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ABSTRACT

Deep learning models, such as wide neural networks, can be conceptualized as
nonlinear dynamical physical systems characterized by a multitude of interacting
degrees of freedom. Such systems in the infinite limit, tend to exhibit simplified
dynamics. This paper delves into gradient descent-based learning algorithms, that
display a linear structure in their parameter dynamics, reminiscent of the neural
tangent kernel. We establish this apparent linearity arises due to weak correlations
between the first and higher-order derivatives of the hypothesis function, concern-
ing the parameters, taken around their initial values. This insight suggests that
these weak correlations could be the underlying reason for the observed lineariza-
tion in such systems. As a case in point, we showcase this weak correlations struc-
ture within neural networks in the large width limit. Exploiting the relationship
between linearity and weak correlations, we derive a bound on deviations from
linearity observed during the training trajectory of stochastic gradient descent. To
facilitate our proof, we introduce a novel method to bound the asymptotic behav-
ior of random tensors and establish that every tensor of this kind posses a unique,
tight bound.

1 INTRODUCTION

Deep learning in general, and particularly over-parameterized neural networks, revolutionized vari-
ous fields (Graves et al. (2013); He et al. (2016); Krizhevsky et al. (2012); Silver et al. (2016)), and
they are likely to do much more. Yet, the underlying reason for their unprecedented success remains
elusive. These systems can be interpreted as non-linear dynamical physical systems, characterized
by a multitude of interacting degrees of freedom, which makes an exact description of their behavior
exceedingly hard. However, it is well established that dynamical physical systems when expanded
to an infinite number of degrees of freedom tend to exhibit a simplified form of dynamics (Anderson
(1972)), therefore, it seems plausible to consider such a limit in the context of deep learning systems.

A seminal study in 2018 (Jacot et al. (2018)), demonstrated that wide, fully connected neural net-
works, undergoing deterministic gradient descent, behave as though they were linear with respect
to their parameters, (while maintaining a highly non-linear structure in their inputs). This structure
has been denoted as the neural tangent kernel (NTK). The result sparked a plethora of subsequent
research, generalizing it to other architectures, investigating the rate of convergence towards this
linear limit, exploring the deviation of the parameters themselves from their initial configuration,
decoding the structure of the kernels, and leveraging this knowledge to enhance our understanding
of wide neural networks in general (Lee et al. (2019); Li et al. (2019); Cao & Gu (2019); Karniadakis
et al. (2021); Huang et al. (2021); Bartlett et al. (2021)).

Subsequent discussions arose regarding the role of this limit in the exemplary performance of wide
neural networks. Several studies have demonstrated that in certain contexts, infinitely wide neural
networks converge to their global minimum at an exponential rate (Jacot et al. (2018); Lee et al.
(2019); Du et al. (2019); Allen-Zhu et al. (2019a;b); Daniely (2017); Li & Liang (2018); Du et al.
(2018); Xu et al. (2020)). Moreover, wide neural networks have been posited as effective tools for
generalization, with connections drawn to the double descent phenomenon (Belkin et al. (2019);
Nakkiran et al. (2021); Mei & Montanari (2022)). However, these conclusions encounter some
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contention when juxtaposed with empirical evidence. Notably, several experiments indicate that
for real-world data, NTK-based learning is less effective than its wide (albeit finite) neural network
counterparts (Lee et al. (2020); Fort et al. (2020)). This apparent "NTK inferiority paradox” suggests
that the relationship between the NTK limit and the success of finite neural networks may be more
intricate than initially presumed.

An under-explored area within the realm of the neural tangent kernel limit pertains to the founda-
tional principles responsible for this linearization. Chizat et al. (2019) proposed that any learning
system, under a gradient-based algorithm, embodies an intrinsic scale that directs the system’s lin-
earization. Furthermore, the introduction of an external parameter, can modulate this inherent scale,
thereby influencing the system’s tendency towards linearization. Liu et al. (2020) demonstrated that
the related ratio between the subordinate/spectral norm of the Hessian, and the euclidean norm of
the Gradient that governs linearization. Their work also elucidated that in wide neural networks this
ratio tends to be small.

1.1 OUR CONTRIBUTIONS

1. We establish that for gradient descent-based learning, linearity is equivalent to weak corre-
lations between the first and subsequent derivatives of the hypothesis function concerning
its parameters at their initial values (3.3). This equivalence is suggested as the fundamental
cause for the linearization observed in wide neural networks.

2. We prove a directly that wide neural networks display this weak derivative correlations
structure. By relying and extending the tensor programs formalism (Yang & Littwin
(2021)), our approach uniformly addresses a broader spectrum of architectures at once,
than any other proof we are aware of (4.2).

3. Drawing from the same concepts, we demonstrate how modifications in the architecture
of linearizing learning systems, and more specifically, wide neural networks, affect the
rate of linearization. This finding is juxtaposed Chizat et al. (2019)’s result, regarding the
implications of the introduction of an external scale (3.3.2,4.2).

4. Harnessing the formalism of weak derivatives correlations, we derive a bound on the devia-
tion from linearization over time during learning, when utilizing stochastic gradient descent
(4.1). This is a generalisation of the traditional result for deterministic gradient descent (Lee
et al. (2019)). This is crucial, as in most practical scenarios, stochastic gradient generalize
better than deterministic gradient descent (Lee et al. (2020); Fort et al. (2020)).

5. We introduce the notion of random tensor asymptotic behavior, as an effective analytical
tool to describe the asymptotic behavior of random tensors (2). Such tensors are not only
integral to machine learning, but also serve a pivotal role in diverse mathematical and phys-
ical frameworks. Understanding the evolution of these tensors typical asymptotic behavior
is relevant for addressing many questions across these fields.

The overarching simplicity and broad applicability of our findings suggest that weak derivatives cor-
relations could very well be the foundational cause for the prevalent linearization attributes observed
in wide neural networks, and possibly for other linearizing systems.

2 RANDOM TENSOR ASYMPTOTIC BEHAVIOR

Random tensors play a fundamental role in machine learning in general, and in this work in partic-
ular. In this section, we demonstrate the effectiveness of employing the stochastic big O notation
of the subordinate norm to characterize the asymptotic behavior of a general random tensor series
(hereinafter referred to as a random tensor). Addressing the asymptotic behavior of such tensors
involves two inherent challenges: the complexity arising from their multitude of components, and
the stochastic nature of these components.

1. To avoid the first challenge, we focus on the tensor’s subordinate norm, as elucidated in
Section 2.1. This norm exhibits a wide array of useful properties, rendering it highly effec-
tive for working with random tensors, particularly concerning linear products.
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2. In Section 2.2, we argue that the stochastic big O notation is the most effective tool for char-
acterizing the asymptotic behavior of random variables, surpassing other measures such as
the standard big O notation of the variance. We further demonstrate how its properties
seamlessly synergize with those of the subordinate norm.

3. Finally, in Section 2.3, we establish that every random variable possesses a unique, tight
asymptotic bound, termed the definite asymptotic bound. This allows us to use the stochas-
tic big O notation not merely as a tool to bound the asymptotic behavior of random tensors,
but also as a way to fully characterize it. Consequently, we define the asymptotic behavior
of a tensor M as the definite asymptotic bound of the tensor’s subordinate norm.

2.1 THE SUBORDINATE TENSOR NORM

Let M be a tensor of rank € Ny. Denote all its indices using the vector ;, such that each i, for e =
1...r can assume values i, = 1...)N.. Consequently, the tensor comprises a total of N = Ny --- N,.
elements.

We will use the subordinate norm, defined as Kreyszig (1991):

||MH:sup{M-(vl><...><U7‘)”U1GSNI...UTESNT}:

Ni...N, (1)
sup Z (Mh...??rvill"'v{r) vl ESNI...UT ESNT s
i1eip=1
where Sy, = {'U ERNe iy v = 1} represents the unit vectors of the appropriate dimensions.

This norm satisfies certain algebraic properties outlined in lemma A.1, including: [i] the triangle
inequality; [ii] for a tensor M and vectors vy . .. v, with appropriately defined product, the condition

M- (vt x..oxom)|| < [IM][|[v]] - - [lv"|| holds; [iii] Given two tensors Mz(ll)’MZ(f) defining
My, 7, = MM then, [[M]| = [ MO ||| am)].

11,22

Also, one has || M| < ||M ||z (with equality for vectors) (A.2) where the Frobenius norm is:

M5 =Y M. 2)

2.2  EFFECTIVENESS OF THE STOCHASTIC "BIG O” NOTATION

Consider a general random tensor series, denoted by M = {M,}, |,

consider as a random tensor that depend on a limiting parameter n € N'.

which henceforth we will

Our objective in this section is to identify a method to describe and bound the asymptotic behavior of
such a tensor, which adheres to elementary algebraic properties. Specifically, we aim for the product
of multiple bounded random tensors to be constrained by the product of their respective bounds.

Employing our defined norm (1), we can simplify our problem from general random tensors to pos-
itive random variables (rank zero tensors), as our norm satisfies the elementary algebraic properties
established in Lemma A.1. This reduction is substantial; however, the challenge of addressing the
non-deterministic nature of our variable remains.

One might initially consider the expectation value of the tensor’s norm as a solution. This approach,
unfortunately falls short, because that for two positive random variables M7, M, their product vari-
ance is not bounded by the product of their variance. In fact, generally, the converse is true:

Var (M M) > Var (Ms) Var (M) 3)

This issue becomes more pronounced when considering the product of multiple such variables,
a frequent occurrence in this work. For instance, even with a basic zero-mean normal distribution
with standard deviation o, the higher moments of this distribution factor as p!! = p(p—2)(p—4) - - -:

Vp € N: (MP) = pllo? . (4)

'The results are applicable not only for N, but for any other set possessing an absolute order above it
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When multiplying multiple such variables, these factors can accumulate in the lower moments,
rendering this definition impractical for our purposes. Similarly, any attempt to define asymptotic
behavior using the variable’s moments will encounter similar difficulties.

To circumvent these challenges, we adopt the stochastic big O notation Dodge (2003); Bishop et al.
(2007)*. We denote N = { f : N — RO } as the set of all functions from N to R**.

Definition 2.1 (Asymptotic Upper Bound of Random Tensors). A random tensor M, as defined
above, is said to be asymptotically upper bounded by f € N as follows:

M=0(f), )
if and only if:
Vg ENstf=0(g): lim P (M| <g(n)=1. (©)

The lower asymptotic bound, f = Q(M), is defined analogously but with the inequality reversed
and g = o(f).

Like with an infinite number of deterministic series, where pointwise convergence often falls short
and uniform convergence is required, we demand a definition of a uniform asymptotic bound for
discussing an infinite number of random tensors. This concept is rigorously defined in appendix
A.l.

Remark 2.1. For a finite number of tensors, it can simply be demonstrated that the uniform bound
aligns with the pointwise asymptotic bound, analogous to series convergence..

We demonstrate in lemma A.6 that this notation inherits many of the norm’s properties it as defined
above, including all of the properties of the subordinate norm, delineated in lemma A.l. Further-
more, it satisfies several other useful properties, outlined in appendix A.3.

2.3 THE DEFINITE RANDOM TENSOR ASYMPTOTIC BOUND

Remark 2.2. We denote f < g or (f) < O(g) iff f = O(g). We also denote f < g or O(f) <
O(g) iff f = O(g) and f % g, where f ~ g < O(f) =O(g) & f=0(9) Ag=0O(f). Itis
important to note that f < g can hold even without necessitating f = o(g).

It can be readily shown that for any random tensor M, there exist upper and lower bounds such
that O (h—) < O (M) < O (h4), and that they satisfy h_ < h,. Furthermore, if hy and h_
satisfy hy ~ h_, their asymptotic behavior is unique. Meaning that for any other pair 2/, , h’_, the
relationship hy ~ h/, ~ h’_ ~ h_ still holds (A.5). In such scenarios, we assert that M possesses
an exact asymptotic behavior, denoted as O (hy) = O (h_).

The existence of such a pair however is not guaranteed, as illustrated by a random variable that, for
every n € N, has equal probability of one-half to yield either 1 or n. For this variable, the optimal
upper bound is n, and the optimal lower bound is 1, but these do not exhibit the same limiting
behavior. Analogously, deterministic series may exhibit similar behavior, featuring multiple distinct
partial limits. However, in the deterministic case, the limsup and liminf serve as the appropriate
upper and lower limits respectively. This observation leads to the question of whether an appropriate
asymptotic bound exists for the random case. It turns out, it does.

Theorem 2.1 (Definite Asymptotic Bounds for Tensors). Consider a random tensor M with a lim-
iting parameter n as described earlier. There exists f € N serving as a tight/definite upper bound

for M, satisfying:
M=0(f)AVf#£g: M#O0(g) . )
Furthermore, the asymptotic behavior of f is unique.

Explanation. Although the theorem may appear intuitive, the challenge arises from the fact that
our order above N is not a total one, even when considering only the asymptotic behavior of the
functions. For example, none of the following equations hold true:

sin (mn) < cos (mn), cos (mn) < sin (7mn),sin (7n) ~ cos (7n) . 8)

We address this issue by employing Zorn’s lemma, as demonstrated in appendix A.2. O

2Qur definition slightly differs from the standard definition for big O in probability notation, but it is
straightforward to show its equivalence



Under review as a conference paper at ICLR 2024

Since every such random tensor M has precisely one definite asymptotic bound f, we can consider
this bound as the random tensor’s asymptotic behavior, represented as:

o(M) = O(f) - ©)

3  WEAK CORRELATIONS AND LINEARIZATION

3.1 NOTATIONS FOR SUPERVISED LEARNING
3.1.1 GENERAL NOTATIONS

Supervised learning involves learning a classifier: a function § : X — Y that maps an input
set (here X C RIX), to an output set (here Y C R%Y), given a dataset of its values X' C X,
denoted as the “rarget function”. This is achieved by using an hypothesis function, in our case of
the form F : RY — {f: X — Y’} which depends on certain parameters § € R" (in the case of
fully connected neural networks for example, the weights and biases). The objective of supervised
learning is to find the optimal values for these parameters, such that F' captures ¢ best, with respect
to a cost function C. We use x € X to denote elements in the input set, and i, j = 1...dy to denote
the output vector indices. The parameters ¢ are enumerated as 6,,« = 1,...,|0] = N, and their
initial values are denoted by 6y = 6(0).

‘We work within the optimization framework of single input batches gradient descent-based training,
which is defined such that for every learning step s € N:

A6 () = 0 (s + 1) — 0 (s) = —VC (F (6) (22) .5 (2))lg—g(e) =
= —qVEF (0(s)) (22)C (F (8(s)) () .3 () -

Here, V,, = -9- represents the gradient operator, z, denotes the s € Nth input data, and C’ (x) =

904
%Sf) refers to the derivative of the cost function. The derivative matrix/the Jacobian V F' is defined

such that for every indices i, o, (VF') , = VF;. We denote 7 as the learning rate and (x5, 7 (z5))
as the images and labels, respectively. The training path is defined as the sequence of inputs upon
which we trained our system, represented by {z, € A}, . We assume that each input along this
path is drawn from the same random distribution P, neglecting the possibility of drawing the same
input multiple times. The same distribution will be used for both training and testing. Moreover, we
assume that the hypothesis function and the cost function F',C are analytical in their parameters. We
study learning in the limit where the number of parameters N = |0| — oo, with N = N(n) being a
function of some other parameter n € N, denoted as the ”limiting parameter”. For neural networks,
n is typically chosen as the width of the smallest layer, but we can choose any parameter governs
the system’s linearization.

(10)

Remark 3.1. This framework can be greatly generalised, as we discussed in appendix F.

3.1.2 NEURAL TANGENT KERNEL NOTATIONS

Numerous gradient descent learning systems (GDML) with different neural network architectures,
display a linear-like structure in their parameters in the large width limit. In this linear limit, the
hypothesis function takes the following form:

Flin (0) = F (6o),

Vs € No : Fiin (5 + 1) = Fiin (8) — O (> 25) €' (Fiin (3) (1) 13 (22)) (b
with the kernel © defined such as:
Vo, 2’ € X : 0 (0) (x,2") = nVF (8) (z)T VF(0) (z'), Oy =06 (b) , (12)

where VF7 is the transpose of VF the Jacobian.

3.2 THE DERIVATIVES CORRELATIONS
3.2.1 THE DERIVATIVES CORRELATIONS DEFINITION

In the following, we prove that linearization is equivalent to having weak correlations between the
first, and higher derivatives of the hypothesis function, with respect to the initial parameters. We
define the derivative correlations as follows:
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Definition 3.1 (Derivatives Correlations). We define the derivatives correlations of the hypothesis
function for any positive integer d € N and non-negative integer D € N° as:

U%er T d
CPA0) = T VT (0) (VF ()" (13)
where the higher order derivatives defined such that for every d € N and indices 7, a;...aq4,
(vxDF) =V, - Va,Fi
x1...004,1
More explicitly, we present the inputs and indices of these tensors as follows:
ERA ()t td oDt (1o, 2y . xg) =
n Bt N xDtd ' (14)
D 2aon...aa=1 Yaimapialio (0) (0) (Va, Fiy (0) (21) -+ Va, Fi, (0) (2a))

The objects in (13) are the correlation of the derivatives in the sense that a; ... a4 can be viewed
as random variables, drawn from a uniform distribution of {1...N}, while 6 and all other indices
are fixed instances and hence deterministic. In this context, V*PT¢F and VF x ... x VF in (13)
can be viewed as random vectors of the variables a; ... a4, and the summation in (13) represents
the (unnormalized) form of the ”Pearson correlation” between the two random vectors. The overall
coefficient of the learning rate n%er serves as the appropriate normalization, as we will demonstrate
in appendix C and D. We will also denote: €% (0) = ¢4 (9) ,¢Pd = ¢Pd (g,), ¢4 = & (6,).

An example for these correlations is the D = 0,d = 1 correlation, the correlation of the first
derivative with itself, the kernel:

LB =nVIF(O)VF(0)=0(9) . (15)

The definition for the asymptotic behavior for these derivative correlations is slightly nuanced due
to the many different potential combinations of distinct inputs. We rigorously define it in appendix
B.1.

3.3 EQUIVALENCE OF LINEARITY AND WEAK DERIVATIVES CORRELATIONS

Our main theorems concern the equivalence of linearity and weak derivative correlations. In other
words, weak correlations can be regarded as the fundamental reason for the linear structure of wide
neural networks. These theorems are applicable for systems that are properly scaled in the initial
condition, meaning that when taking n — oo the different components of the system remain finite.
We define in rigour exactly what it means in appendix B.2. We denote such systems as properly
normalised GDMLs or PGDMLs.

3.3.1 OUR MAIN THEOREMS

In the following theorems, we describe two distinct manifestations of the equivalence between lin-
earization and weak derivatives correlations for a PGDMLs. We denote by m(n) as the parameter of
the linearization/correlation decay where m(n) — co. m(n) is an intrinsic parameter of the system,
and is defined by the linearization rate or the correlation structure. For wide neural networks for

example, m(n) = y/n.
Theorem 3.1 (Fixed Weak Correlations and Linearization Equivalence). Under the conditions de-
scribed above, for a sufficiently small learning rate < 7.4, the two properties are equivalent:

1. m(n) - fixed weak derivatives correlation:

1 1
Vd,DeN:¢4=0 () ,ebd =0 <> Uniformly. (16)

m (TL) \/m (n)
2. Simple linearity: For every fixed training step s € N:
F(6(5) = Fin (5) = O (545 )

17
VDeN:nz (V*PF(6(s)) — V*PF(6y)) =0 ( 1 ) Uniformly. an

m(n)


https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Nehe 18 defined such as all the correlations are uniformly bounded by O(1), to ensure the sum con-
verges, as shown in appendix C.2.

The next theorem delineates an even stronger equivalence, which is also relevant for wide neural
networks. It also encompasses the scaling of the learning rate.

Theorem 3.2 (Exponential Weak Correlations and Linearization Equivalence). For the conditions
described above, the two properties are equivalent:

1. m(n) - power weak derivatives correlation:

1

Vm(n)

2. Strong linearity: For every reparametrisation of the learning rate  — r(n)n, r(n) > 0 and
for every fixed training step s € N:

F(6(5)) = Fiin () = O (Sf&))) ,

e () (vor o) - vrre) o (o)

d
V(D,e N’ deN) # (0,1): ¢?? =0 ( > Uniformly. (18)

19)

Explanation. We prove the theorems by considering for a general learning step s € N, the hypothe-
sis function and its derivatives’ Taylor series expansion around the s — 1 step. Utilizing equation 10,
we can find that the evolution of the derivatives of F' and its derivatives during learning, is governed
by a linear combination of the correlations of the form:

VD e N : A%VXDF (0) =" €2 (6) (=C' (F (8) ,9)" 20)
d=1

where AV*P F in the change of V*? F. For deterministic functions it is straightforward to prove
the equivalences by employing the arithmetic properties of the big O notation, and that [i] One can
choose any F' — ¢ (as long as its asymptotic behavior is appropriate). [ii] Different components in
our sum cannot cancel each other, since we can change 7 continuously; thus, for the sum stay small,
all of the components must be small. The adjustments needed for our case of stochastic functions
are minor, as, as we show in appendix A.3, our tensor asymptotic behavior notation satisfies many of
the same properties of the deterministic big O notation. The complete proofs are in appendix C. [J

3.3.2 EXTERNAL SCALE AND HESSIAN SPECTRAL NORM

We see in theorem 3.2, that a rescaling of 1 such as 7 — r(n)n can either promote or impede the
process of linearization. This observation also holds for Theorem (3.2) as long as n < 7¢pe. This
insight offers a deeper understanding of the findings presented by Chizat et al. (2019). Specifically,
it elucidates that an alteration of an external scale influences linearization by affecting the scale of
the higher correlations differently than of the lower ones.

A notable connection to another principal research Liu et al. (2020), is the definition of derivatives
correlations themselves. In Liu et al. (2020), the authors established that linearization, results from
a small ratio between the spectral norm of the Hessian and the norm of the gradient. The derivative
correlations can be interpreted as a spectral norm, but concerning solely the gradient, when con-
sidered as a vector. This interpretation serves as a refinement of the results presented in Liu et al.
(2020). Unlike in Liu et al. (2020) approach, which required this ratio to be small within a ball, our
approach demands its minimization at the initialization point itself. Because of that it necessitates
the decay of higher-order correlations.

3.3.3 THE CHICKEN AND THE EGG OF LINEARIZATION AND WEAK CORRELATIONS

The relationship between linearization and weak correlations in over-parameterized systems can be
comprehended from two different viewpoints. The first perspective suggests that effective learning
in such systems necessitates a form of implicit regularization, which inherently favors simplicity
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(Belkin et al. (2019)). This preference can be directly incorporated by imposing a linear (or at least
approximately linear), structure in highly over-parameterized regimes. Notably, in certain scenarios,
linearization can facilitate exponential convergence rates, especially with respect to the training
datasets and, but in some instances, even with respect to the testing datasets (Jacot et al. (2018); Lee
et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Daniely (2017); Li & Liang (2018); Du
et al. (2018); Xu et al. (2020); Allen-Zhu et al. (2019a)). Hence, weak derivative correlations can be
interpreted as a pragmatic approach for achieving linearization.

An alternative interpretation, aligning more closely with the spirit of this paper, suggests that weak
derivative correlations do not primarily serve as a dynamic mechanism for linearization, but rather, as
its underlying cause. In this context, persisting derivative correlations may indicate an inherent bias
within the system, typically undesirable. Therefore, linearization can be viewed as a consequence
of our attempt to avoid counterproductive biases, by demanding weak correlations.

Moreover, if we possess some prior knowledge about an inherent biases in our problem, it might be
advantageous to allow some non-decaying correlations, counteracting the process of linearization.
Furthermore, as certain biases can enhance general learning algorithms (in the form of implicit and
explicit regularization), this perspective might provide valuable insights into the "NTK inferiority
paradox” introduced in the introduction (1). The reason why linear learning underperforms in com-
parison to finite neural networks, might be that it lack some beneficial biases, in the form of non
vanishing correlations.

4 PROPERTIES OF WEAKLY CORRELATED PGDMLSs

4.1 APPLICATION: DEVIATION FROM LINEARITY DURING LEARNING

Multiple studies have examined the deviation of the hypothesis function F' from its linear approx-
imation, Fj;, (11), as a function of n for a fixed learning step (especially in the context of wide
neural networks). Yet, it seems that no research has explored the deviation between these functions
with respect to the learning step for stochastic GD (10). This aspect is crucial since even if F' — Fy;,
vanished for a given learning step, if it deviates too fast during learning, the linearization may not
be evident for realistic large n.

We address single-input batches stochastic GD in our study. However, as we explained in appendix
F, this result can be greatly generalized. Notably, the analysis for stochastic GD may be even more
relevant even for deterministic GD, than the conventional approaches that presuppose a training
dataset. This is because, while the batch might be fixed, its initial selection is from a stochastic
distribution.

Corollary 4.0.1 (Weakly Correlated PGDML Deviation Over Time). For an exponentially m(n)-
weakly correlated PGDML, given 1) < 7)., and some S € N, that forevery s = 1... S, if:

C' (Fiin (s),45) = O (67%) ,C" (Fiin (s),9) = O(1)  Uniformly, (21
than: o
F(0(s)) — Flin(s) =0 (ms(n)> Uniformly. (22)

Neor 18 the standard critical learning rate ensuring our system’s effectively learns in the NTK limit
(D). It’s typically from the same order of magnitude as 7.

Explanation. We prove the corollary by using a similar induction process as in theorems (3.1,3.2).
However, here we also consider the dependency in the learning step, as detailed in appendix D. We
are able to bound the deviation over time, by leveraging the fact that in the NTK limit during the
initial phases of the learning process, the system converges towards the target function exponentially
fast® (Jacot et al. (2018); Lee et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Daniely (2017);
Li & Liang (2018); Du et al. (2018); Xu et al. (2020); Allen-Zhu et al. (2019a)). We believe that
subsequent research will be able to produce more refined bounds. [

3The known bounds for C’ (Fi:n, %) are typically bounds over the variance. In appendix A.4, we discuss
how an average exponential bound can be translated into a uniform probabilistic bound.
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4.2 EXAMPLE: WIDE NEURAL NETWORKS

Numerous studies have demonstrated that a wide range of neural networks architectures exhibit
linearization as they approach the infinite width limit, including any combination of CNNs, con-
volutional neural network, recurrent neural networks, attention, and others. However, the existing
proofs tend to be specific to particular architectures, and are often intricate in nature. The most com-
prehensive proof we aware of that uniformly encompasses a diverse set of architectures, is presented
in (Yang & Littwin (2021); Yang (2020)). These works employed the tensor product formalism
(Yang (2019)), which can describe most relevant variants of wide neural network architectures, as
the composition of global linear operations, and point-wise non linear functions.

1. Relying on the semi-linear structure of FNCs we were able show explicitly by induction that
for appropriate activation functions wide neural networks are n-fixed weakly correlated,
and n%—exponential weakly correlated, (and in most practical seance can be considered as
n-exponentially weakly correlated as well), (E).

2. The framework of low correlations proves effective in discerning how modifications to our

. . . . . . o . A
network influence its linearization. For instance, it is evident that sup,,cy g1y govern
the rate of linearization in FNCs (E). This observation is why we demand for FNCs, that

over the relevant domain, the activation function satisfy:
o <O ((n+1)) | (23)

where ¢! is the n-th derivative of the network’s activation function - ¢.

3. Our proof for FNCs can simply be generalised for any wide network, described by the
tensor programs formalism (E.5.1). This is because, similarly to FNCs, all such systems
exhibit a wide semi-linear form by definition. Demonstrating that the linearization of these
systems arises from weak correlations, allows us to utilize all of the insights we’ve found
for weakly correlated systems in general. We were also been able to conceive lineariz-
ing network-based systems, that fall outside the scope of the tensor programs formalism
(E.5.2).

Leveraging the notation of the asymptotic tensor behavior, our proof accommodates a broad
spectrum of initialization schemes, extending beyond the Gaussian initialization predomi-
nantly employed in other studies.

5 DISCUSSION AND OUTLOOK

The linearization of large and complex learning systems is a widespread phenomenon, but our com-
prehension of it remains limited. We propose the weak derivatives correlations (3.1), is the underly-
ing structure behind this phenomenon. We demonstrated that this formalism is natural for analyzing
this linearization: [i] It allows for the determination of if, and how fast a general system undergoes
linearization (3.3.1,4.2). [ii] It aids us in analyzing the deviations from linearization during learning
(4.0.1).

These insights raise a pivotal question (discussed in 3.3.3): Is the emergence of the weak correla-
tions structure simply a tool to ensure a linear limit for overparameterized systems? Or does weak
correlations indicate an absence of inherent biases, leading to linearization? If the latter is true, it
suggests that in systems with pre-existing knowledge, specific non-linear learning methodologies
reflecting those biases might be beneficial. That could partially explain why the NTK limit falls
short in comparison to finite neural networks.

At the core of our weak derivatives correlation framework, is the random tensor asymptotic behavior
formalism, outlined in section 2. We have showcased its efficacy in characterizing the asymptotic
behavior of random tensors, and we anticipate its utility to extend across disciplines that involve
such tensors.

We further discuss generalisations and limitations in appendix F.
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6 COMMENTS

6.1 REVIEW 1

Thank you for your detailed and important review. It is very instructive.

We acknowledge the omission of Liu et al. (2020), which is indeed relevant to our work. We apolo-
gize for this oversight and have now thoroughly incorporated and referred to it in section 3.3.2.

1.

Following a dissection with the authors of Yang & Littwin (2021) and have corrected the
relevant text in Section 4.2 and appendix E.5.

. A comprehensive introduction has been included at the beginning of section 2 to better

elucidate the motivations behind our formalism.

. The previously stated requirement for the cost function as ' — ¢ was indeed unnecessary

and has been rectified in the current version.

4. That indeed was an error that has been corrected.

5. An extensive explanation regarding the limiting parameter has been added towards the end
of section 3.1.

6. We have clarified the equation in question by explicitly stating it is relevant for the linear
limit.

7. The correlations in equation 13 are in the sense of the Pearson correlation coefficient, and
in the same way we can consider the indices as random parameters. We have clarified this
in our revised manuscript.

8. The relevance of these correlations, now clearly defined, and their relationship to lineariza-
tion is elaborated in section 3.3.1 and equation 20.

9. The O referenced is the same as in Section 2.3.

10. We intended to denote n to the power of zero, effectively 1.

11. Thank you for pointing out the error in equation 17, now corrected in equation 73.

12. A more intuitive and precise explanation for the applicability of our results to realistic
systems is now included in B.2.

13. The parameter referred to is as defined in theorems 3.1,3.2.

14. We have relocated the discussion to appendix F to provide a more in-depth analysis. we
explain that our assertions are valid for wide neural networks, as rigorously proven in ap-
pendix E, which is why we focus on scenarios where these conditions are met.

15. These systems are dynamical, as they develop over time. Furthermore, outside the NTK
limit, they are non linear.

16. We focused on the transpose of the Jacobian for the definition of correlations in equation
13, to align with the standard inner product format in linear algebra. This aspect has been
further clarified in the manuscript, particularly in section 3.1.1, where it is explicitly stated
that the matrix referred to is the Jacobian transpose.

17. The notation has been adjusted to standard transpose format.

18. We defined it more clearly. How would you prefer for us to write that, with the x? We
wanted to make sure that people understand it is tensor power of the gradient.

We have defined it more clearly in section 3.2.1. How would you suggest we reformulate
the equation? without the x symbol? Our intention is to clearly convey that it represents
the tensor power of the gradient.

6.2 REVIEW 2

Thank you for your valuable review and suggestions for improving the paper.

* Significant efforts have been made in this version to enhance readability and clarity. The

contributions section (1.1) has been made more explicit, and the entire paper has been
revised for better comprehension.
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» Regarding the distinction between standard large O notation in probability and our ap-
proach in section 2, we affirm there is no fundamental difference in terms of bounding
random variables. This clarification has been emphasized in the current version. Our con-
tribution is twofold:

1. We established that every random variable possesses a unique asymptotic bound, al-
lowing the use of large O notation not only for bounding but also for fully character-
izing the asymptotic behavior of random variables.

2. We demonstrated the compatibility of large O notation properties with those of the
subordinate norm.

These insights underpin our proposition that interpreting the asymptotic behavior of a ran-
dom tensor, as the tight bound of its subordinate norm provides a novel and useful perspec-
tive for understanding random tensors’ asymptotic behavior, as emphasized in the revised
manuscript.

* Our findings considerably extend the scope of those by Li et al. (2019), covering a wider
range of architectures. They are also more comprehensive even than the work of Yang &
Littwin (2021), which already spans a broad array of architectures. Our methodology is
particularly effective in analyzing linearized systems, as highlighted in the updated section
4.2.

The revised sections 1.1,4.2 should more effectively address your questions regarding the
breadth and implications of our approach relative to existing literature.

* We included detailed heuristic proofs at the outset of each appendix. This addition aims to
enhance the paper’s readability and comprehension. Furthermore, we improved the expla-
nations of the theorems in the main text.

» Regarding the remark about NTK learning not converging to the target function exponen-
tially fast: We acknowledge this except when the target function is within the kernel’s
conjugate class Daniely (2017). However, our reference in section 4.1 pertains to the initial
stages of learning, where convergence is typically exponential.

6.3 REVIEW 3
Thank you for your important review, comments and suggestions.

1. Thank you for your constructive suggestions. We have revised the paper accordingly and
made an effort to improve overall readability and coherence.
m(n) is an intrinsic parameter of the system, and it is defined by it. We emphasised that in
our new version in the beginning of section 3.3.1. The definition of big O with subscripts
is given in B.1. We also defined V*? F explicitly in section 3.1.1.

2. A detailed discussion of the scope, limitations, and disadvantages has been included in
appendix F, with references made in the discussion section (5).

3. The concept of "properly scaled systems’ is what we defined as PGDMLs. We clarified that
in section 3.3 and defined it with rigour in appendix B.2.

4. Considerable effort has been invested in enhancing the clarity and readability of the paper.
We trust that these revisions have significantly elevated the paper’s standard.
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A RANDOM TENSORS ASYMPTOTIC BEHAVIOR

In the following sections, we utilize the results of this section throughout our analyses repeat-
edly. Due to their intuitive nature, we may not consistently specify when we do so, and which
lemma/theorem we are employing.

A.1 PROPERTIES OF OUR NORM

In this section, we explore the properties satisfied by the subordinate norm. We omit the proofs as
these properties are either well-known, or straightforward to prove, (and also enjoyable to derive).

Lemma A.1 (Algebraic properties of the subordinate norm). The subordinate tensor norm (1) sat-
isfies the following algebraic properties:

1. Given a tensor series {M (d) }521 where D € N U {oo}, it satisfies the triangle inequality:

D D
S M@ <Y HM(d)‘
d=1 d=1

where equality holds when the tensors are identical.

; (24)

2. Given atensor M;, ,.,1 <1, < Npforl <k <r,and ¢ < r € N vectors vill ...qu
(with the same range of indices), then:

HM~1}1><---><11'1H§||M|| ||’L)1H-'-||’Uq|| . (25)
3. Given two tensors MY and M, their direct product M; ; = (MM % M(Q))Z - =
71 2 172
M;UM;(S), satisfies:
a1 = ar® | lar]] 26)

The generalization an arbitrary finite number of tensors is trivial.
Remark A.1. Parts 1 and 3 are also satisfied by the Frobenius norm.

Lemma A.2 (Relation to the Frobenius Norm). Given a tensor M of rank » € N, the following
holds:

1. For any tensor M:
M| < |M]|p 27

and if » = 1 (i.e., the tensor is a vector), then:
M = M7= [> ME. (28)

!
vt e Sy, ...v" e SN,
r'4+1 r
v ESNT,+1...U € Sn,

2. Forevery r’' = 1...r:
1 r'—1
R I O
M == M ’
1] sup{H (’UT+1><...><UT )HF

The first part of the lemma demonstrates that our norm is always bounded by the Frobenius norm,
and the two norms coincide for vectors. The second part generalizes the first, indicating that when
reducing any tensor to a vector, the two norms once again agree.

(29)

Lemma A.3 (Properties of the Maximizing Vectors). Given a tensor M of rank r € N, there exist

vectors v! ... v" of norm 1 such that:

|M|| =M vt x---xo". (30)

. . . .. . ol v .
This result indicates that the supremum is indeed a maximum. The vectors v' ... o™ ~1 o™ 1. o7

are also the ones that maximize the cases demonstrated in the previous lemma.

)
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Moreover, if the tensor is symmetric with respect to the permutation of the indices 41, 42, . . ., 74 and
is non-zero, then: _ _ _
vt =0 = =, 3D

Remark A.2. For M = 0, any set of vectors maximizes our result, irrespective of whether the
vectors are identical or distinct.

A.2 EXISTENCE AND UNIQUENESS OF THE TENSOR ASYMPTOTIC BEHAVIOR

In this section, we discuss some of the more general properties that the tensor asymptotic behavior
notation satisfies, regardless of the norm it is defined with respect to. The first lemma we present
is a useful equivalent definition for bounding tensor asymptotic behavior. This equivalent definition
will be beneficial for our later discussion:

Lemma A.4 (Equivalent Definitions for Tensor’s Asymptotic Bound). For any random tensor M
and f € N, the two definitions for bounding the tensor’s asymptotic behavior O(M) < O(f) are
equivalent (the first is the original definition, (2.1)):

1.
VgeNstf=o(g): lim P([M,] <g(n))=1. (32)

2.
lim lim P(||M,||<cf(n))=1. (33)

C— 00 N—r OO0
(The same applies for O(f) < O(M)).

The order in which we take the limits in equation 33 is crucial, as any random tensor satisfies the
equation for any f, if we take first the limit of c.

It is straightforward to show that any random tensor M has lower and upper bounds:

Lemma A.5 (Bounding Tensor’s Magnitude). Given a random tensor M, there exist h_,h, € N
such that:
O(h-) <OM)<O(hy) . (34)

The fact that such bounds always exist demonstrates that our notation is well-founded and natural.
An even stronger evidence for this, which for reasons discussed in section 2.3 is much less simple
to show, is that there is always one well-defined ’best” upper bound - Theorem 2.1. We prove
this theorem after Lemma A.5 by using Zorn’s lemma.

Remark A.3. It is simple to show that if there exist lower and upper bounds such that hy = h_
and the exact asymptotic behavior is well defined, they are the ”definite bound” of Theorem 2.1.
Proof - Lemma A 4.

We will prove the two directions of the lemma separately.

Assuming the second condition in equation 33 is satisfied:

Given some 0 < p < 1, we know using equation 33 that there is some 0 < ¢ such that for sufficiently
large n € N:

p < P([[My]| < cf (n)) . (35)
Given some g € A such that f = o(g), we know that for sufficiently large n € N:
cf(n)<g(n), (36)
which means that for sufficiently large n € N:
p< P(IMy] <cf (n) < P([Mn] < g(n)) - (37

As we proved that for any 0 < p < 1 we get that:
lim (P (M| < g () =1 (38)
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And as we proved that for any arbitrary g € N such that f = o(g), we proved the first part of the
lemma.

Assuming the first condition in equation 32, is satisfied:

If we assume in contradiction that equation 33 is not satisfied, we get that there is some 0 < p < 1
such as:
Yng € NO<cadng<neN:P(|M,|| <cf(n)<p. (39)

In particular that means that if we choose the series {c¢; = z}fil there are 717 < 7o < 73... € N
such as:
VieN:P(|Ma,| <if () <p. (40)

The reason that we can require that {ﬁi}fil is rising, is that we know that we can find such n-s for
any sufficiently large ny and for any c. So by induction we can require every time that every n; is
bigger than all previous n-s.

Assuming the first condition of equation 32 is satisfied:

Suppose, by contradiction, that equation 33 is not satisfied. Then, there exists some 0 < p < 1 such
that:

Vno € N,0<¢,Ing<neN:P(|M,] <cf(n)<p. (41)
In particular, if we choose the series Vi € N : ¢; = 7, there exist 1 < nig < N3 --- € N such that:
Vie N: P(||Mq,] <if (7)) <p. (42)

Since we can find such n-values for any sufficiently large ny and any ¢, and we can require by
induction that each n; is greater than all previous n-values. .

We can now define the function:
VYneN:g(n)=(min{i e N|7; <n})f(n) . (43)

Since {7;};-, is increasing, we know by the Archimedean property that min {i € N | 2; < n} is
also increasing and unbounded, which implies:

nh—{%o ?((Z)) = nli_}nolomin{i eN|n; <n}=c0. (44)
However, by using equations 40 and 43, we also have:
Vnp €N, 3ng <neN:P(|M,]|<gn)<p, (45)
which means that:
lim P (M, < g(n) £1. (46)

This contradicts our assumption in equation 32. Therefore, by reductio ad impossibile, equation 33
must be satisfied, completing the proof for the second direction. O

Proof - Lemma A.5.
For a trivial lower bound, we choose h_ such that Vn € N: h_(n) = 0.

We define h as follows:

VnEN:h+(n):inf{meR‘l—1SP(HMnHSm)}. 47)
n

The infimum and the function are well defined because:

1. The set is well defined.

2. The set is non-empty; if it were empty, it would imply that there is some probability that
||M ||, which is a positive number, is larger than any real number, which is impossible.

3. The set is defined with a total order ” < ” and has a lower bound, m = 0.

16



Under review as a conference paper at ICLR 2024

Since for any 0 < p < 1, there exists some ny € N such that:

Vng<neN:p< P(|M,| <m), (48)

we know that for any hy < g € N, this is also true, which implies:
O(M) <O (hy), (49)
completing the proof. O

Proof - Theorem 2.1.
General Idea of the Proof:

The proof proceeds as follows:

* We consider the set of all upper bounds for M, denoted by Z, and use Zorn’s lemma to
show that every chain® in this set has a lower bound within Z.

* Applying Zorn’s lemma again, we demonstrate that Z has a minimum.

* We then show that the limiting behavior of this minimum is unique.

Existence of an Infimum for the Upper Bound Set:

We begin by defining the set:
Z={heNIOM)<O(h)}. (50)

This set is:

1. Well defined.
2. Non-empty (as proven in lemma A.5).

3. Defined with a partial order hy < hy <> O (hy) < O (ha).
According to Zorn’s lemma, if all chains in this set have a lower bound in Z, then Z has at least one
minimum.

Given some chain in the set, C C Z, we know it is lower bounded by the function /_, which means
(by using Zorn’s lemma) it has at least one infimum (a lower bound without any smaller lower
bounds). We will choose such an infimum and denote it by I € V.

Proving that the Infimum is in Z:

We assume, by contradiction, that this infimum is not in Z, which means there exists some g € N’
such that I = o(g) and for every 0 < p < 1,ng € N, there exists ny < n € N such that:

P(|[Myll < g(n)) <p. (51)
Since T = o(g), we know that for any ¢ € R and sufficiently large n € N:
cl(n)<g(n). (52)

Combining these equations, we obtain:
VO<e,nge€NIng<neN:P(|M,|| <cl(n)<p. (53)
In particular, if we choose the series Vi € N : ¢; = 2, there exist iy < fig < 7i3... € N such that:
VieN: P (| Mx,| <% (7)) <p. (54)

We can require that {7; } ;- is increasing for the same reason as before, as we know that we can find
such arbitrarily large n-values for any sufficiently large ny and for any ¢, so we can, by induction,
demand that each n; is greater than all previous 7q...7;—1.

*A chain, as defined in set theory, is a subset for which the given partial order becomes a total order.
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Now, we define the function:

| iI(n):FeN:n=n
J(n) = { I(n):else : (53)
This function is well defined because there is only one ¢ for any n such that n = n;, as it is an
increasing series.
<iJ () <p. (56)
Applying lemma A.4 for the equivalency of the asymptotic bound definition, we conclude that above
this subseries J ¢ Z, which implies that above this subseries J is a lower bound of Z and conse-
quently, also of C. Moreover, for all other n, we have J = I, and since [ is a lower bound of C, so
is J. Since every n € N belongs to one of these subseries, we conclude that .J is a lower bound of C
in general.

Using equations 54,55, we find that the subseries {7; }
Vi e N: P (||M(q);

uzs

1 satisfies:

Furthermore, for every ¢ € Nas 1 < ¢;, we have:
Vn:I(n) < Jn)— O) <0O(J). (57)

However, since {7}, , is increasing and unbounded, we know that there exists at least one subseries
such that:

im0 i e = 0o 5 O () £O(D) (58)
T;—00 ni) i—00
This implies:
O <OJ)—=I<J. (59)

We have discovered that J is greater than I, but smaller than all functions in C, which implies
that it is a larger lower bound than the infimum, which is impossible! and implies by “reductio ad
impossibile” that every chain in Z, has a lower bound in Z.

Existence and Uniqueness of the Minimum:

Using Zorn’s lemma, we now know that Z has at least one minimum, denoted by f € N. Our
remaining task is to show that all other minima in Z exhibit the same limiting behavior as f, which
implies the uniqueness of the minimal limiting behavior.

Let g € AV be another minimum. We define:
VYneN:h(n)=min{f(n),g(n)} . (60)

We know that h < f, g (as all of its elements are smaller or equal to those of f, ¢g), and we also know
that h € Z since f,g € Z and for every 0 < p < 1 we can choose the maximal n from f and g.
Thus, h € Z,but h < f, g as well, where f, g are minima themselves. This implies:

O(f)=0(h)=0(9) = 0(f)=0(9) - (61)
Therefore, there exists a unique minimal limiting behavior, which implies that the tensor’s asymp-
totic behavior is always well-defined. O

Remark A.4. In our proof, we employed Zorn’s lemma twice. First, we used it to demonstrate
the existence of an infimum for every chain, and then, after showing that these infima belong to Z,
we employed it again to establish that Z has a minimum. At first glance, it may seem perplexing
that we needed to rely on Zorn’s lemma, an incredibly abstract and powerful tool equivalent to the
somewhat controversial axiom of choice, to prove that the tensor’s asymptotic behavior, which has
a much more grounded and intuitive meaning, is well-defined.

One possible explanation for this discrepancy is that we may not have actually required the full
power of the axiom of choice, and our structures could be simple enough that an alternative approach
could have been taken to prove our theorem without using Zorn’s lemma. We believe, however, that
in the most general case, Zorn’s lemma was indeed necessary, but it was only relevant for extreme
distributions lacking any tangible ~’physical meaning.” For any well-defined set of distributions with
a clear underlying meaning, one could potentially find an alternative method for demonstrating the
existence of a tight bound without invoking Zorn’s lemma.

In any case, as we demonstrated in Lemma A.5, there is no need for any of these high-level tools to
prove the existence of an upper bound.

18



Under review as a conference paper at ICLR 2024

A.3 PROPERTIES OF THE ASYMPTOTIC BEHAVIOR NOTATION

Having established that our notation is meaningful, we now aim to demonstrate its usefulness. First,
we need to address our earlier issue and define “uniform asymptotic bound.” Once again, we omit
the proofs in this (and next) sections.

Definition A.1 (Uniform Tensors Asymptotic Bound). Given a series of random tensors

{M (d)}le, where D € N U {oco} (or, more precisely, a series of random tensor series) with a
limiting parameter n, we say that it is uniformly asymptotically upper bounded by f € N under
some rising monotonic function P : R — R:

Vd=1..D:0 (M<d>) <O (K%o f) Uniformly (62)
if and only if:
VgENstf=o0(g): lim P (Vd —1.D: HM,@H <Kto g(n)) —1. (63)

The definition for a uniform lower asymptotic bound is analogous with reversed directions.

Remark A.5. As discussed in definition 2.1, it is clear that if D is finite, then a uniform bound is
equivalent to a point-wise bound.

Lemma A.6 (Asymptotic Notation Inherits its Norm Properties). Given a random tensor M and a

series of jointly distributed random tensors {M (d) }5=1 (with M as well), where D € N U {oo},
such that they are all uniformly bounded:

Vd=1..D:0 (M<d>) <O (K% f) Uniformly, (64)
then:

1. If some positive linear combination of M (4)’s norms satisfies an inequality of the form:

Dg

D
<> A IT 1Ml s (65)

d=1 d=D; ,+1

where all of the coefficients are positive: Vd = 1..D:0 < );jand we divided 1...D into a
series of finite intervals: 0 = Dy < D < ... < Dp = D. Then the asymptotic behavior
of all the tensors satisfies the same inequality as well for every i ~ f:

D Dy
oM <o|>d N ] Kkion), (66)
d=1 d=Dj ,+1

and if the inequality is an equality for the norm, it is also an equality for the "large O-s.”

2. Our asymptotic notation inherits all of the properties presented in lemma A.1.

Remark A.6. The lemma still holds even if the tensor have additional indices, as we will see in
section (E.4), provided the number of additional index possibilities remains finite in n.

A.4 EXPLORING THE RELATIONSHIP BETWEEN ASYMPTOTIC BEHAVIOR NOTATION AND
THE TENSORS’ MOMENTS

The final aspect of the asymptotic behavior notation we wish to explore is the relationship between
this notation and the moments of our tensors’ norm or variables. This relationship is relatively
intuitive and straightforward, and will be useful in Section (E). We first need to introduce a simple
notation for every tensor M that will assist in examining tensor moments, the norm expectation

value, defined as:
1 2
] =/ % (In]1) (67)
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Lemma A.7 (Asymptotic Behavior and Tensor Moments Equivalency). Given a random tensor M
and a function f € A/, then:

O(M) <O(f) (68)
if and only if with probability arbitrarily close to 1:
[M]=O(f) - (69)

The lemma is also applicable for the uniform bound in the case of infinite number random tensors.

In (4.1), we highlighted that most assertions concerning the convergence of C'(F — §) relates to its
expected value. However, we can now also associate it with its asymptotic behavior throughout the
entire training trajectory. This association stems from the understanding that, if our system exhibits
a known average decay, the likelihood of significant deviations from this typical variance range must
also decrease, and exponentially (at any decaying rate that is slower then our original rate). Given
that decaying geometric sums are convergent, we can infer that the overall probability of the system
defying our predicted asymptotic behavior is likewise convergent. Given that we can choose the
scaling of this probability arbitrarily, we can set conditions such that the cumulative probability of
any deviation is arbitrary small. We introduce this notion for the reader’s consideration and propose
a detailed formulation as a future exercise.

B ADDITIONAL DEFINITIONS

B.1 DERIVATIVES CORRELATIONS ASYMPTOTIC BEHAVIOR

In our main text (3.2.1), we discussed that the definition for the asymptotic behavior of the deriva-
tives correlations is slightly nuanced, due to the many different potential combinations of distinct
inputs. Here we define it rigorously.

Definition B.1 (Derivatives Correlations Asymptotic Behavior). For every D € N°, d € N, and
diy <dy <..<dj€Nsuchthatd, + ... +d;=d:

Ody...d; (€7 = Oup0y.capep (@D’d (xmxlml ...a;d5)> : (70)

Inputs order doesn’t matter as correlations are symmetric concerning their first derivatives. The
factor ﬁ accounts for the possible combinations. If f € N, we say:
Td!

ePi=0(f), (71)

if and only if all combinations are uniformly bound by f. In the continuous limit (extended training
time), only d; = ... = dy = 1 remains relevant.

B.2 PROPERLY NORMALISED GDML

Our main theorems (3.1,3.2 ) and corollary (4.0.1) are applicable for systems that are properly scaled
in the initial condition where n — 00, defined as follows.

Definition B.2 (PGDML). Given a GDML as described in section 3.1, we will say it is properly
normalized and denote it as PGDML if and only if:

F(6p) = O (n°) (72)

AF (00) = F (0(1)) — F (6o) = O (n°) (73)

¢! = (Nn) O (VF (6y))? (74)

Vd € N: O (V*?F (6y)) < O(VF (6p))" Uniformly. (75)

The first two conditions (72,73) ensure that our system scale remains finite for the initial condition.
Condition 74 stipulates that the asymptotic behavior of the kernel is maximal, given the asymptotic
behavior of the first derivative. This condition ensures that our system is genuinely learning and not
only memorizing. This is because the kernel for different inputs is responsible for extrapolation,
while the kernel with the same input twice responsible for memorization. Condition 75 asserts that
none of the higher derivatives dominate the first for n — oo, a property that most realistic scalable
GDMLs satisfy, because if it is not satisfied, gradient decent becomes irrelevant. We show that wide
neural networks in general satisfy that property in appendix E.5.
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C PROOF OF THEOREMS (3.1,3.2)

We can now proceed with the proofs of Theorems 3.1 and 3.2. The general idea has been outlined
at the end of section 3.3.1.

C.1 FIRST DIRECTION OF THEOREMS (3.1,3.2)

Now that we understand how to work with the asymptotic behavior of random tensors, we can
proceed to prove our main theorems and corollary. We will begin with the first direction of the
theorems.

Lemma C.1 (Linearization Requires Weak Correlation).

1. In Theorem (3.1), if condition (1) is satisfied, then condition (2) is satisfied as well.

2. In Theorem (3.2), if condition (1) is satisfied, then condition (2) is satisfied as well.

Proof. We only demonstrate that the O; (€) are bounded; The proof the rest are bounded is the
same, by considering more learning steps after the initial condition.

For the initial condition, we know that any reparameterization 0 < r satisfies (11,20):

F (1) = Fiin (1) =

zzil(i;?d(VXdF (00) (VF (00) (o)) ™) (=€ (B (80) (1) 3 (a2))) "~
(= () VF (60) VF (6 ><x1>T< ~C'(F (0) (21),5 (1)) = (76)
d xd
L= <’ZN”F (80) (VF (90 20)) ><C'< <o><x1>,y<x1>>>”:
Yo (¢d> e (F (00) (21) 5 (1))
and in the same way for every D € N:
WD?JF)VXDF(Q(Q) (Tn) V*P Fin (00) = (77)
Sag e (e <—C'< (00) (x1) 3 (21))) " .

Utilizing Lemma (A.06), it becomes evident that for properly normalized gradient descent-based
systems:

0 (chdc’ (F (6)) ,9) Xd) <0 (P40 (C’ (F (o), y)Xd) O (eP4) . (78)

However, since our theorem should work for any ¢, we can choose U = F (6y) + ¢, and obtain:
0 (@Dﬁdc’ (F (B) ,y)“’) x O (cwc’ (c)Xd) =0 (e (79)
as we can choose ¢ such that C’(c) is the vector that maximizes the correlation, as C’ is convex and

the correlations are symmetrical.

Given that we can choose an open set of different scalings of r, we know the different elements in
the series cannot cancel each other out. Consequently, for F'— Fj;,, to decay, all the distinct elements
must decay.

Assuming condition (1) in Theorem (3.1):

Given that O (F (6(1)) — Fin (1)) =

) and for every D € N we have

(st

o
0] ( ( )), it follows that each correlation must

O (nEV*PF (9(1) = nEV*PF (60)) =

decay at least like:

1
v2<deN:0(e) <0 ( ) Uniformly, (80)
m (n)
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and
1

m (n

vD,deN: 0 (¢P%) <O ( ) Uniformly. (81)

This completes the first part of the proof.

Assuming condition (1) in Theorem (3.2):

By taking 7(n) arbitrarily close to m(n), we find that for F' (6 (1)) — Fy;,, (1) to decay, 7¢¢? must
decay as well, which implies that:

d
1
VdeN:O(Qid)gO( ) , (82)
m (n)
and
) d
VDeN’,deN: O (¢?!) <0 <> . (83)
m (n)
This concludes our proof.
O

C.2 SECOND DIRECTION OF THEOREMS (3.1,3.2)

We will now prove the other direction of the theorems, focusing on Theorem (3.1) since the proofs
for the other theorems are essentially the same. It should also be noted that the corollary (4.0.1),
which will be proven next, is almost a generalization of this direction, except that it is only applicable
for sufficiently small learning rates.

Lemma C.2 (Asymptotic Behavior Normalization for weakly Correlated PGDML). Consider a
weakly correlated PGDML as described in Theorems (3.1,3.2) then we have:

VD € N:nP0 (V*PF (0))° <O(1) Uniformly. (84)

With Lemma C.2 at hand, we can now demonstrate the second direction of the theorem by proving
a slightly stronger version of it.

Lemma C.3 (Weak Correlations Create Linearization - First Theorem). Assuming the conditions
of Theorem (3.1) part (1), then for every s = 1....S:

1.

O (F (6(5)) — Fiun (5)) go( ! ) . (85)

m (n)

O (nAVF (8(s) =P VF (60)) <. (86)

3. Forevery2 <D €N

o) (n%vxDF(a (s)) — n%vxDF(ao)) <0 (1

< > uniformly. 87)
m(n)

Here, « is an asymptotic notation such that v = O ( \/%), and when multiplied with a first

derivative of the hypothesis function in its initial condition, it exhibits an asymptotic behavior of
O (1n*VF (8)) < 0 (5t

m(n)

From proving lemmas (C.1,C.3), we can conclude that theorems (3.1,3.2) have been proven.
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Proof of Lemma (C.2).
Assume that the lemma is not satisfied, i.e.,
10 (VF (60))” £ 0 (1) (88)
then for some probability 0 < p < 1, we have:
O (1) <O (VF (60))* . (89)
Utilizing the third property of PGDML systems (74), we conclude that for some relevant probability:
O(1) <O (eh) . (90)

However, for the reasons discussed earlier, the different elements in the equation of motion cannot
cancel each other out, as 77 can be chosen from an open set. This implies that the second property of
PGDML systems (73) cannot be satisfied, leading to the conclusion that:

10 (VF (65))> <0 (1) , 1)
must hold.

By employing the fourth property (75) of PGDML systems, we obtain the desired result.

Proof of Lemma (C.3).

We will prove the lemma using induction over the learning steps (of course). The induction base for
the ”zero” step, where 6 = 0y, is trivial. Assuming the lemma holds for s € NO, we observe that for
every (D € N°,d € N) # (0,1), the d, D correlation satisfies the following for sufficiently small
learning rate 7:

P4 (9 (s) = = HIV*PHIE (0 (5))T VF (0 ()"

(nD‘?dVXD”F (6o) +7)T (n%VF (6o) +V)Xd

e (H%VF (90)> - +97 <v X (n%VF (90)) Xdl) +

D+d

. xd—1 92)
nZF VX DHE () (fy X (nEVF (00)) ) + comb + O (m%n)>

CDvd+O(#)+O(L)+d€D+Ld—1><7+O( ! )

D,d 1
¢ +0 (m(n)) '

Here, we used the derivatives correlation definition, lemmas, the induction hypothesis, the bound of
the correlations from condition (1), and the definition of ~.

By employing the derivative’s correlation definition and condition (1), we observe that:

V2<deN:0(e) =0 (k)

m(n)
VdEN:O(Cl’d) =7, 93)
vngeN,deN:o(eD»d):o( ,i<n>> .

Furthermore:
CLanETF (09) = nt vt p (60)7 (ntVF (80)) " =
n2VF (6y) =n"V (6o)" (2 VFE (60)

94
TV HEE (60)T (VE (60) " = @t

Hence, using this equation, we can deduce that €7+ (9 (s + 1)) satisfies the given conditions as

well. By incorporating this equation into our equation of motion and employing the lemmas, we

find that for a sufficiently small learning rate, F' (6 (s + 1)) also satisfies the lemma. Consequently,

by induction, the lemma holds for all s € N. O
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D PROOF OF COROLLARY 4.0.1

In this section, we prove corollary 4.0.1. The general approach for this proof is akin to that of
the first direction of Theorems 3.1 and 3.2, albeit with an additional focus on the evolution of the
deviation throughout the induction process.

Given the complexity of tracking all the derivatives simultaneously, our strategy involves monitoring
the difference between the parameters and their linearization, as expressed in Equation (101). A
significant challenge arises in solving the equation of motion that these parameters must satisfy.

To circumvent this issue, we establish a link between this deviation and the deviation of the general-
ization function from its linearization (101) up to the highest order, as outlined in equation 106. By
considering only the lowest order terms, we obtain an equation of motion (113). In cases where the
cost function decays exponentially, and we are able to bound the deviation of this equation.

D.1 RELATIONS BETWEEN DIFFERENT LINEARIZATIONS

In the main text, we linearised F' as Fj;,, (11), by first considering only the linear part of F', and then
examining how it changes over time for a given training path. However, there are alternative ways
to linearise F' that can be useful to consider. One such method involves taking only the linear part
of I, without considering the training path:

F(0) = F (60) + VF (60)" (6 — 6,) - 95)

Another useful definition is to examine how 6 would develop over time under the linear approxima-
tion for our training path:

Olin (0) =60y VseN:

Brin (5 + 1) = O1in (5) — VF (60) () C' (Fion () (25) = § (z)) - 00
It can be observed that Fj;,,, F , 01in, satisfy the following relation:
Vs € N : Fiin () = F (B1in (5)) - (97)

A more refined relation is the one between F (6;;,) and Fj;, (), defined for every s = 0...S as
follows:

O (F (013 () — Fiin (5)) < O (92 (8)> , (98)

m (n)
where p is defined as:

Definition D.1 (Typical Linear Cumulative Deviation). We define the typical linear cumulative de-
viation as the bound of the cumulative deviation of Fy;,, from y:

0(0() = 3 O(C (Fiun (s1) — 9)) - ©9)
s'=0
and in our case: .
0@@»§OGiZi>éom. (100)

This implies that o(s) = o(m(n)), which is essential for proving (98). We will not provide this
proof here, as we will not use it directly in the remainder of this paper, and we will soon prove many
similar identities.

D.2 SMALL PERTURBATION FROM THE LINEAR SOLUTION

The initial approach of the proof aimed to demonstrate that F' only deviates slightly from Fj;,,, and
that also its derivatives deviate slightly at the initial conditions. The intention was to use induction
to show that this holds at each time step. This method is effective if the goal is merely to prove that

1

F converges to Fy;,, at arate of O ) for a fixed time step. However, it poses challenges when

attempting to understand how the two functions deviate from each other over time. This is due to the
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necessity of simultaneously tracking the evolution of all derivatives and the changes in correlations
over time, which is nearly impossible.

To circumvent this issue, rather than tracking all derivatives, we will calculate how F' (6 (s)) deviates
from Fy;,, (s) by utilizing a similar relationship to the one we discovered between 6;;,, and Fy;,,. This
will allow us to establish bounds on F' — Fj;,,. Although the two approaches are equivalent, and the
first one is more intuitively clear, the second approach simplifies accurate and simple calculations
by focusing on a single object, F' — Fy;,.

In the following lemma, we demonstrate how a small perturbation at a given step (s = 0...5 — 1)
results in a small perturbation at the subsequent step (s + 1). Then, we will use these results to
inductively show the deviation in time between the hypothesis function and its linear approximation.

We denote: §
6(s) = F(0(s)) = Flin (s) , n2((s) = 0(s) — Ouin(s) , (101)
and assume that the deviation from linearity is small, hence:
f(s)
< <
o6 <o (L) ok 0w, (102
where ) )
f(s),9(s)",0(s)" =0(m(n)) . (103)
For some parts of our lemma, it will also be relevant to separate the deviation of the parameters into
two components:
C(s) =¢y (8) +Cm (5) » (104)
such that: (&)
Im (S
< < .
06 () <015, ()7, 0(6n (s <0 (2] (105)

Remark D.1. Here, we consider the case of a general rate of convergence for C’ (F};,, §), rather
than exclusively focusing on an exponential one. This is done to simplify the generalization of our
results for reader.

Lemma D.1 (Deviation of the parameters and of the hypothesis function relations). Given the con-
ditions described above, then up to the leading order:

1.
§(s) = F (0(5)) — Fuin () =02 VF (00)" G (5) + 12 VEF (80)" ¢, (s) +
S o€ (Fiin (51),9) X C' (Fiin (52),9) + (106)
250 0 €Y (8) C (Fiin (87) . 9) + 1V *2F (60)" ¢, (s)°

which means:

0(3(s)) = O(F(0(s)) = Fiin (5)) <

(s s (107)
O (gm(n)) +O( g n)mj(tf)( s)? ) O ((9( r)nJr(fL() s)? ) .
2. ) )
O (ntVF (80)" ~ 0 VF (80)") <O(g(s) + 0(s)) 7 - (108)
3.

where C” (F;n, (8),9) is a positive random matrix such as if the asymptotic behavior of
C' (Fyi (8),4) is bound (as in our case), so is C" (Fiin (5) , 7).

(s +1) — i (s) = e<s+1> Buin (5 +1) — 3¢ (5) ~ ”
GV F (00)C” (Fian () ,5) 6 () + 0 (9.(3) + 0(5)) €' (B (), ) mEy, 1)

which means:

0<<<s+1>—c<s>>go(f<3>

m (n)

)+0<c’<Flm<s>,@>>0<g<s>+g<s>>v. a1
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5.
O@0(s+1)=6(s)+OoC” (Fiin (s ), )5( ) <

Remark D.2. An important note for our proofs is that all of these components can be generalized
to the case where ((s), d(s) are not the “original” deviations, as long as they satisfy equation (102).

We can now use this result to prove corollary (4.0.1) by induction. In fact, for the condi-
tions of the corollary at s = 0, the induction hypothesis is trivially satisfied as F(0)(0) =
F1n,(0),60(0) = 65;,,(0). It is straightforward to show that the contributions of the part multiplied by
O (C' (Fiin (s) ,9)) are irrelevant for the possible deviation, as C’ (Fyp, (s),9) — 0, O (o(s)) <
O (1). Consequently, we are left with equations of motion for the asymptotic behavior of the form:

f(s)
m (n)

O(C(s—f—l)—((s))gO( ) §(s4+1)=0(s)+OoC" (Fiin (5),9)0(s) ~0. (113)

However, O¢,C"” are positively defined bound matrices, so for a learning rate that is sufficiently
small (which would be of the same order of magnitude as the learning rate needed for our system
to consistently learning, and for the case where C(x 2, exactly the same), we find that on
average this term can only contribute to the shrmkage of § 6 Th1s means that neglecting this term
for large s would provide an upper bound for the rate of deviation. Thus, we have discovered that
the asymptotic behavior of § (and consequently, ) with respect to time is for large s is bounded by:

d0(s+1)—46(s)~0. (114)

This proves our corollary.

Proof.
Part - (1):

F(0(5)) = F (6uin (5) + ¢ (5)) =1

(ernz ) VE (60)C' (Fun (s >,y>+n%<<s>) —
F (69) = 32520 €€ (Fugn (') ) + n3 VF (60)"
D O (B (1)) % C (B (52). (115)
23020 € ()€ (Fuin (5) ) + 1V F (60)" ¢ ()7

Fiin (5) + 02 VE (00)" € (8) + 300, 1,20 €C' (Fiin (1) ,9) X
23020 € ()€ (Fuin () ,8) + 1V F (80)" ¢ ()7
where in (1) we used equation the definition of 6;;, (96), in (2) we expanded our generalisation
function as a Taylor sires, and the definition of the derivatives correlations (3.1). In (3) we used the

fact that under our assumptions our system is exponentially weakly correlated. Using this result we
get our desired identity.
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Subtracting Fy;,, we get using the weak derivatives correlations property that up to the leading order:

F(0(s)) = Fiin (s) ~
nEVFE (90) C(8) + 200 1m0 €2C (Flin (51) ,31) % C' (Fyin (s2) . 9) +
2350 €1 () C (Flin (5),9) + nV*2F (60)" ¢ (s)"% ~
NEVE (00)" G (s) + 02V (00)" ¢ (5) +
Zgl 2r=0 €2C" (Fiin (51) , ) X C' (Fiin (s2) , ) + (116)
235 €8, (5) C (Fuan (5) 1) + 1V 2F (B0)" ¢ ()% =
O(gm(“")"!‘g'y(s))_i_o( )+2O (M>+O(fg())—

(;n((n;%)) L0 (ng()fﬁff ))? ) <0 ((g( o)tols >>2)n)’

which finishes our proof.
Part - (2):

Using the same ideas we get:

WAV (00)" = 74 F (9 () 47 (5)) =
nEVEF (00— 15y VF (00)C (Fiin () ,9) + 03¢ (5) ) =
n2VE (60)" = S5 €1 (Fin (8) ,9) + 1V 2F (60)" C (5) + ... =
W3 VF (60)" +0(0(s)) % +0(g(s) 7 -

(117)

Taking transpose on both sides we get finish our proof.

Part (3):

Using the definition of § and the fact that C is analytical we know that up to the highest order:
C'(F(60(s)),8) =C (Fiin (s) + 0 (s) ;) = C" (Flin (s) ,§) + C" (Fiin (5) ,§) 6 (s) ~ (118)

and as C is convex (), we know that it’s second derivative is always a positive matrix. And by using

lemma () we know that if the first derivative is bound, so is the second derivative.

Part (4):

Using the equation of motion for 6 (96), and parts (2,3) of this lemma we get that up to leading
order:

0(s+1)=0(s) —nVF(0(s))C" (F(0(s)),9) =~

N VE(0o) + C' (Fin (
0(s) ”(O(g(s) o0(s))nty )( C" (Fiin ('

0(s) =nVFE (00)C" (Fiin (s),9) —nVF (60) C" (Fis
O(g(s) +0()C' (Fiin (), 9) 0

s),9) + >N
), 9)d(s) )= (119)
in (8),9)0(s)+

~

and as:

0(s) =nVE(0(s))C"(F(0(5)),9) =
) (120)

Ouin () +12C () =V F (0(5)C' (F (0 (5)),§) = Ouin (s + 1) + 02 (s)

we get the desired result.

Part (5):
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Using the equation of motion for #, one can see that:

B Otin (s +1) =V F (00)C" (Flin (s'),9) 6 (s) +
F”(S“))‘F( 3¢ () +0 (g (5) + 0(5))C (Fiin (5)9) 137 )

Fiin (s +1) =V F (60)" vF (60) C" (Fuin (s') ) 6 (s) +
NEVE (00)" ¢ (s)+ 0 (g(s) + 0(5)) C" (Fin (5),9) n2 VF (60)" 7+
Yo a0 €2C (Fiin (51),8) X C' (Fiin (52) ,§) +
23 1@“<<s)C'<Fm< ). 9)+
20 (g (5) + 0(5)) C' (Fiin (8), ) 02 € 19C (Fuin (s') , ) +
nV*2F (00)" ¢ (5)* + 0 (g(5) + 0(5)* C' (Fiin (5) ,5)* nV*2F (60)" 2+
20 (g(s) + 0(8))C' (Fuin () ,9) nV*2F (00)" (v x ¢ (5))

Fin(s+1) —0C" (Fzm( ",9)0(s)+d(s)+
20 (SLHD) O (€ (Fin (5).§)) + O (D) O (€ (Fin (5).,§)° +

20 (£LLE91D) O (€' (Fign (5) 1 5) -

(121)

5

where in (1) We use part (1) of the lemma, when we remembered that O(6) < O (m(n)) so it can

be consider as (,,,. In part (2) we use the definition of Fj;,, ©¢ and part (1) once again where we
gathered all of the components that have only ((s) to get §(s). Then we just used the asymptotic
behavior of all of the components and took the ”worst case scenario” to get equation (112). [

E WIDE NEURAL NETWORKS ARE WEAKLY CORRELATED PGDML
SYSTEMS

E.1 GENERAL IDEA

We start with fully connected neural networks. Although the proof is technically intricate, its under-
lying concept is straightforward: For the first layer, we observe that all higher correlations exhibit
the appropriate asymptotic behavior. We then proceed to prove by induction that all layers manifest
the same asymptotic behavior. Consider the second correlation, for instance, which we analyze as
follows:

For any general layer [ = 1, ..., L, defining V_; as the derivatives with respect to parameters from
layers 1 to ! — 1 (E.2), we employ the equation for fully connected neural networks (127):

1=0,....,L: FO = gi=Dg (FI=D) 4 o)

Ve e X :F(0)(x)=F®) (), FO(z)=a, (122)
to demonstrate that:
2 2
VIE)FO = VR (006 () +00) =
Vi X Vo (00709 (FOV) +00) = Viey x (007DV o (FO)) = o
Vi x (00D ¢ (FUD) vy FUD) =
o(l,lfl)gb// (F(lfl)) v(_Z)F(lfl) % V(_Z)F(lfl) + G(Z,lfl)gb/ (F(lfl)) v(><_2l)F(l71)
Consequently, the contribution to the I-th correlation (13) from this part is proportional to:
9(“71)@#" ( (I— 1)) Q:(l n % Qt(l 1 + 0 (l,l— 1)¢ (F(l 1)) Qt(l 1 - (124)
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Here we have two terms. We can show the right-hand term is small simply by induction. The proof
that the left-hand term is also small is more complex, involving the demonstration that for all hidden
layers, the relevant contribution from the first correlation originates from its diagonal terms, i.e.,

(€

‘We can now show that in the term, the left index is identical for both correlations, which follows that
for most indices, the relevant terms are offset by the irrelevant ones, keeping our expression small.

For the case that one of the derivative does not belong to layers [ = 1 to [ — 1, we explicitly show
this term to be negligible, as for most indices it simply resets:

V,L'lil—lF,L-(l) 0.8 6ili (125)

In the general case of the D-th correlation, while there is some complexity in tracing the combina-
torial terms from various combinations of derivatives, the fundamental principle remains consistent.

The generalization of this approach for other architectures is discussed in Section E.5.

E.2 ASYMPTOTIC BEHAVIOR OF WIDE FCN AT INITIALISATION

Remark E.1. Throughout this paper we considered || M || or O(M) as our way to evaluate the size
of our random tensors. But here we mainly consider the normalised terms instead:

1 1
— ||M|| and —=O (M) . (126)
T ML a0 ()
This is because, in practice, what we are interested of is the average asymptotic behavior of a tensor,
and not the accumulative one.

Fully connected neural networks of depth 2 < L € N, characterized by L parameter vectors (the
biases (1), ..., #F)), and L parameter matrices (the weights (% L= 9(1.0)) such as:

1=0,...,L: FO = gti-Dg (FE-D) 4 9O

Vo€ X :F(9)(x)=F® (), FO(z)=a. (127

In this representation, F(9), F(1)  F(L=1 "and F() constitute the input, inner, and output lay-
ers, respectively. The activation function ¢ is analytical, and all of its derivatives are bounded as
described in (23).

Remark E.2. Generally when working with FNC we do not operate the activation function over the
zero layer, the input. But to make the induction slightly easier, we will simplify our expression such
as ¢ operates over all layers. It makes no real difference

We focus on ”wide” neural networks where the depth L is fixed. As long as L = O(log(n)), we
can expect an NTK-like behavior for large n, but for simplicity, we focus on the scenario where
L remains constant in n. We introduce a limiting parameter n € N such that the width of all the
hidden layers satisfies n < nq,...,nr—1. To simplify our work, we will amend this assumption
by postulating that all layers exhibit the same asymptotic behavior of n - nq,...,nr_1 ~ n. This
modification does not affect our theorems and lemmas, as it merely establishes a lower bound of our
original assumption. As the sizes of the zeroth and last layer are constant (the dimensions of the
input and output layers stay fixed in n of course), we arrive at:

Ni,...,n_1~n and ng,np ~1. (128)

Back in the 1960s, it was demonstrated that with Gaussian initialization, we can keep our layers
normalised by selecting initial parameters as follows:

_ 1
Vi=1,...,L:6"Y NN(O,n> 09 ~ N(0,1) . (129)
1

Despite the specificity of this initialization algorithm, it contradicts the broader spirit of this paper.
It’s not only overly restrictive but also complicates our work by colliding with our framework of
tensor’s asymptotic behavior. Rather than focusing on a particular initialization scheme like the
normal distribution, we will identify and utilize the relevant properties inherent in the distribution.
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Definition E.1 (Appropriate Initialization scheme for Wide Neural Networks). Given a wide neural
network as defined above, we characterize the distribution for the initial condition # as appropriate
if and only if for every probability arbitrarily close to 1, the following properties hold:

1. Different elements of # are independent. And for each layer | = 1,..., L, #%-!=1)’s and
6(")’s elements share the same distribution.

2. 6 is symmetric around O (implying that all odd moments are nullified):
VD eN\2N:(§P)=0. (130)
3. For every layer [ = 1, ..., L, all moments of # are uniformly normalized:

omP < \/%O ((g(l))'D) <DO(1)",

VD e N: L \P ) (11D L \D Uniformly
0(Z=) < A0 (E)7") <D0 (H=)
(131)
where N; = nyn;_ is the total number of parameters in the [-th layer.
where the elemental tensor power defined such as:
VDeN: (MP).=MP. (132)

The first two conditions ensure that our system is unbiased, while the third condition guarantees that
our system will not be dominated by a disproportionate probabilistic “tail.”

We delegate to the reader the verification that Gaussian initialization qualifies as an appropriate
initialization.

Remark E.3. Conditions (1,2) can be generalized to be fulfilled in the limit of large n, provided this
convergence occurs rapidly enough. Nevertheless, any complexities arising from this generalization
are technical and do not affect our analysis.

For the remainder of this section, we will omit the biases from our discussion, as they do
not add any substantial insights or implications for the points under consideration and won’t
change any of our results.

Lemma E.1 (Normalization of Layers in Proper Wide Neural Networks). Given a wide neural
network, if the initial condition is appropriately set, then all the moments across every layer! = 1...L

are well normalized: )
— 0O (F®) = 1) . 1
nlO( ) 0O (1) (133)

The final parameter that we need to normalize in our system is the dynamic one - the learning rate,
denoted by 7. In an attempt to generalize Gaussian initialization, we will adopt the standard method

of normalization for 7:
1
N~ —. (134)
n
This condition, coupled with the demand for an appropriate initialization strategy, is sufficient to
demonstrate that wide neural networks are exponentially weakly correlated PGDML-s.

In the remainder of this section, we will proceed under the assumption that our parameters
are initialized appropriately and that n ~ %

We can now use this result to find the asymptotic behavior of the layers derivatives:

Lemma E.2 (Asymptotic Behavior of Layer’s Derivatives). Given our established conditions and
initialisation, all derivatives are uniformly bound for each natural number D and layer I = 1...L.
Specifically, we have:

D

n

VND

Here, Np = nyn? n? represents the asymptotic behavior of the number of elements in the deriva-
tives.

0 (VXDF(”> <O(1) Uniformly (135)
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Proof of lemma (E.1).

‘We approach the proof by induction, across the entire proof we use lemma (A.7) to show equivalence
between the asymptotic behavior of the system and its tensorial average (67). It is known that the
base case, the zeroth layer, naturally satisfies the lemma. By inductive assumption, let us presume
that the [ — 1 layer adheres to the lemma. Our task is to establish the lemma’s validity for the [-th
layer forall ! = 1...L:

[F(l)f - %Z'<<Z]9” 1)Fl 1)) (Zk 952,171)F1§171))> _
Z <(Z kez(;l 1) (zz 1)Fj(171)F]§lf1) _
} > Z] kﬂ< (L1~ 1)9(11 1)><Fj(l_1)F]£l_1)> _
ng
Ly E#k< (11D (Li-1) >< FO-D gl 1)>+mz 5, <( (LI~ 1)) ><<FJ(11))2> .

S <(9§§,Z—1>) > <(F}l‘”)2> Y, <(9<u 1)) >Zk L <(F,§l‘”>2> _

R il [F(l—l)]2 = 0(1)0(1)=0(1) .
(136)

Throughout these equalities, we rely on the premise of a proper initialization. Specifically:
* In ”1” and ”’5”, we employ the structure of neural networks and the definition of the mo-

ment’s norm.

« In 2" and 4", we note that F(!~1) is dependent only on the inner parameters of I, which
are independent of #(/=1)_ This is enabled by the proper initialization ensuring #(-!=1) is
uniformly distributed.

« In 3", we invoke the fact that different elements of #(-!—1) are independent and symmetric.
Hence, for every i, j # k:

(65D 0) = (65" (8 ) = 0. (137)
* In 76", we apply the induction hypothesis and observe that for a proper initialization (E.1-
3):
1
Vi=1..L: [ew—l)] = 0( ) . (138)
V-1

Through the application of the principle of mathematical induction, we conclude the lemma holds
foralll = 1...L.

Using lemma () again we get that O (F') < O (1) but as we know that even if we neglect a small
part of the probability distribution the proof should still hold, we get that:

O(F)=0(). (139)
exactly.

O

Proof of lemma (E.2). Given w, drawn from another proper initialisation, we can observe that 6 +w
is also properly initialised or sub-properly initialised. Hence, assuming we initialise F") accord-
ingly, we find:

1
—O0(FY)<o0q). 140
o (F) <o (140)
Since F() is analytical, we can apply its Taylor expansion around 6 to get:
1 o0
—0 vPEO (9)w*P ) <0(1) . (141)
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By continuously rescaling 6, w without violating the proper property, we see that all of the compo-
nent of the expression must be uniformly bounded:

1 XD (1) xD :
T — < 1 .
VD e N nlo (V FO () w ) < O(1) Uniformly (142)

Considering the symmetry of the derivative in its components, and by invoking lemma (A.3), we
can identify a vector of size 1 that maximises it, yielding a vector with a size equal to its norm. By
setting w as this vector and rescaling it to be proper, we obtain using lemma (A.7) that:

L1 xDp) (g)) = £ L
VD eN: mo(v F (9))_

NG ﬁ\/a

0 (VXDF(Z) (H)wXD) <O(1) Uniformly.

(143)
Given that: ” .
Lo 1 UE— (144)
Vi 2y \/”1711121 \/nlnﬁlnD VD
we arrive at the desired result. O

E.3 REPRESENTATION OF THE NETWORK’S LAYERS AS A COMPOSITION OF PREVIOUS
LAYER COMPONENTS

In this part we use the semilinear structure of wide neural network to establish a linear relation
between the correlations of the /-th layer to the one of the [ — 1 layer. We will then use this relation
next part to show by induction the correlations are weak. For that will define the following useful
notation:

Definition E.2 (Inner and Outer Derivatives). Given a layer [ = 1...L. We denote the [-th layer’s
outer parameters, which includes its weights (and biases), as follows:
05 (145)

Meanwhile, the inner parameters are defined as any of the weights (and biases) from the layers
spanning 1...I — 1, and are denoted by:

0ecoh . (146)

Following the same notation, we denote the gradient of the outer parameters as V(;), and the gradient
of the inner parameters as V(_;y. The same applies for the correlations, denoted as &y, €_y).

Remark E.4. It is important to note that, as F(~) depends only in the inner parameters of the I-th
layer, the following relationship holds:

VP =vri-b, (147)

This notation can be employed to express the derivative of the [-th layer as a combination of deriva-
tives from the [ — 1-th layer.

Lemma E.3 (Representation of the [-th layer derivative, as a combination of its previous layer’s
derivatives). Given a fully connected wide neural network as specified above, for each ! = 1...L
layer, the D € N-th derivative can be presented as follows:

1. When all the derivatives are inner, the expression is:

(V<—l>)XDF<” ==y P pi=1) (148)

2. When one derivative is outer, and the rest are inner, the expression becomes:

@
vili1,1 -1

xD—-1 ~
x (V)R = 5, VPR (149)
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3. When 2 < D, and for 2 < d € N < D where the derivatives are outer, the expression
simplifies to:

(v“)) “ (vH)) Pl g (150)

Here, V*P F(=1) is the compound derivative, defined such as for D € N:

D di+...4+dq=D
AL CES S D (F”)) (VXle(l) X oo X VdeF(”) +comb  (151)
d=1 dy...dgeN
and for D = 0:
VIR = 6o (Fy) . (152)

The ”comb” term refers to all possible combinations of the derivatives’ indices. For instance, if we
consider one term of the third derivative as follows:

o= (g2 (FU-D) (VED x vx2p-n)) (153)

then, for every three distinct derivative indices a1, aa, a3, there are three unique ways to arrange the
indices, disregarding irrelevant parts:

Vo, FUTD 5 vz2 FUD v, FUTD x vx2 pU-D g, FUD vx2 FU=D 0 (154)

a1 (o5 e3>
While the first combination naturally arises from our expression, the “comb” term accounts for the
other two.

It should be mentioned that only unique terms are counted, even if they originate from dif-
ferent orders of the derivatives. Therefore, for another component of the third derivative,
o=D (g8 (FU-D) VFU=D) x VEU-D x VF(-D) and distinet oy, s, as:

Vo, FUVv,, FU-Yy, pi-Y v, pl-by, pl-byg, pe-b (155)
are identical, hence should only be counted once.

We can use this result to construct the [-th layer correlations using the correlations from the [ — 1
layer:

Lemma E.4 (Representation of the [-th layer correlations, as a combination of its previous layer’s
correlations). Given the same condition as in (E.3), then:

D,d _ 1)) X% <D
G (ew 1>) E+

- xd—1 _
nEl x i (FU-D) x (e(lvl—n) C(s !+ comb + (156)

~ xd
(6(“_1)) QZ([l)__ll)’d + comb .

or when showing the indices explicitly, using Einstein’s notation for summation:
Q:D,d> _ 9(1,1—1)5(1,1—1) ) “é(l,l—l) (é‘:D,d ) i
( @ 10%1...1d (-1 Jo,ji---Jd

10Jo 1171 tdjd

1 1 =D\ 5(,1=1)  F(i—1) {=D,d—1

EDRERY (5 e 1 o B Ul vy )jo‘j%jd + comb + (157)
A1-1)  A(LI-1) (GD—1,d '
R vl (i )io,ﬁmjd ,

where the “comb” term includes all index pairings with the zero index, i.e., (ig,i2) ... (i9,ip), and
the 6 defined as:

H(li—1) _ p(l-1) (I-1)
oty =0l Ve (R (158)

The first compound derivative defined such as for D € Ny, d € N:
D+d

D, d _ d DY gD1.d Dy dg
o = ) {C(ZB¢[ ] (F( )) Ty X X g
d'=1

di+...+dy =d
Di+...+Dgy =D

} + Comb
(159)
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where: Dl Do) (dal - !
Cip= P dé?;u 1ldel) (160)
Also for D € Ny, d = 0:
GASE R AU (161)
The second compound derivative defined such as for D € N, d € N:
éD—l,d) G CAED. 4 oy (éD‘Ld) et comb 162
( @ ©0,J1---Jd g (i0jo) @ JosJ1---Jd ( )

where the “comb” term is defined as before. For D = 0 this compound derivative vanishes.

Remark E.5. For the following lemma and the subsequent section, we make the assumption that
D << n. This assumption is permissible even though, in considering the limit, the limit of D
should technically be taken prior to that over n. This is because higher order derivatives typically
exert a decreasing influence over system behavior, leading us to essentially consider them negligible
beyond a certain point.

It is important to note that this assumption is not strictly necessary. We could directly address the
intricate combinatorial factors without it. Despite this, we prefer to make this assumption to avoid
introducing unnecessary complications into our analysis.

Lemma E.5 (Counting combinations of the derivatives and correlations).

1. For the conditions of lemma (E.3), for every d;...dy, the number of combinations of the

derivatives indices is:
1 D!

dldy!---dg!’
and the total number of combinations above all possible d = 1...D-s is the D-th "bell
number” (which is very close to D!).

(163)

2. For the conditions of lemma (E.4), for every d;...dy and D;...Dgs, the number of combi-
nations of the compound correlations is:

1 d D!
dVdl-dg! Dyl Dyl

(164)

‘We assume for this lemma the indices are different, as D < n.

Proof - lemmas (E.3,E.4).
We will prove the lemma by induction for a general layer [ = 1...L — 1 starting with [ = 1.

The induction base is simple, a this is a direct consequence of taking a derivative over our equation
for neural networks (127). This calculation hinges on the concept that, by definition, the inner
derivatives are independent of the outer parameters.
V(Z)F(l) = v(l)g(l’lfl)qs (F(lfl)) = 0(1,171)V(l)¢ (F(lfl)) =
gi—1) (¢[1] (F(l—l)) V(Z)F(l—l)) ,

which gives us the induction base.

(165)

Assuming by induction our lemma is satisfied for some D — 1 € N: the inner D-th derivative satis-
fies:

VIOFD =V ) x VT D =
V(_l) x Phl—1) 25:711 Zgif'ﬂ'ﬂ;ﬁglzljfl ¢[d] (F(lfl)) (VXle(l*U N VdeF(lfl))

+comb
i DTSt AU=DTL g s gld] (FO-D) (WX FO-D L vxda pl-1)
+
pi-1) Zdszll Ejié'dg?:[’*l P4 (F(l—l)) (V w UXdi pU=1) o L x VdeF(l—l))
_|_
comb

(166)
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We have here a sum of two two different summations, we will analyse each one separably:

Starting from the first one:

dD:_11 Zgi*‘ddz‘f\?:l)_l V X ¢[d] (F(lfl)) (VXle(lfl) X e X dedF(lfl))

D A G (D) (VPO x TN s i)

P S SR 40 (PU) (75 PO s XD s g ¥dars pO)

2522 Zgii‘f?;;:;ddg;D ¢[d] (F(l—l)) (VXle(l—l) x VXd2 pl=1) ...« VdeF(l—l)) .

167)
The second term can be represented as:
5;11 Zgif'gl‘dz‘i&?:Dfl qﬁ[d] (F(l—l)) (V x VX pl=1) o ...« VdeF(l—l))
Do A da=D gld) (pU-D) (Tt pO=D) s gxda pl-1)) (168)

ot e Ny agen O (FUTD) (VXA PUD o pxda pU1)

Combining the two sums we get exactly the form that we were searching for, which finishes the
proof of the lemma’s first case.

Lemma (E.4) is a direct result. O

Proof - lemma (E.5).

Proving the lemma’s first part:

The number of way to sort into d distinct sets with d; ...dy objects is:

di+---dg)! D!
(di+---da)! _ 7 (169)
di!---dg! dy!---dg!
but our sets are not distinct, so we need to divide by the appropriate coefficient. But if the sets are
not the same, they repeat in different arrangements, so we get the %. summing over all of these
options we get the definition of the D-th bell number.

The second part is the same. O

E.4 WIDE FNC-s ARE WEAKLY CORRELATED PGDML SYSTEMS

Here we will show a detailed heuristic proof of why wide neural networks are weakly correlated
PGDML as described in (E.2).

Remark E.6. For this section we assume that the width of the last layer, i.e the L-th layer is exactly
L = 1. That won’t impact any of our results of the system asymptotic behavior as L is fixed in n as
discussed in remark (A.6).

Remark E.7. In the entire section we will use Einstein’s summation notation (liberally).

We initiate our exploration of wide neural network correlations (and derivatives) by focusing on the
most critical one - the kernel - €.

For the final layer [ = L, the kernel norm is simply expressed as:
€| = €] - (170)
Given that n;, = 1, the kernel is merely a scalar.

Leveraging lemma (E.4), we can construct the L-th layer kernel from the components of the preced-
ing layer:

2
Q:%L) _ 9§L,L71)9§L,L71) (Q:%L—l))ij +ne (F;L—l)) . (171
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Applying lemma (E.1) and the Lipschitz property of ¢, we discern that the right term has the asymp-
totic behavior of n¢ (Fj)2 ~ O (1). Concerning the left term, lemma (E.4) once again provides:

2
(ety),, =050 0 (etsy) +aumo (FE) (172)

This means we have an O(1) term and another that depends on the previous term. Continuing
this process by induction and employing the fact that everything is symmetric, hence positive, we
conclude that the kernel’s asymptotic behavior is precisely O(1). In combination with (E.2), we
find that our system satisfies the criteria of a PGDML (B.2)!

Let’s now consider a general D € Ny, d € N final correlation. By invoking lemma (A.3), we know
that there exists a vector v € Sy achieving the norm:

D.d|| | .D,d
let|| = |ett-vP| - (173)

Applying lemma (E.4), we find that this expression can be constructed from D — 1 correlations.
Considering only the first term among the three in the equation, (the treatment for others would be
the same), and focusing solely on the first correlations, we obtain (up to % when omitting the ﬁ as
we do not consider the different combinations):

(¢[d+D] (F(L_1)> (9(L7L_1)>) X (é(L’L_l))Xd~ ((Q(Ll))Xd X <77%VF(L_1))XD -UXD)

174)
Using (23), and that the L — 1 layer and L are independent at initialization, we can dismiss the ¢-s,
leaving the asymptotic behavior unchanged (we would discuss the d! later):

(e@vL—”)Xd+1 : ((%1))“ x (n%VF@—D)XD .UXD) . (175)

When constructing the kernels from the preceding layer, as each one consists of two terms (171),
resulting in 2¢ terms in total. This factor of 2¢ does not alter the system’s asymptotic behavior, so
instead, we can consider only the maximal terms, which are the ones with only one kind of first
correlation terms. We will choose the first kind of terms, dealing with the others via induction:

2 2
GZ(OL,L—l)ol(IL,L—l) e gz(dL,L—l) <5i0i177¢ (F;.EL_Q)) > (5ioid77¢ (F’gL—2)> ) )

<<névﬂ(0L_2))><D _UxD) (176)

2
As n¢ (F ,EL_Z)> ~ O(1), after reducing the deltas, we obtain an asymptotic behavior of at most:

(HEL,Lfl))dJrl ((n;VFing)XD .UxD) ) (177)

Now, as we already have that O (77% VFZ-(OL_2)) < O(1),if D € N we find multiplied by a vector
of at most size O(1). In the worst case, this object will have an asymptotic behavior of:

d+2
(0}“‘1)) . (178)
We know from our proper initialization that it is uniformly bounded for all d-s by:
1\¢
dlo|—] . 179
() e

which means that by reintroducing the % we get:

1\
O(\/ﬁ) . (180)
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1 B xD
If D = 0 however, the (775 VFl—(OL 2)) - v*P term disappears and we are left with:
d+1
(05“‘1)) . (181)

d
For odd d-s, we still have O ( L ) as 6 is symmetric. However, for even ones, we find:

1 \%!
Ol — . 182
(ﬁ > (152
This explains why, while our system is n weakly correlated, it is only ni power weakly corre-

lated. Nonetheless, for the time deviation, one can easily confirm that this term remains negligible
as n — oo.

S

Of course, there are many other terms rather then the first derivatives ones. But we can they can be
treated similarly.

Assuming that for [ — 1 layer:

ol T (POD) et x o e (183)
contributes at most:
1 dor d—1
O —= . 184
(\/ﬁ) (59

We get utilizing Lemma (E.5), and replacing !¢ (FU=Y) — &' (as warranted by equation (23)),
we find that the total contribution is bounded by:

ZDHZZL d! D! d’ldl!“'dd’IDl!"‘Dd’!O E dord—1
d’=1 d’Vdyldg! Dil---D gt 5 d! D! N

Dtd 1 dord—1 1 dord—1
~2H0() T ~o(F) '

In a similar vein, it can be demonstrated that multiple correlations taken together exhibit the same
behavior at the [-th layer. Which means that we can prove by induction in the same way we did for
the first correlations, that all of them behave the same, thereby concluding our (heuristic) proof.

(185)

E.5 GENERALISATION BEYOND FNC-s

E.5.1 TENSOR PROGRAMS

While FNCs are the prototypical network architecture, numerous other architectures are utilized
practice as we discussed in section (4.2). The tensor programs formalism, as detailed in (Yang &
Littwin (2021)), offers a unified language to encapsulate most relevant neural network architectures,
by viewing them as a composites of global linear operations and pointwise nonlinear functions. This
formalism encompasses an extensive array of neural network architectures, including recurrent neu-
ral networks and attention-based networks. In their work they demonstrated that any wide network
described by this formalism exhibit linearization.

Our weak correlation approach naturally aligns with the tensor programs framework, simplifying the
proof that such networks not only exhibit linearization, but also are low correlated PGDMLs. This
comes with all of the additional implications that, like deviations over learning and the influence of
network augmentation on the linearization rate.

Our proof for FNCs can be simply generalised for any wide network described by this formalism,
because, similarly to FNCs, all such systems exhibit a wide semi-linear form by definition.

E.5.2 BEYOND TENSOR PROGRAMS

Given the broad generality of the tensor programs formalism, it’s challenging to devise linearizing
networks that fall outside its scope. However, here we suggest two network-based architectures that
demonstrate linearization and, to our belief, stand outside this formalism.
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The first is FNC as outlined in equation (127), but where each neuron possesses a unique activation
function:

np—1
FO = 3 0, (FO0) 46 (156)
j=1

The proof of the linearization of this system, assuming ¢; satisfies condition (23), simply parallels
our proof for FNCs.

Not all such systems are outside the random tensor formalism’s purview, if we can represent ¢; as a
function of two distinct inputs - F; and another external input given by the index j € N, such as:

Vi=lom_1: o, (Fjl‘“) — & (Fj(l_l),j) . (187)

However, since ¢ and all its derivatives must remain bounded by some polynomial to fit within the
theorems of Yang & Littwin (2021); Yang (2020) for wide neural networks, if ¢; is exceedingly
diverse, pinpointing a suitable ¢ could be very challenging or even impossible.

A more definite (albeit synthetic) example of a linearizing network-based system outside the tensor
programs realm can be formulated as:

2(@) = 0ifi(@)+ Y 0:0;9:(x) g; (x) g=Af, (188)
=1

4,j=1

initialized by € = 0, where A is a 90° rotating matrix across the relevant axis as n — oo, and f; are
chosen as the eigenfunctions of some external kernel.

This system can be viewed just an NTK approximation, but with a non-trivial second derivative that
is perpendicular to the first. Hence, our system will still behave linearly as n — oo. It’s also not
evident how this system can be derived from the tensor programs framework.

While one might contend that this example seems artificially contrived to the point of limiting its
significance, it underscores the existence of weakly correlated, network-based systems that are not
encapsulated by the tensor programs formalism.

Furthermore, in line with our discourse in (3.3.3), if we manage to discern the types of effective
correlations that could prove advantageous, such systems might find practical applications.

F LIMITATIONS, FURTHER DISSECTION AND GENERALISATION

In this section, we enumerate the key assumptions that underpin our analysis and propose potential
extensions to our findings beyond these stipulated preconditions. Additionally, we identify potential
avenues for related further research.

In this section, we enumerate the key assumptions that underpin our analysis and propose potential
extensions to our findings beyond these stipulated preconditions. Additionally, we identify potential
avenues for related further research.

F.1 SECTION (2)

Our analysis here did not rely on any hidden or nontrivial assumptions, except for those explicitly
stated during the tensor definition. Our findings are generalizable and applicable to any random
tensor or variable that is dependent on some limiting parameter n € N. Extending our results to any
set with a total order is straightforward.

We anticipate this analytical tool to be beneficial not only for the investigation of wide neural net-
works but also for the learning of random tensors and variables in general, particularly when focus-
ing on their limiting behavior, for reasons delineated in this paper. It upholds several useful algebraic
properties (A.3), provides a well-defined, optimal asymptotic bound for any tensor (2.1), and har-
monizes naturally with the notion of ’convergence in distribution”. Further, owing to its inherent
generality, it offers widespread applicability. We recommend further exploration into the utilization
of this tool in solving other problems.

38



Under review as a conference paper at ICLR 2024

F.2 SECTIONS (3,4)

F.2.1 ASSUMPTIONS

1. We presuppose that F', C, and ¢ are analytical in their parameters, that is, they are smooth
and their Taylor series converge to them.

2. All of ¢ derivatives are bounded such as in equation (23).

3. Our analysis is constrained to the case of single-batch stochastic gradient descent, and we
assume that our training and testing distributions coincide.

4. We presume C is convex that is, C" is a positivly defined.

5. Our theorems (3.1,3.2) and corollary (4.0.1) are exclusively applicable to PGDML systems,
as defined in (B.2).

6. Theorem (3.1) and corollary (4.0.1) are valid only for sufficiently small 7 that is of the same
order of magnitude as the 1 necessary for effective linear studies.

7. Corollary (4.0.1) stipulates that the first derivative of C decays exponentially, and the second
derivative remains bounded over time for the linear solution.

8. The equivalence showed in theorems 3.1,3.2 demand that all of the derivatives stay fixed.
But one can describe a more nuanced equivalence, where the derivatives do significantly
change, but the network itself do behaves linearly, if this change is perpendicular to
VF (8y). However, given the fact that neural networks satisfy our simpler conditions we
will remain with the above stated version of the equivalence.

F.2.2 GENERALIZATIONS OF THE ASSUMPTIONS

For condition (1), while we typically deal with smooth analytical functions, non-continuous hypoth-
esis functions are common, as with the ”"ReLLU” activation function in neural networks. If our system
can be represented as a linear approximation plus a function that is analytical over patches, with the
understanding that non-smooth points are of zero measure, then the techniques presented herein can
be applied.

Regarding the bound imposed on the derivatives of ¢, (2), this bound is relatively non-restrictive.
Especially considering that ¢ should be analytic and this condition only needs to hold over an arbi-
trarily large probability set, not the entire probability space.

Extending the single-input batch gradient descent case (3) to other batch schemes, such as multiple-
input batches or deterministic single batch GD, is straightforward. This extension simply involves
replicating our work while adjusting the specifics of the optimization algorithm of interest. The
generalization for more complex gradient-based algorithms follows similar lines, albeit with more
nuances.
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