
A APPENDIX

A.1 STATEMENT ON ETHICS AND PRIVACY

The value of medical data has increased dramatically in recent years. With it, the need for privacy
has intensified. Concerns surround companies and government agencies that collect information
from users, amid worries that medical records could be matched with data from smartphone use,
internet search, or social media to identify patients. This sensitive information can be monetized in
the form of ads served to those identified, or sold to insurance companies and hospitals. Bad actors
could potentially extort patients with threats to reveal their medical history.

In response, legislation to protect the right to privacy has been enacted in many countries, notably
the General Data Protection Regulation (GDPR) in the EU. While such measures give patients con-
trol over their identifiable data, regulations are at odds with society’s interest to advance healthcare
technology. In particular, deep neural networks depend on big data. Roadblocks imposed on medi-
cal data collection delay progress, potentially at the expense of our health. Anonymization or strong
de-identification is an attractive workaround, as unidentifiable data can be used without patient con-
sent. However, fool-proof removal of identifiable information from medical data, especially images,
remains a challenging and unsolved problem.

In this work, we offer a new approach to better ensure privacy through remodeling of sensitive
information. This allows data to be shared without compromising the value of the medically relevant
information that is crucially important for improving technology in healthcare.

A.2 MODEL-AGNOSTIC PREPROCESSING

To ensure quality, comparable signal intensity distributions, and a consistent orientation of the ac-
quired MR images, we apply various preprocessing steps. All steps can be seen as embodying
standard procedure and have been proven various times (e.g. Jude Hemanth & Anitha (2012); Roy
et al. (2013)) to positively affect algorithms. These preprocessing steps are applied prior to all
de-identification methods in our study.

Orientation Correction Images within MR datasets are often not consistently aligned which ul-
timately hampers the learning process. Thus, we leverage FSL (FMRIB Software Library) Smith
et al. (2004) to re-orient all images to the radiological orientation convention, the so-called LAS
orientation.

Bias Field Correction The bias field is a low-frequency degradation of an MR scan due to mag-
netic field inhomogeneities which is typically imperceptible to humans. If unaccounted for, this
degradation can induce different grayscale values on the same tissue type which, in turn, might im-
pair downstream algorithms (Juntu et al., 2008). We use the nonparametric N4BiasFieldCorrection
algorithm that comes with the ANTs library (Tustison et al., 2013).

Registration MR scans expose a high degree of variability primarily because of anatomical reasons
but also because patients are typically not consistently positioned within the MRI tube. We therefore
apply a non-rigid, double-affine TRSAA registration offered by the ANTs library to mitigate these
effects. The necessary registration template is chosen uniformly at random once for each dataset.

Region-of-Interest Segmentation The toolkit Robex (Robust Brain Extraction, Iglesias et al.
(2011)) was used to separate the brain from surrounding tissues. We have chosen this method as
its segmentations turned out to more robust than competing methods (e.g. Ségonne et al. (2004)).
On the flip side, this surplus in accuracy comes at the expense of longer execution times.

White Stripe Normalization1 As no significant performance differences between intensity normal-
ization schemes has been reported (Reinhold et al., 2019), we opt for the comparatively simple white
strip normalization that estimates both the mean µb and the (biased) standard deviation σb over the
image voxels xu,v,w belonging to the brain tissue (as indicated by bu,v,w(x) = bu,v,w):{

µb =

∑
u,v,w∈{1,...,S} bu,v,w · xu,v,w∑

u,v,w∈{1,...,S} bu,v,w
, σb =

∑
u,v,w∈{1,...,S} bu,v,w · (xu,v,w − µb)2∑

u,v,w∈{1,...,S} bu,v,w

}
1Only done for our model as other algorithms expect no change in scaling
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Finally all voxel values are shifted and rescaled using the z-score transformation x̂ = x−µb

σb
.

A.3 LOSS FUNCTION CONSIDERATIONS

We have initially experimented with the relativistic average loss Ra-LSGAN variant suggested by
(Jolicoeur-Martineau, 2018):

LRaLSGAN
G = Exf∼PY

[
(DΘ(xf )− Exr∼PX

DΘ(xr)− 1)2
]
+ Exr∼PX

[
(DΘ(xr)− Exf∼PY

DΘ(xf ) + 1)2
]

LRaLSGAN
D = Exr∼PX

[
(DΘ(xr)− Exf∼PY

DΘ(xf )− 1)2
]
+ Exf∼PY

[
(DΘ(xf )− Exr∼PX

DΘ(xr) + 1)2
]

where PX ,PY denote the original resp. the fake distribution induced by GΦ and we drop the con-
ditioning variable γ(x) from the notation.. Observe, however, that this loss function is incompatible
with our conditional scenario as Exr∼PX

DΘ(xr) and Exf∼PY
DΘ(xf ) are computed by averaging

across scans associated to different conditional information. To solve this problem, we make sure
that every patient can occur at most once in a batch and get rid of the aforementioned expectations:

LG = E(xf ,xr)∼(PY ,PX)

[
(DΘ(xf )−DΘ(xr)− 1)2

]
+ E(xr,xf )∼(PX ,PY )

[
(DΘ(xr)−DΘ(xf ) + 1)2

]
= 2E(xr,xf )∼(PX ,PY )

[
(DΘ(xr)−DΘ(xf ) + 1)2

]
LD = E(xr,xf )∼(PX ,PY )

[
(DΘ(xr)−DΘ(xf )− 1)2

]
+ E(xf ,xr)∼(PY ,PX)

[
(DΘ(xf )−DΘ(xr) + 1)2

]
= 2E(xr,xf )∼(PX ,PY )

[
(DΘ(xf )−DΘ(xr) + 1)2

]
Observe that this identical to the construction of R-LSGAN if we follow the principles of Jolicoeur-
Martineau (2018).

A.4 BINARY DOWNSAMPLING

Suppose that we have some given input mask m0 ∈ {0, 1}2
n×2n×2n

for some fixed n ∈ N. Let
(m′)i=1,...,n−p ∈ [0, 1]2

n−i×2n−i×2n−i

further denote the result of applying average pooling i times
onm0 and stopping at some minimal resolution 2p×2p×2p, p ∈ N. A new sequence (m′)i=1,...,n−p
of binary representations can then be constructed by interpreting each voxel value of m′i as a
Bernoulli parameter determined by a maximum likelihood estimation over a (flattened) patch of
2i+1 ·2i+1 ·2i+1 = 23(i+1) (binary) realizations stemming fromm0. Accordingly, this interpretation
permits us to view m′i as a volume of Bernoulli parameters from which we can derive m′′i by sam-
pling in a voxel-wise fashion. Most importantly, this construction preserves2. the non-zero ζ(m0)

proportion of m0 in expectation (i.e.
(

1
2n

)3∑
u,v,wm

(u,v,w)
0 = E

[(
1

2n−i

)3∑
u,v,wm

′(u,v,w)
i

]
for

i = 1, . . . , n − p). Although this downsampling scheme is stochastic in essence, we observe that
the mapping becomes deterministic if a specific Bernoulli parameter is found by averaging over a
region (patch) of constant realizations. Consequently, voxels of m′i corresponding to the cerebral
cortex (“brain boundary”) expose higher entropy than voxels from the interior of the brain. We con-
jecture that this makes the proposed generator more robust as it cannot rely on not having to model
certain voxels.

A.5 EXECUTION TIME MEASUREMENT

As anonymization tools are meant to be applied within a clinical environment, it is important for
them not to be overly time-consuming. Therefore, we measure the elapsed time3 that each method
takes. To put all methods on an equal footing, we decide to start measuring the time just before
the NifTi-14 image is loaded and stop measuring once the de-identified NifTi-1 scan was generated.
Moreover, we decide to omit the time that was spent in Model-Agnostic Preprocessing since it is
the same for all methods. All methods are single-threaded and we only execute one process at a
time. The benchmark system is given by a Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz, 252 GiB

2A proof of this can be found Section A.6
3Wall clock time
4NifTi-1 is a widely-established format for MR imagery, used to ship OASIS-3 & ADNI
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Table 1: Execution Time Measurement: Mean and standard deviations are aggregated over 200 runs
on different images.

of RAM and 6 Quadro RTX 6000 GPUs (24 GiB main memory) of which we only use one. All
methods are executed exactly 200 times.

In Table 1 we observe that C-DeID-GAN’s execution time is in line with the other de-identification
methods. It ranks second, however QUICKSHEAR is more than two times faster than C-DeID-GAN and
DEFACE, with the other two methods, FACEMASK and MRIWATERSHED, taking the most time per sample.
It is worthwhile to mention that both QUICKSHEAR and C-DeID-GAN leverage the Robex (Iglesias et al.,
2011) algorithm to compute a brain mask, which, when run in isolation, already takes 27 seconds
per sample on average. This insight provides motivation to speed up either method by supplanting
Robex with a faster algorithm if time constraints are a priority.

A.6 PROOFS

Sparsity Preservation of Binary Downsampling. Assume thatm ∈ {0, 1}2S×2S×2S denotes some
arbitrary binary image. Let m′ ∈ {0, 1}S×S×S the result of performing 2 × 2 × 2 average pooling
on m. We interpret each voxel value m′i,j,k as a parameter to a Bernoulli distribution estimated by
averaging over 8 voxel values from m allowing us to draw a sample from each voxel. The sampled
result, denoted bym′′, is binary again and preserves the degree of sparsity ζ(m) ofm in expectation,
i.e.:

ζ(m′′) = E

 1

S3

∑
i,j,k

m′′i,j,k

 =
1

(2S)3

∑
i,j,k

mi,j,k = ζ(m)

Proof :

ζ(m′′) = E

 1

S3

S−1∑
i,j,k=0

m′′i,j,k


= E

 1

S3

S−1∑
i,j,k=0

z ∼ B

p = 1/8

1∑
i0=0

1∑
j0=0

1∑
k0=0

m2i+i0,2j+j0,2k+k0


=

1

S3

S−1∑
i,j,k=0

E

z ∼ B
p = 1/8

1∑
i0=0

1∑
j0=0

1∑
k0=0

m2i+i0,2j+j0,2k+k0


=

1

S3

S−1∑
i,j,k=0

1/8

1∑
i0=0

1∑
j0=0

1∑
k0=0

m2i+i0,2j+j0,2k+k0

=
1

(2S)3

2S−1∑
i,j,k=0

mi,j,k = ζ(m)

where the last step follows from the observation that every element in m occurs exactly once in the
summation.

A.7 HYPERPARAMETERS

The table below provides a list of the hyperparameter values used in the experiments appearing in
the main text.
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Hyperparameter Value

Batch size 2
Number of steps (OASIS-3, ADNI) 30,000
Min. generated resolution s 4
Max. generated resolution S 128
Number of blocks NB 6
Kernel size k 5
Leaky ReLU steepness 0.2

A.8 BENCHMARK DE-IDENTIFICATION METHODS

We compare our result with four publicly available and widely-established methods for de-
identification of MRI head scans, depicted in Figure 1 in the main text. All methods have in common
that they (1) are not deep-learning-driven, (2) require no additional training and (3), are used on a
day-to-day basis by clinical- and neuroscientists. All procedures were applied with default settings
on images of resolution 128×128×128.

QUICKSHEAR (Schimke et al., 2011) computes a plane to divide a given MRI into two parts: one
containing facial structures, and the other containing the remainder of the scan. Voxels in the first
part are set to zero.

FACE MASK (Milchenko & Marcus, 2013) uses a filtering method to blur the facial features. Based on
registration to an atlas, the face region is identified, normalized and filtered. The result is transformed
back to the original image space.

DEFACE (Bischoff-Grethe et al., 2007) estimates the probabilities of voxels belonging to the face
based on an atlas of healthy control subjects. Intensities of voxels whose probabilities are small
enough are set to zero.

MRI WATERSHED (Ségonne et al., 2004) de-identifies images by extracting only the brain using a
watershed-based approach.

A.9 STUDY ON DE-IDENTIFICATION QUALITY

In the main text, we report the identification rate with worker uncertainty combined. Cases where the
worker selected “uncertain” were randomly assigned one of the five de-identification choices. The
reason for combining the uncertain responses is so that the results for each method reflect the same
number of responses. In the table and figures below, we explicitly separate the correct identification
rate from the uncertainty rate. The overall results to not change appreciably, but we notice that
workers were most frequently uncertain for MRI WATERSHED. Apart from the evaluation in Figure 3,
we also provide a box-whisker plot in Figure 8 which depicts the bootstrapped mean identification
rate distribution of each method. The percentage of uncertain cases is visualized in Figure 7. We
also report disentangled results

Table 2: Disentangled evaluation. Rather than assigning uncertain cases to a random label, we can
also only consider certain cases to calculate the idenfication rate. The results are slightly different
but generally deliver the same message.
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(a) ADNI (b) OASIS-3

Figure 7: Uncertainty in User Study. Workers can explicitly express uncertainty by clicking on the
question mark option (see Figure 3 in the main text). The uncertainty rate measures how frequently
workers are uncertain on average. The high uncertainty rate registered for MRI WATERSHED can be
explained by the nature of said method which solely retains the brain. As it is not clear how to map
the original 2D rendering to one of the brains, workers thus resort to expressing uncertainty more
often than when confronted to other methods.

A.10 DEEP LEARNING-BASED AGE PREDICTION

We use an adapted ResNet-18 He et al. (2015) architecture with 3D convolutions and Instance Nor-
malization (Ulyanov et al., 2016) for the age prediction. A supervised setting with L2 loss function
and chronological age as ground truth labels is used to train the model. Random cropping (cropped
input size 64 × 96 × 96) and gamma contrast data augmentation is applied. Furthermore, we use
the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10−4. The batch size was chosen
to be 16.

A.11 CONTROLLING SYNTHESIS VIA THE PRIVACY TRANSFORM

The scaling limits (αmin, αmax) shown in Figure 5 in the main text were chosen to reflect the dis-
tribution of brain sizes present in the data. We are interested in showing that the GAN is able to
realistically synthesize volumes in approximately the same conditions that it has seen during train-
ing. We identify the 5% and 95% quantiles of the brain mask volumes, η5 resp. η95. From this, we
set limits αmin = η5/η50 ≈ 0.88 and αmax = η95/η50 ≈ 1.1. Thus, (αmin, αmax) reflect the extremes
of head size appearing in the training data.

A.12 LIMITATIONS AND FUTURE WORK

We note that certain existing privacy methods affect downstream tasks such as brain volume es-
timation and age prediction to a lesser extent than C-DeID-GAN, and a future line of research will
be to improve the fidelity of GAN-generated volumes to mitigate this effect. This will likely en-
tail addressing data limitations typical for medical imaging, especially by experimenting with data
augmentation as recently suggested by (Karras et al., 2020). Another limitation of our work is the
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(a) ADNI (b) OASIS-3

Figure 8: Outcome of the User Study: The above distributions are obtained by calculating the mean
identification rate on 1,000 bootstrap samples for each method and dataset. Whenever a worker
expressed uncertainty, a decision was sampled uniformly at random.

resolution. Other methods operate at the native 256×256×256 resolution with little issue, but GANs
have not yet been proven to generate content of such dimension due to several reasons, chief among
them: memory limitations. Possible solutions may include network structures with more economic
designs such as Octree Generating Networks (Tatarchenko et al., 2017). Finally, we are interested
in seeing our model being deployed to preserve privacy in clinical and research settings. This will
necessitate the creation of a model that works regardless of the source domain (e.g. scanner, popu-
lation), motivating future work in domain adaptation.

6



A.13 SYNTHESIZED IMAGES

Below, we provide examples of synthesized images and renderings from our model and other de-
identification methods.

Figure 9: Amazon Mechanical Turk User Study: Renderings of five OASIS-3 subjects
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Figure 10: Amazon Mechanical Turk User Study: Renderings of five ADNI subjects
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Figure 11: Original MRI slices and those generated from C-DeID-GAN (OASIS-3): Slices (of a single
patient) run from left to right and from top to bottom. Each box corresponds to one slice index and
contains the original on the left and the synthesized counterpart on the right.
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Figure 12: Original MRI slices and those generated from C-DeID-GAN (ADNI): Slices (of a single pa-
tient) run from left to right and from top to bottom. Each box corresponds to one slice index and
contains the original on the left and the synthesized counterpart on the right.
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