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Appendix A. Relationship between ATAC-seq and RNA-seq

ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) and RNA-seq
(RNA sequencing) are two complementary techniques employed to profile molecule quantity
within cells at different layers.

• ATAC-seq measures the accessibility of DNA within the nucleus. Typically in higher
eukaryotes, DNA is in a highly compact and inaccessible state. However, certain
regions of the chromosome can open up in a cell-type-specific manner to perform
various functions, such as regulating transcription. ATAC-seq is a technique used to
assess chromatin accessibility of individual cells, generating a sparse, binary matrix
x, where a value of 1 indicates an accessible region, and 0 indicates an inaccessible
region.

• RNA-seq measures RNA molecules being transcribed in a cell at a given time, pro-
viding direct information on gene expression levels. Thus, RNA-seq data is usually
represented as a numerical array y, with each value in the array corresponding to the
expression level of a specific gene.
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Relationship Open chromatin regions (represented by 1s in x) identified by ATAC-seq
are often associated with cis-regulatory elements (CREs) that activate gene transcription,
leading to the production of multiple mRNA molecules (non-zero values in y). However,
the specific CREs in x that regulate particular genes in y are not always known. In single-
cell studies, combining ATAC-seq and RNA-seq (sometimes within a single experiment,
referred to as multiomics) enables researchers to capture these CRE-to-gene regulatory
relationships. This relationship can be compared to the connection between an image and
its corresponding textual description in the field of multimodal machine learning—where
both modalities share similar semantics but have different structures.

Embedding Space As mentioned above, ATAC-seq and RNA-seq are complementary
multiomics modalities, each profiled by distinct techniques that together provide a holis-
tic characterization of cellular states. Developing a robust embedding space enables the
seamless integration of ATAC-seq and RNA-seq data, facilitating a powerful cross-modal
understanding and interaction.

Appendix B. GRIDS Algorithm

The algorithm is summarized in Algorithm 1.

Algorithm 1 GRIDS global feature importance explanation algorithm for regulatory re-
dundancy dissection

Input: cross-modality surrogate mapping model F̂
Parameter: global feature explanation number L, explanation target gene yj , perturbation
values p
Output: explanation result r∗

1: randomly initialize the subset r
2: while not converged do
3: sample a batch of data (x,y) ∼ C
4: doing perturbation induced by r and p on the input data x
5: compute the global explanation objective with Eq. 2
6: estimate the indices transition T using Eq. 14
7: update the current r using the candidates in T using coordinate descent
8: end while
9: set optimal result r∗ ← r

10: return r∗

Appendix C. Datasets

C.1. Single-Cell Multimodal Dataset

Preprocessing We curated a set of deeply-sequenced post-mortem human pre-frontal
cortex (PFC) cells of a healthy individual from the PsychENCODE consortium (Akbarian
et al., 2015). In total, 10,266 cells were harvested and sequenced for both chromatin acces-
sibility (ATAC-seq) and transcription activity (RNA-seq) after applying a series of quality
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control parameters (ATAC-seq sequencing depth greater than 1,000, RNA-seq number of
mapped genes greater than 200, and TSS enrichment greater than 2.0) and initial processing
using Cell Ranger ARC (Zheng et al., 2017). In the ATAC-seq dataset, we called 127,219
characteristic chromatin regions (peaks) using Macs2 (Zhang et al., 2008) with an average
sequencing depth of 4811.34, resulting in a 2-dimensional matrix of 10, 266× 127, 219 using
the R package ArchR (Granja et al., 2021). Since each chromatin region must be either
opened or closed, we binarized the matrix to obtain the ATAC-seq dataset used for model
training. In the RNA-seq dataset, we mapped to a total of 19,607 genes or pseudogenes for
each cell, generating a 2-dimensional matrix of 10, 266× 19, 607 with raw reads (number of
reads mapped to each gene for each cell). Since RNA-seq raw reads were heavily correlated
by the total number of reads per each gene, we conducted a standard normalization process
using the Pegasus package (Li et al., 2020) followed by a feature selection process in which
we selected the top 3,000 most deferentially expressed genes. Finally, we obtained a matrix
of 10, 266× 3, 000 as the training RNA-seq dataset.

Cell Types Furthermore, to guide the training process, we curated a set of cell type
annotations using ATAC-seq and RNA-seq data separately. From the RNA-seq data, we
conducted dimension reduction using PCA (number of components of 20) and clustering
using LEIDEN (resolution of 1.0) (Traag et al., 2019). Using the gene expressions of the
marker genes (Lake et al., 2016), we overlay the clustering and marker gene information to
manually assign each cluster to a cell type. The annotation process for ATAC-seq dataset
followed a similar pattern, with an extra step of transforming the ATAC-seq matrix into a
gene activity matrix using ArchR. Finally, we assign all cells into one of the following cell
types: excitatory neurons (Exc), inhibitory neurons (SST and VIP subtypes), astrocytes
(Astro), endothelial cells (Endo), microglia cells (Micro), oligodendrocyte progenitor cells
(OPC), and oligodendrocyte cells (Oligo). Note that co-assayed data is not necessarily
required to train this model. As long as the ATAC-seq matrix (binarized), the RNA-seq
matrix (normalized), and their corresponding cell type annotation were present, our model
can be trained. The only requirement should be that the two modalities need to come from
the same region (for example, the PFC region) so that the cell type annotation matches.

C.2. Marker Gene List

The full list of marker genes used in our experiments can be found in Table 1. For

Table 1: Marker gene list of each cell type used in the experiments.

Cell Type Marker Genes

Astro ALDH1A1, AQP4, GJA1
Endo CLDN5, FLT1
Micro APBB1IP, CX3CR1
OPC NXPH1, OLIG1, OLIG2
Oligo MOBP, MOG
SST GAD1, GAD2
VIP GAD1, GAD2
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C.3. MNIST Dataset

We followed the experiment design first proposed by Shrikumar et al. (2017) to recognize
two categories of digits (8 vs 3) on MNIST. At the preprocessing stage, each pixel value was
normalized to be in the range of [0, 1], and the full dataset was randomly split into three
subsets (training, validation, and test) with a ratio of 0.7, 0.1, and 0.2, respectively. We
employed a binary classifier multi-layer perceptron (MLP) model featuring rectified linear
(ReLU) units, without using batch normalization. The model was trained using the Adam
optimizer (Kingma, 2014), with a learning rate of 1e−4, and a batch size of 64. Training
was conducted for a maximum of 50 epochs, incorporating an early stopping mechanism
with a patience of 2000 steps, based on the validation set loss. This approach resulted in a
test set accuracy of 97.9% in distinguishing between two-digit classes.

Appendix D. Implementation Details

Hyperparameters Our method is implemented using PyTorch. For the cross-modality
surrogate mapping, we adopted four MLP layers with embedding dimension 32. The learned
common latent dimension dh is set to be 20. During the adversarial training, the weight of
adversarial loss γ is set to be 0.3. The discriminator number T is set to be the number of cell
types in the dataset. In the global explanation generation stage, we set the hyperparameter
β to 0.1 and k to 32. We utilized the reference implementations for LIME1, CXPlain2, and
SAGE3, as provided by the original authors of these methods. For Saliency, SmoothGrad,
and FIMAP, we developed our own implementations.

MNIST Benchmark For LIME, we followed the implementation in the paper by using
random sampling to generate neighbor data for each sample. The neighbor number was set
to 1024, and we used cosine distance to measure the neighbor distance. For CXPlain, we
followed the setting in (Schwab and Karlen, 2019), we explained non-overlapping connected
regions of 2×2 pixels for the MNIST benchmarks. Since the image dimensions were 28×28
for MNIST, the target attribution maps were of size 14× 14. We used the CXPlain(U-net)
model proposed by the author to learn the target attribution maps. The model was trained
for 500 epochs with a batch size of 512 using Adam optimizer with a learning rate 5e−4.
For SAGE, the model was trained for 300 epochs to converge with a batch size of 512
using Adam optimizer with a learning rate 1e−3. we set the permutation number to sample
10, 000 times with a batch size of 512. For GRIDS, we set the perturbation subset size to
64, and the candidate size to 32.

Single-Cell Multimodal Benchmark For LIME, we employed random sampling to
generate neighboring data for each sample. We set the number of neighbors at 1024 and
utilized cosine distance to measure the proximity between neighbors. In the case of CXPlain,
we tried to explain non-overlapping sliding windows measuring the size of w = 4 peaks for
the ATAC-seq (we also tried different window sizes including w = 16, 32, 64). Given that the
ATAC sequence length is 127, 219, the resulting target attribution maps were consequently
sized at 127, 219//w. We adopted the CXPlain (U-net) model using the one-dimensional

1. https://github.com/marcotcr/lime
2. https://github.com/d909b/cxplain
3. https://github.com/iancovert/sage
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convolutional neural network to learn these target attribution maps. This model underwent
training for 2000 epochs, using a batch size of 512 and the Adam optimizer with a learning
rate of 5 × 10−4. For SAGE, we configured the permutation number to sample 256, 000
times, maintaining a batch size of 512. For SAGE, the model was trained for 300 epochs
to converge with a batch size of 512 using Adam optimizer with a learning rate 1e−3. We
tried to run SAGE with more sampling times but it still cannot coverage. For FIMAP, For
GRIDS, we set the perturbation subset size to 10 and 128 depending on the experiment
setting, and the candidate size to 32.

Computing Infrastructure All model training and experiments are conducted on a
server equipped with an AMD EPYC 7662 64-Core Processor with 1 TB memory, 32 CPU
cores, and eight NVIDIA RTX A6000 GPUs. The code is implemented in PyTorch. We use
slurm as the job scheduler. For each experiment, we allocate 4 CPU cores, 1 GPU, and 90
GB memory.

Time Analysis Our GRIDS can finish global explanation generation L = 64 on the
MNIST benchmark within 3 minutes. On the single-cell benchmark, GRIDS can finish
global explanation generation for each marker-gen and cell type pair of L = 10 within 3
minutes, while 24 minutes for L = 128.
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Figure 1: Benchmarks of the distribu-
tions of the log odds changes on the
test dataset after masking L = 64 most
important pixels according to different
explanations learned across the training
dataset. Our method is better than CX-
Plain with p-value < 0.004.
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Figure 2: An examination of the most significant
L = 64 pixels identified by various methods, is
presented through their masked results on four dis-
tinct images in the test set. Our subset perturba-
tion learning method can find a similar combina-
torial pattern as SAGE.

Appendix E. Global Subset Perturbations in MNIST

To compare the global feature importance estimation performance of GRIDS to existing
state-of-the-art methods, we evaluated its ability to identify the global important features
in MNIST (LeCun et al., 2010) images. We followed the experiment design first proposed
by Shrikumar et al. (2017), and trained binary classification models to recognize two cat-
egories of digits (8 vs 3) on MNIST. At the preprocessing stage, each pixel value was
normalized to be in the range of [0, 1], and the full dataset was randomly split into three
subsets (training, validation, and test). Experiment details can be found in Appendix C
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Figure 3: GRIDS effectively finds cis-regulatory elements known to associate with cell type-
specific marker genes. (A) Hi-C topological domain (TAD) visualization of chromosome 2,
with the specific TAD that contains GAD1 marked in red. (B) Visualization of: (top)
inhibitory-specific chromatin accessibility; (center) the found enhancer-promoter linkages
by GRIDS for GAD1; (bottom) the reference genome with GAD1 gene marked in red.

and D. After the training, the binary classification model can achieve 97.9% accuracy over
the test set. We then used several global feature importance explanation methods to esti-
mate which input pixels were most important for the classification models’ predictions on
the training set. The explanation methods learn to mask L = 64 the most important pixels.
To ensure that the explanations of all methods are in the form of a subset, we select L
pixels with the top L important scores as the subset. Those pixels were masked to zero (i.e.
p = 0) if they were selected as the global important features. To evaluate the generaliza-
tion ability of the estimated globally important feature, we apply the generated explanation
to the remaining test set and measured the resulting change in the confidence of classifi-
cation models by checking the difference in log odds ∆ϕ = E[ϕ(p(x)) − ϕ(p(x\r))], where
ϕ(p) = log(p)−log(1−p) represents the log odds function, p(x) and p(x\r) are the classifica-
tion models’ category probability prediction from the original image and the masked image
with the most important pixels removed, respectively. The log odds changes distribution
were summarized in Figure 1. We created visual representations of the generated global
feature importance explanations and the corresponding masked images in Figure 2. This
was done to qualitatively evaluate the effectiveness of each method in identifying the key
global features in the training images. If the estimations are precise, the resulting masked
image should bear a closer resemblance to the number 3 rather than 8. This outcome is
expected because the pixels that primarily contribute to the digit being recognized as an 8
ought to have been eliminated.

Appendix F. Cell-Type-Matched Hi-C Experiments

We conducted an independent validation using cell-type-matched Hi-C experiments from
PsychENCODE Emani et al. (2024) to confirm the activity of our predicted CREs on the
target gene GAD1 within the VIP cell type. As shown in Figure 3, the Hi-C experiment
results encompass three key points:
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• Visualization of Hi-C topological domains (TADs) on chromosome 2, with the specific
TAD containing GAD1 highlighted in red.

• Chromatin accessibility data (ATAC-seq) for inhibitory-specific cell types, and

• The enhancer-promoter linkages for GAD1 identified by GRIDS. These results demon-
strate that GRIDS effectively identifies cis-regulatory elements (e.g., enhancer-promoter
linkages) associated with cell-type-specific marker genes, such as the GAD1 gene
within the VIP cell type.
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