on TopoBenchmark) 127 ± 48 96 ± 20 220 ± 74 128 ± 49 387 ± 105 121 ± 38 48 ± 1 177 ± 71

Table 7: Model training times (seconds) corresponding to results in Table 2.
Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN Yang et al. (2022)

Benchmark results Telyatnikov et al. (2024) 11 ± 2 60 ± 18 247 ± 65 311 ± 83 102 ± 39 101 ± 41 143 ± 35

GCCN, on ensemble of strictly aug. Hasse graphs *2, dig 14 ± 1 75 ± 8 413 ± 120 298 ± 15 121 ± 2 172 ± 6 285 ± 20

GCCN, on 1 aug. Hasse graph *2, dig 5 ± 1 59 ± 10 283 ± 90 217 ± 100 110 ± 3 166 ± 10 376 ± 27

CWN Bodnar et al. (2021a)

Benchmark results Telyatnikov et al. (2024) 11 ± 2 43 ± 5 240 ± 50 252 ± 92 54 ± 25 52 ± 5 119 ± 14

GCCN, on ensemble of strictly aug. Hasse graphs *2, dig 12 ± 1 73 ± 10 536 ± 38 426 ± 90 91 ± 17 49 ± 1 125 ± 19

GCCN, on 1 aug. Hasse graph *2, dig 11 ± 1 62 ± 11 573 ± 107 410 ± 64 96 ± 2 46 ± 1 130 ± 20

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

GNN used as
Neighborhoods

Figure 10: Performance versus size, scaled to best-performing model. The vertical axis range shows
models achieving within 10% of the best performance on that dataset.

H PERFORMANCE VERSUS SIZE COMPLEXITY

We show the plots similar to Fig. 5 for all datasets. Again here, the best model determines the amount
of GCCN layers and GNN sublayers we keep constant.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

I ADDITIONAL EXPERIMENTS ON LARGER NODE-LEVEL DATASETS

Table 8 additionally presents the experimental results on 4 heterophilic datasets introduced in Platonov
et al. (Amazon Ratings, Roman Empire, Minesweeper, and Questions). These represent larger node-
level classification tasks than those shown in the main Table 1, with up to 48,921 nodes and 153,540
edges in the case of the Questions graph. Except on this precise dataset, which was not considered
in previous TDL literature, we compare the results against CCNNs and hypergraph models from
Telyatnikov et al. (2024). We observe that overall GCCNs achieve similar performance than regular
CCNNs, and they outperform them by a significant margin on Minesweeper.

Amazon Ratings Roman Empire Minesweeper Questions
Best GCCN Cell 50.17 ± 0.71 84.48 ± 0.29 94.02 ± 0.28 78.04 ± 1.34
Best CCNN Cell 51.90 ± 0.15 82.14 ± 0.00 89.42 ± 0.00 -

Best GCCN Simplicial 50.53 ± 0.64 88.24 ± 0.51 94.06 ± 0.32 77.43 ± 1.33
Best CCNN Simplicial OOM 89.15 ± 0.32 90.32 ± 0.11 -

Best Hypergraph Model 50.50 ± 0.27 81.01 ± 0.24 84.52 ± 0.05 -

Table 8: Results on larger node level datasets, each experiment run with 5 seeds. We report accuracy
for Amazon Ratings and Roman Empire, and AUC-ROC for Minesweeper and Questions. The values
for the best CCNNs and hypergraph models are extracted from TopoBenchmark (Telyatnikov et al.,
2024).

31

	Domains of Topological Deep Learning
	Proofs
	Proof of Generality
	Proof of Equivariance
	Proof of Expressivity
	Homomorphism and Isomorphism Induced by Neighborhoods
	Weisfeiler-Leman (WL) tests on Combinatorial Complexes
	Definitions of k-GNNs and k-CCNNs
	Relationships between CCWL/GCWL tests and CCNNs/GCNNs
	Proof

	Time Complexity
	Key Definitions
	Complexity of N
	Complexity Using Combinatorial Complex Notations
	Complexity of a GCCN Layer
	Takeaways

	Software
	Additional details on experiments
	Neighborhood Structures
	Datasets
	Hyperparameter search
	Hardware

	Model Size
	Model Training Time
	Performance versus Size Complexity
	Additional experiments on larger node-level datasets

