
A Robotics Simulation

A.1 Physics Engine

Physics-based simulation has played a vital role in the field of robotics, enabling rapid prototyp-
ing, testing and experimentation. The accuracy and speed of simulation has scaled with available
computation. Modern methods such as RL have leveraged this to simulate very large data sets that
are otherwise impractical to collect from the real world, hence far more complex and general be-
haviours can be learnt. The majority of simulated robotics has focused on rigid-body dynamics and
vision sensors. More recently, a range of specific environment suites have been introduced to bring
simulation closer to reality or to facilitate research in an under-represented direction [1, 2, 3, 4, 5].
Collectively, these works highlight the importance of increasing the breadth and capabilities of sim-
ulation software available to researchers.

There are many choices for physics engines when developing a new suite. Here we choose the
PyBullet [6] for its fast GPU rendering, support for deformable objects [7], fast and reliable kine-
matics and dynamics solvers, and its demonstrated sim-to-real success in robotics [8]. Importantly,
PyBullet is open source and non-commercialised software which helps to improve accessibility and
lower the barrier of entry for RL research. That said, the tools used here to build our tactile suite are
available in other physics engines such as Mujoco, Gazebo, Nvidia-isaacgym and Unity ML agents.

A.2 Control

Throughout this work we use Cartesian velocity control where the control input is a desired velocity
(twist) specified by a 6 DoF action constrained to the allowed modes of control of the task. A control
rate specifies the frequency that new actions can be sent to the robot, with maximum velocity limits
also imposed. For most of our experiments, we set a velocity control rate of 10 Hz, a maximum
linear velocity of 10mms−1 and a maximum angular velocity of 5 ° s−1. When undergoing a series
of predefined and random actions we notice no significant difference in Tool Centre Point (TCP)
pose between simulation and the real robot.

Work-space coordinate frames are set in both simulation and reality, specific to each environment,
with each action sent to the robot consisting of a Cartesian move relative to the work frame.

Table 4: RL and network hyperparameters.
Param Value

Fe
at

ur
e

E
xt

ra
ct

or

Input dim [128, 128, C]
Conv filters [32, 64, 64]
Kernel widths [8, 4, 3]
Strides [4, 2, 1]
Pooling None
Output dim 512
State Encoder [64, 64]
Activation ReLU
Initialiser Orthoganal

R
L

N
et Policy [256, 256]

Value [256, 256]
Activation Tanh

PP
O

pa
ra

m
et

er
s

Learning Rate 3× 10−4

n/ Envs 10
Epoch steps 2048
Batch size 64
n/ Epochs 10
Discount (γ) 0.95
GAE lambda 0.9
Clip range 0.2
Entropy coeff 0.0
VF coeff 0.5
Max grad norm 0.5
KL limit 0.1
Optimiser Adam

Therefore, the learned policies can be transferred from
sim-to-real without exactly replicating the simulated task;
for example edges and surfaces can be placed in alterna-
tive locations provided the work frame is set correctly.
As a consequence, the policy transfers even when there
are notable differences in the simulation, such as mirrored
arm configurations used in this work. Thus, in principle
the policies could also be transferred to other robot arms,
providing the same speed and frequency of control can be
achieved.

B Reinforcement Learning Parameters

Near-default hyper-parameters are used in all training
(full list in Table 4). Image-based observations use the
Atari Nature [9] convolutional layers followed by two
256-node fully connected (FC) layers. State observations
use only the FC layers. For tasks that require both im-
age and state data, the state data is passed through two
64-node FC layers and the output concatenated with the
flattened output of the convolutional layers, which is then
passed through the final FC layers for action and value
prediction. The convolutional weights are shared for all
policy and value networks. Small random image transla-
tion augmentations help to improve performance and sta-
bilise training, as proposed in [10, 11].

1

C Reinforcement Learning Environment Details

Table 5: Edge Follow environment description.
Observation • Env State:

{TCP pos, TCP lin vel, Goal pos, Edge ang}
• Tactile:
{Tactile Image}
• Vision:
{RGB Image}
• Vision + Tactile:
{RGB Image, Tactile Image}

Action Space {x, y}
Reward - (Euclidean distance from TCP to goal +

perpendicular distance from TCP to edge)
Termination • max episode length reached

• euclidean distance from TCP to goal < 1cm
History 1 Frame.
Randomisation • Edge randomly orientated through 360°.

• Distance tip is embedded onto edge is randomly
selected between 1.5mm and 3.5mm.

Table 6: Surface Follow environment description.
Observation • Env State:

{TCP pos, TCP orn, TCP lin vel, TCP ang vel,
Goal pos, Target surface height, Target surface
normal}
• Tactile:
{Tactile Image}
• Vision:
{RGB Image}
• Vision + Tactile:
{RGB Image, Tactile Image}

Action Space {z,Rx,Ry}
Reward -(z difference between TCP and local surface in-

dex +
cosine difference between TCP normal and local
surface normal)

Termination • max episode length reached
• euclidean distance from TCP to goal < 1cm

History 1 Frame.
Randomisation • Surface randomly generated w/ OpenSimplex

noise.
• Direction of goal randomly selected from
[0°, 360°].

Table 7: Object Roll environment description.
Observation • Env State:

{TCP pos, TCP orn, TCP lin vel, TCP ang vel,
Obj pos, Obj orn, Obj lin vel, Obj ang vel, Goal
pos, Obj radius}
• Tactile:
{Tactile Image, Goal pos}
• Vision:
{RGB Image, Goal pos}
• Vision + Tactile:
{RGB Image, Tactile Image, Goal pos}

Action Space {x, y}
Reward -(euclidean distance from object to goal)
Termination • max episode length reached

• euclidean distance from object to goal < 1mm
History 1 Frame.
Randomisation • Random starting position of object in TCP

frame.
• Random marble size between 5mm and 10mm
diameter.
• Random distance embedded into the sensor.

Table 8: Object Push environment description.
Observation • Env State:

{TCP pos, TCP orn, TCP lin vel, TCP ang vel,
Obj pos, Obj orn, Obj lin vel, Obj ang vel, Goal
pos, Goal orn}
• Tactile:
{Tactile Image, TCP pos, TCP orn, Goal pos,
Goal orn}
• Vision:
{RGB Image, TCP pos, TCP orn, Goal pos, Goal
orn}
• Vision + Tactile:
{RGB Image, Tactile Image, TCP pos, TCP orn,
Goal pos, Goal orn}

Action Space {y,Rz}
Reward -(Euclidean distance from object to goal +

cosine distance from object orn to goal orn +
cosine distance from TCP normal to object nor-
mal)

Termination • max episode length reached
• Euclidean distance from object to final goal <
2.5cm

History 1 Frame.
Randomisation • Random trajectory of goals generated with

OpenSimplex Noise.

Table 9: Object Balance environment description.
Observation • Env State:

{TCP pos, TCP orn, TCP lin vel, TCP ang vel,
Obj pos, Obj orn, Obj lin vel, Obj ang vel}
• Tactile:
{Tactile Image}
• Vision:
{RGB Image}
• Vision + Tactile:
{RGB Image, Tactile Image}

Action Space {x, y}
Reward +1 per step
Termination • max episode length reached

• object tilts passed set angle (35°)
History 2 Frames.
Randomisation • Random external force perturbation applied at

start of episode.

2

D Full Reinforcement Learning Results

(a) Edge Follow (b) Surface Follow (c) Object Roll (d) Object Push (e) Object Balance

Figure 8: Full training results of reinforcement learning agents. Results are smoothed with a window size of
50 followed by averaging over 3 seeds. Shaded regions indicate maximum and minimum reward achieved over
the 3 seeds (after smoothing).

(a) Edge Follow (b) Surface Follow (c) Object Roll (d) Object Push (e) Object Balance

Figure 9: Full evaluation of reinforcement learning agents throughout training. 10 evaluation episodes oc-
cur every 20,000 steps, using deterministic actions. Results averaged over 3 seeds. Shaded regions indicate
maximum and minimum reward achieved over the 3 seeds.

3

E Pix2Pix Architecture

Table 10: Pix2Pix architecture and pa-
rameters.

Layer Details

Pa
ra

m
s

Batch Size 64
Learning Rate 0.0002
Image Norm True
Image Trans [2.5%, 2.5%]
Loss Weights Wgan: 1.0, Wpix: 100.0]

G
en

er
at

or

Input dim [128, 128, 1]
Output dim [128, 128, 1]

Input Output Dropout Norm
Down 1 1 64 None False
Down 2 64 128 None True
Down 3 128 256 None True
Down 4 256 512 0.5 True
Down 5 512 512 0.5 True
Down 6 512 512 0.5 True
Down 7 512 512 0.5 True
Up 1 512 512 0.5 True
Up 2 1024 512 0.5 True
Up 3 1024 512 0.5 True
Up 4 1024 256 0.5 True
Up 5 512 128 None True
Up 6 256 64 None True

D
is

cr
im

in
at

or

Input dim [128, 128, 2]
Output dim [16, 16, 1]

Input Output Norm
Disc 1 2 64 False
Disc 2 64 128 True
Disc 3 128 256 True
Disc 4 256 512 True

Real Image

Target Image

Generated Image
Generator

Discriminator

Figure 10: Real-to-sim translation of the tactile images uses a
pix2pix-trained GAN. Real tactile images are processed by the
generator to produce images that match the target simulated tac-
tile images. The Discriminator is tasked with detecting whether an
input tactile image pair is real or fake.

F Image Translation Data Collection Real Generated Simulated Difference

E
dg

e
Su

rf
ac

e
Pr

ob
e

Figure 11: Image comparison between pairs of gen-
erated and simulated tactile images. Images are
from validation sets for Real-to-Sim image transla-
tion. SSIM is used to create difference images.

For the edge-following environment, we collect
tactile images pressed onto a straight edge, vary-
ing the orientations, radial displacements and pen-
etration of the sensor. A hemispherical sensor tip
is used with the tool center point (TCP) located
centrally at the end of the sensor. Relative to the
TCP, the data is gathered over ranges: orienta-
tion Rz ∈ [−179°, 180°], radial displacement y ∈
[−6, 6]mm, and penetration z ∈ [3.5, 5.5]mm.

For the surface-following and object-pushing en-
vironments, we collect tactile images pressed onto
a flat surface, varying the orientations and pene-
tration, also with a hemispherical tip. Relative to
the TCP, data is gathered over ranges: orientation
{Rx,Ry} ∈ [−15°, 15°], and penetration z ∈ [2, 5]mm.

For the object-rolling environment, we collect tactile images pressed onto a spherical probe stimulus,
using a flat sensor tip appropriate to this environment. 9 spherical probe stimuli are used, ranging
over [2, 6]mm radius in 0.5mm increments. The sensor is positioned to contact the probe at random
placements within a 15mm disk surrounding the centre of the tip. In this case, shear is not introduced
into the data collection because rolling objects induce negligible motion-dependent shear.

F.1 Full SSIM Scores

We measure the SSIM scores across the validation sets collected for each task, each consisting of
2000 image pairs. For the Edge, Surface and Probe datasets respectively, we found mean scores of
[0.995, 0.992, 0.994], min scores of [0.985, 0.982, 0.974], and max scores of [0.999, 0.999, 0.999].
Whilst high scores are expected due to the relatively sparse target images, this indicates strong
performance in all cases.

4

G Supervised Learning Comparison
Table 11: Mean Absolute Error (MAE) for Task I: pre-
dicting polar angle (radians), Task II: predicting radial
displacement (mm) and Task III*: predicting position
of a probe (mm).

Approach Task I Task II Task III*
Ours 0.079 0.119 0.059

Ding et al. [12] 0.254 0.45 0.73

*Indicates some difference between tasks as discussed below.

Whilst we were unable to find a sim-to-real re-
inforcement learning baseline that does not re-
quire specific hardware, we can compare to pre-
vious work simulating the TacTip sensor for su-
pervised learning tasks. Ding et al. [12] used
an elastic deformation approach to simulate the
TacTip sensor. They focussed on supervised
learning from simulated pin positions rather
than tactile images, and could accurately pre-
dict edge position and orientation, and the (x, y) position of a pole pressed into the sensor. In this
section we draw a comparison between the presented method on their supervised learning tasks.

The tasks are defined as follows: Task I predicts polar angle θ of an edge pressed into the sensor;
Task II predicts radial displacement r of an edge pressed into the sensor; and Task III predicts the
(x, y) location of the centre of a pole pressed into the sensor. More details are provided in [12] .

As this is not presented as a standardised benchmark, and we do not have access to the exact setup
used, there are some differences in how these tasks have been carried out between the present work
and [12]. In particular, we differ notably in Task III, where we use a flat TacTip sensor tip instead
of the original hemispherical tip, because we are using the data, GANs and objects acquired for the
object rolling task which needed a flat tip. That said, we expect there will only be small differences
in accuracy between flat and curved TacTip tips.

For each task we first train a convolutional neural network to predict r, θ, x and y using a dataset
of 10,000 simulated tactile images per task (taking ∼145 seconds to collect). We then collect a
dataset of 2000 real sensor images and using GANs trained on edge or probe data, we translate from
real-to-sim images to create the test datasets of generated images. The performance of the trained
networks over the full generated datasets is then measured and compared with the results from [12].

As our simulated tactile data is comprised of images, we use a convolutional neural network (CNN).
To avoid boundary issues over full rotations, we predict a sine/cosine encoding of angle. The CNN
has 4 convolutional layers (each with kernel: 5, stride: 1, padding: 2, maxpool: 2) and 3 fully
connected layers (dimensions = 1024, 512, output dim). Batch normalization is applied only to the
convolutional layers before the ELU [13] activation. Images of resolution 256 × 256-pixels were
used.

Table 11 shows a large reduction in Mean Absolute Error (MAE) for both radial displacement and
angle prediction in comparison with previous work simulating the TacTip [12]. A 3-fold improve-
ment is found in predicting the angle θ (Task I) and a near 4-fold improvement when predicting
radial distance (Task II). We also find a large decrease in MAE from 0.73mm to 0.059mm for
position prediction (Task III), although as mentioned above there are some differences in setup.

5

References
[1] C. Chen, U. Jain, C. Schissler, S. V. A. Gari, Z. Al-Halah, V. K. Ithapu, P. Robinson, and

K. Grauman. SoundSpaces: Audio-Visual Navigation in 3D Environments. In ECCV, volume
12351 LNCS, pages 17–36. Springer, 2019.

[2] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. RLBench: The Robot Learning Benchmark
& Learning Environment. RAL, 5(2):3019–3026, 2019.

[3] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n. robosuite: A Modular Simulation
Framework and Benchmark for Robot Learning. arXiv:2009.12293, 2020.

[4] Y. Hu, L. Anderson, T. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. Difftaichi: Differ-
entiable programming for physical simulation. In Proc. of ICLR, 2020.

[5] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. NeuralSim: Augmenting
Differentiable Simulators with Neural Networks. arXiv:2011.04217, 2020.

[6] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. Available: http://pybullet.org, 2016–2019.

[7] J. Matas, S. James, and A. J. Davison. Sim-to-real reinforcement learning for deformable
object manipulation. In CoRL, pages 734–743. PMLR, 2018.

[8] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine,
R. Hadsell, and K. Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasping
via randomized-to-canonical adaptation networks. In CVPR, pages 12627–12637, 2019.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[10] I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv:2004.13649, 2020.

[11] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning
with augmented data. In Advances in Neural Information Processing Systems, volume 33,
pages 19884–19895. Curran Associates, Inc., 2020.

[12] Z. Ding, N. F. Lepora, and E. Johns. Sim-to-Real Transfer for Optical Tactile Sensing. ICRA,
pages 1639–1645, 2020.

[13] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

6

http://pybullet.org

	Robotics Simulation
	Physics Engine
	Control

	Reinforcement Learning Parameters
	Reinforcement Learning Environment Details
	Full Reinforcement Learning Results
	Pix2Pix Architecture
	Image Translation Data Collection
	Full SSIM Scores

	Supervised Learning Comparison

