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ABSTRACT

Flow matching (FM) has gained significant attention as a simulation-free gener-
ative model. Unlike diffusion models, which are based on stochastic differential
equations, FM employs a simpler approach by solving an ordinary differential
equation with an initial condition from a normal distribution, thus streamlining the
sample generation process. This paper discusses the convergence properties of FM
for large sample size under the p-Wasserstein distance. We establish that FM can
achieve an almost minimax optimal convergence rate for 1 ≤ p ≤ 2, presenting
the first theoretical evidence that FM can reach convergence rates comparable to
those of diffusion models. Our analysis extends existing frameworks by examining
a broader class of mean and variance functions for the vector fields and identifies
specific conditions necessary to attain almost optimal rates.

1 INTRODUCTION

Flow matching (FM) (Lipman et al., 2023; Albergo and Vanden-Eijnden, 2023; Liu et al., 2023b) is a
recent simulation-free generative model that produces samples of the target distribution by solving an
ordinary differential equation (ODE) initialized with a source normal distribution. The vector field to
define the ODE is trained by neural networks with the teaching data of random conditional vectors.
This approach bypasses the computationally intensive Monte Carlo sampling required in the diffusion
model, which is currently the standard in generative modeling. Various variations have been proposed
to refine the learning of vector fields, such as OT-CFM (Tong et al., 2024), rectified flow (Liu et al.,
2023b), consistent velocity field (Yang et al., 2024), equivariant flow (Klein et al., 2023), etc. A series
of studies also emerge from the viewpoint of interpolating distributions (Albergo et al., 2023c;a).

FM has already been applied to various domains with promising performance. Among many others,
the rectified flow method has been extended to high-resolution text image generation (Esser et al.,
2024), and there are also many works on the application of FM to molecule generation (Hoogeboom
et al., 2022; Guan et al., 2023; Bose et al., 2023; Dunn and Koes, 2024), text generation (Hu et al.,
2024), speech generation (Le et al., 2023), motion synthesis (Hu et al., 2023), etc.

Although the methods have been developed on the solid theoretical basis of the flows and continuity
equation, their statistical behaviors remain less understood. Recent works have established the con-
vergence of the FM estimator to the true distribution under some distributional metrics (Albergo and
Vanden-Eijnden, 2023; Benton et al., 2023b). Beyond the convergence, more detailed understandings,
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such as convergence rates, are still an open question. In contrast, diffusion models have gained
various theoretical understandings, including the convergence rate in terms of the number of steps
(Chen et al., 2023; Benton et al., 2023a) and the sample size (Oko et al., 2023; Zhang et al., 2024).
Among others, Oko et al. (2023) has shown that diffusion models achieve the minimax optimal
convergence rate for a large sample size under the total variation metric and the almost minimax
optimal rate under the 1-Wasserstein distance, where the max is taken over the true densities of the
Besov space. This result theoretically supports the high generation ability of diffusion models.

This paper aims to bridge this gap by demonstrating that FM can achieve an almost minimax optimal
convergence rate for a large sample size under the p-Wasserstein distance Wp for 1 ≤ p ≤ 2,
suggesting that FM has a theoretical ability comparable to diffusion models. This problem is
significant for comparing the ability of FM methods and diffusion models, and revealing the difference
between SDE and ODE in the generative models. Drawing on the methodologies of Oko et al. (2023),
our analysis not only extends to a broader class of mean and variance parameters of Gaussian
smoothing for conditional vector fields, but also specifies the conditions on these parameters under
which the almost minimax optimal convergence rate can be achieved.

The contributions of this paper are as follows.
• We establish that a widely used class of conditional FM methods achieves an almost minimax

optimal convergence rate under the p-Wasserstein distance (1 ≤ p ≤ 2), marking the first
theoretical demonstration of such optimal performance of FM.

• We provide an analytical derivation of the convergence rate under various settings of the parameters,
mean and variance, to make a path that connects a source and target point.

• We reveal that the variance parameter, which specifies the contribution of the source, must be
decreased around the target at a specific rate to attain an almost minimax optimal convergence rate.

2 FLOW MATCHING

Throughout the paper, data are in the d-dimensional space Rd. The d-dimensional normal distribution
with mean µ and covariance matrix V is denoted by Nd(µ, V ). For a probability Pa with index a,
the lowercase pa denotes its probability density function (p.d.f.).

2.1 REVIEW OF FLOW MATCHING

This subsection provides a general review of FM, following Lipman et al. (2023) and Tong et al.
(2024). The aim of FM is to generate samples from the true probability Ptrue. FM methods realize it
by a flow φ[τ ](x) (τ ∈ [0, 1])1 that maps a sample from the standard normal distribution Nd(0, Id)
to that of Ptrue. The flow φ[τ ](x) is defined by a solution to the ODE

d

dτ
x[τ ] = v[τ ](x[τ ]) (τ ∈ [0, 1])

given by a desired vector field v[τ ]. FM generates a sample by solving the ODE with an initial
point x[0] from P[0] = Nd(0, Id); in other words, the distribution at time τ is the pushforward
P[τ ] = φ[τ ]#P[0]. The pushforward P[1] is expected to approximate Ptrue. In practice, we need to
construct the vector field given training data {xi}ni=1 of size n, which is i.i.d. samples from Ptrue.

The relation between the vector field v[τ ](x) and the p.d.f. p[τ ](x) is given by the continuity equation:

∂

∂τ
p[τ ](x) + div

(
p[τ ](x)v[τ ](x)

)
= 0.

Typically, a neural network (NN) is used to construct v[τ ](x). However, it is not obvious how to
prepare the desired v[τ ](x) to teach NN. In FM methods, conditional random vectors v[τ ](x[τ ]|z)
given z, which are to be easily prepared, are used to teach NN; a location x[τ ] is sampled by a
conditional probability P[τ ](x[τ ]|z) and the vector v[τ ](x[τ ]|z) is assigned at x[τ ] as teaching data.

1We use [τ ] to denote the time τ ∈ [0, 1] in this section and preserve xt for the reverse time indexing, which
is adopted from Section 4 to align with the notation of diffusion models.
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Throughout this paper, the condition is given by z = (x[0],x[1]) with x[0] ∼ P[0] and x[1] ∼ Ptrue.
The vector v[τ ](x[τ ]|z) is made so that it satisfies the conditional continuity equation:

∂

∂τ
p[τ ](x|z) + div

(
p[τ ](x|z)v[τ ](x|z)

)
= 0. (1)

A typical construction of x[τ ] is to use a path x[τ ] (τ ∈ [0, 1]) from x[0] to x[1] and define the
conditional vector by its time derivative v[τ ](x|z) := d

dτ x[τ ] (see Sec. 2.2). For a deterministic path,
P[τ ](x[τ ]|z) is the delta function at a point in the path x[τ ].

Note that, given (x, τ), the vector v[τ ](x|z) is random by the choice of z = (x[0],x[1]); different
vectors may be assigned to the same location (x, τ). Most importantly, by averaging over z ∼ Q,
where Q is the joint distribution with marginals P[0] and P[1], we can see that the p.d.f. of x at time τ ,

p[τ ](x) =
∫
p[τ ](x|z)dQ(z), (2)

and the averaged vector field v[τ ](x) given by

v[τ ](x) :=
∫
v[τ ](x|z)p[τ ](z|x)dz, p[τ ](z|x) :=

p[τ ](x|z)q(z)
pt(x)

(3)

satisfy the continuity equation

∂

∂τ
p[τ ](x) + div

(
p[τ ](x)v[τ ](x)

)
= 0. (4)

This provides the theoretical basis for FM methods; the averaged vector field v[τ ] transports Nd(0, Id)
to Ptrue. v[τ ] is learned by a NN ϕ(x, τ) with noisy training data {(x[τ ], τ),v[τ ](x[τ ]|z)}. Em-
pirically, the conditional v[τ ](x|z) is given by the random sample z = (x[0],x

i) and the location
x[τ ] ∼ P[τ ](x|z) (or path) with uniform τ . The NN is trained with the mean square error (MSE):

minϕ E∥ϕ(x[τ ], τ)− v[τ ](x[τ ]|z)∥2. (5)

Note that ϕ(x[τ ], τ) does not depend on z. Since the MSE minimizer is the conditional expectation
of the teaching data, the empirical minimizer ϕ̂ is an estimator of v[τ ](x). Using the estimator ϕ̂ and
the corresponding flow φ̂[τ ] given by ODE, we obtain the estimator P̂[1] for Ptrue by sampling. In
practice, to reduce the variance of (x[0],x[1]) and simplify the ODE solution, the optimal transport
for pairing x[0] and x[1] is applied effectively (Tong et al., 2024; Pooladian et al., 2023).

2.2 PATH CONSTRUCTION

This paper focuses on the following class of paths to construct the conditional vector field. Let
x[0] ∼ P[0] = Nd(0, Id), and x[1] be a sample of P[1] (or the empirical distribution P̂train =

(1/n)
∑n

i=1 δxi in practice). A conditional path is defined by

x[τ ] := σ[τ ]x[0] +m[τ ]x[1] (0 ≤ τ ≤ 1, σ[τ ] > 0,m[τ ] > 0). (6)

We assume that σt and mt are monotonic, σ[τ ] → 1,m[τ ] → 0 as τ → 0+, and σ[τ ] → 0,m[τ ] → 1

as τ → 1−. Let σ′
[τ ] (m′

[τ ], resp.) be the time derivative of σ[τ ] (m[τ ], resp.). With sampling
τ ∼ Unif[0, 1], a random conditional vector is assigned at (x[τ ], τ) ∈ Rd × [0, 1] by

v[τ ](x[τ ]|x[0],x[1]) := σ′
[τ ]x[0] +m′

[τ ]x[1]. (7)

Note that, due to x[0] ∼ Nd(0, Id), the distribution of x[τ ] given x[1] equals P[τ ](x[τ ]|x[1]) =

Nd(m[τ ]x[1], σ
2
[τ ]Id), and thus we call m[τ ] and σ2

[τ ] the mean and variance parameters, respectively.
Since (6) leads x[0] = (x[τ ] −mtx[1])/σ[τ ], the conditional vector (7) is written as

v[τ ](x[τ ]|x[1]) = σ′
[τ ]

x[τ ] −mtx[1]

σ[τ ]
+m′

[τ ]x[1]. (8)

This class covers some popular constructions of conditional vector fields in the literature.
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• Affine path: one of the most popular constructions is the following,

x[τ ] := (1− τ)x[0] + τx[1], v[τ ](x[τ ]|x[1]) = x[1] − x[0].

This corresponds to m[τ ] = τ and σ[τ ] = 1−τ . In Lipman et al. (2023) x[0] and x[1] are generated
independently, while in Tong et al. (2024) they are taken by the optimal transport in a minibatch.
This case is covered by our result, which does not depend on the construction of joint distribution.

• Diffusion: Lipman et al. (2023) presents the diffusion path, which corresponds to the deterministic
probability flow (Song et al., 2020). The conditional density is given by p[τ ](x[τ ]|x[1] = y) =

Nd(m[τ ]y, σ
2
[τ ]Id). The setting σ2

[τ ] = 1−m2
[τ ] and σ[τ ] ∼

√
1− τ is typically used.

3 CONVERGENCE RATE OF FLOW MATCHING

We assume that the true density p[1] is included in the Besov space Bs
p′,q′ (s > 0, 0 < p′, q′ ≤ ∞) on

the unit cube [−1, 1]d, while the results can be extended to any size straightforwardly. The parameter
s specifies the degree of smoothness and is most relevant in this paper. The definition of the Besov
space is deferred to Appendix A.1. We use the r-Wasserstein distance Wr to measure the accuracy of
the estimator. The distance Wr of the probabilities P1 and P2 on Rd is defined by

Wr(P1, P2) :=
(
infQ∈Γ(P1,P2)

∫
∥x1 − x2∥rdQ(x1,x2)

)1/r
, (9)

where Γ(P1, P2) denotes the joint distribution of (x1,x2) with marginals P1 and P2. It is well known
that Wr(P1, P2) ≤Wr′(P1, P2) holds for r′ ≥ r ≥ 1.

As discussed in Sec. 3.1, to obtain an accurate estimator, we need to adopt early stopping of ODE and
use P̂[1−T0] with small T0. Our aim is to derive a bound of Wp(P̂[1−T0], Ptrue) for a large sample
n→ ∞. The informal version of our main result is summarized in the following theorem.
Theorem 1 (Informal). Suppose that the target probability P[1] has p.d.f. p[1] in the Besov
spaceBs

p′,q′([−1, 1]d) of smoothness degree s, and that n training data {x(i)}ni=1 is i.i.d. samples
from P[1]. Assume that σ[τ ] ∼ (1− τ)

κ (τ → 1−) with κ ≥ 1/2, the conditinal vector field is given
by (6) and (7), and that time-divided neural networks are used (see Sec. 4.3). Then, under several
assumptions, the FM estimator P̂[1−T0] with T0 = n−R0 with appropriate R0 satisfies, for any δ > 0,

E
[
W2(P̂[1−T0], Ptrue)

]
= O

(
n−

s+(2κ)−1−δ
2s+d

)
(n→ ∞), (10)

where E denotes the expectation over the training data.

It is known that a lower bound of the minimax convergence rate exists for the Wasserstein distance
for probability estimation. We use the notation ≳ to mean the lower bound up to a constant factor.
Proposition 2 (Niles-Weed and Berthet (2022)). Let p′, q′ ≥ 1, s > 0, r ≥ 1, and d ≥ 2. Then,

inf P̂ supp∈Bs
p′,q′ ([−1,1]d) E[Wr(P̂ , P )] ≳ n−

s+1
2s+d (n→ ∞),

where P̂ runs over all estimators based on n i.i.d. samples from P .

For κ = 1/2, by Theorem 1 and Proposition 2, the upper bound n−
s+1−δ
2s+d is almost the optimal

convergence rate up to an arbitrarily small δ > 0. In addition, this convergence rate coincides with
that of the diffusion model given in Oko et al. (2023) for W1. The above result indicates that the flow
matching is as good as the diffusion model regarding the minimax convergence rate under W1, where
the max in minimax means sup over the Besov space.

3.1 KERNEL DENSITY ESTIMATION AND EARLY STOPPING OF ODE

In practice, with conditional density P[τ ](x|x[1]) = Nd(m[τ ]x[1], σ
2
[τ ]Id), the parameter σ[1] is often

set as a small positive value σ[1] = σmin > 0 so that (7) is well defined up to τ = 1 (e.g. Lipman
et al., 2023). If x[1] is sampled from P̂train = 1

n

∑n
j=1 δxj , the obtained distribution equals to

p̂[1](x) =
∫
p[1](x|x[1])dP̂train(x[1]) =

1
n

∑n
j=1

1
(2πσ2

min)
d/2 exp

(
−∥x−xj∥2

2σ2
min

)
,
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which is exactly the kernel density estimator (KDE) with the Gaussian kernel of bandwidth σmin.
If the ODE is solved up to τ = 1 rigorously, the pushforward realizes this KDE. As is well known
(Scott, 1992), the convergence rate of this KDE under MSE is O(n−4/(4+d)) at best by choosing the
optimal σmin depending on n, which is much slower than the optimal rate n−2s/(2s+d) under MSE
for the true density in Bs

p′,q′(I
d) (Liu et al., 2023a). Based on this consideration, we discuss the early

stopping of the ODE, where we stop at τ = 1− T0 with small T0 > 0 and consider the convergence
rate of the estimator p̂[1−T0]. Notice that p̂[1−T0] differs from KDE, since it is given by the trained
vector field. For diffusion models, Oko et al. (2023) and Zhang et al. (2024) also discuss the estimator
obtained by stopping the reverse SDE at T0 > 0 to derive the convergence rate.

3.2 RELATED WORKS

Among many literatures on the statistical convergence of diffusion models, the most relevant to this
work is Oko et al. (2023). Although our analysis is based on Oko et al. (2023) and derives comparable
results, there are significant differences. First, we analyze the more general settings for m[τ ] and σ[τ ]
in the conditional distribution P[τ ](x|y) = Nd(m[τ ]y, σ

2
[τ ]I); Oko et al. (2023) considers only the

case of σt ∼
√
t and mt ∼ 1− t (in reverse time t), which is a typical choice for diffusion models.

Consequently, we have shown that for σ[τ ] ∼ (1 − τ)κ with κ ≥ 1/2, only κ = 1/2 achieves the
almost minimax optimal convergence rate. Second, due to the difference between the ODE and
diffusion processes, the proof technique for relating the Wasserstein metric and the L2-risk is very
different. Our technique is based on Alekseev-Gröbner lemma to derive the bound for r-Wasserstein
with 1 ≤ r ≤ 2, while Oko et al. (2023) obtained the bound only for 1-Wasserstein. Third, this is
the first theoretical result for FM showing a convergence rate that is almost optimal. Although FM
has been recently used in many applications with competitive results to diffusion models, theoretical
comparisons in terms of convergence rates have been lacking. The results of this paper show that both
FM and DM can attain the same almost minimax optimal convergence rate for generalization error.

For FM, there are some recent works on convergence. Albergo and Vanden-Eijnden (2023) and
Benton et al. (2023b) relate the Wasserstein distance to the L2-risk of the vector fields and show
convergence for a large sample size, but did not derive a convergence rate. Jiao et al. (2024) discusses
convergence rates of FM applied in the latent space of the autoencoder and considers the discretization
effect of the numerical ODE solution in their analysis. However, they did not include the degree of
smoothness in developing the convergence rate. Albergo et al. (2023b) present a unifying view of the
theory of diffusion models and FM with the upper bounds of discrepancy measures.

4 THEORETICAL DETAILS

This section rigorously presents the main result with the assumptions and shows the proof outline. In
the sequel, we use reverse time index t = 1− τ (τ ∈ [0, 1]); t = 0 for Ptrue and t = 1 for Nd(0, Id),
which align with the notations of the diffusion models. We use poly(log n) to indicate the term of
O(logr n)-order with some natural number r, and Õ(nα) to mean the order up to poly(log n) factor.

4.1 PROBLEM SETTING AND ASSUMPTIONS

With reverse time t, the definitions (7), (2), and (3) are modified by replacing [1− t] with t;

Pt = P[1−t], P0 = Ptrue, P1 = Nd(0, Id).

The flows φt and φ̂t are defined by solving the ODE from t = 1 in the reverse time direction:

d

dt
φt(x) = vt(φt(x)),

d

dt
φ̂t(x) = v̂t(φt(x)), (11)

where vt(x) and v̂t(x) are the vector field (3) and its neural estimate, respectively. The distributions
at t ∈ [0, 1] are given by

Pt = (φt)#P1, P̂t = (φ̂t)#P1, (12)
where (φt)# and (φ̂t)# denote the pushforward by the respective flows φt and φ̂t.

In the remainder of this paper, δ > 0 is an arbitrarily small positive value. As in Oko et al. (2023),
we introduce N to specify the number of basis functions of the B-spline for approximating pt(x)
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and vt(x). This number N depends on the sample size n (N = n
d

2s+d is used), balancing the
approximation error and complexity of the B-spline and NN. We set the stopping time T0 = N−R0

as discussed in Sec. 3.1 (R0 is specified later), and solve the ODE from 1 to T0. For simplicity, the d
dimensional cube [−1, 1]d and the reduced cube [−1+N−(1−κδ), 1−N−(1−κδ)]d are denoted by Id
and IdN , respectively, where κ > 0 is specified below in (A3). We make the following assumptions.

(A1) The target probability P0 has support Id and its p.d.f. p0 satisfies p0 ∈ Bs
p′,q′(I

d) and p0 ∈
Bš

p′,q′(I
d\IdN ) with š > max{6s− 1, 1}.

(A2) There exists C0 > 0 such that C−1
0 ≤ p0(x) ≤ C0 for all x ∈ Id.

(A3) There is κ ≥ 1/2, b0 > 0, κ̃ > 0, and b̃0 > 0 such that

σt = b0t
κ, 1−mt = b̃0t

κ̃

for sufficiently small t ≥ T0. Also, there are D0 > 0 and K0 > 0 such that

D−1
0 ≤ σ2

t +m2
t ≤ D0, |σ′

t|+ |m′
t| ≤ NK0 (∀t ∈ [T0, 1]).

(A4) If κ = 1/2, there is b1 > 0 and D1 > 0 such that for any 0 ≤ γ < R0∫ N−γ

T0

{
(σ′

t)
2 + (m′

t)
2
}
dt ≤ D1(logN)b1 .

(A5) There is a constant CL > 0 such that ∥ ∂
∂x

∫
ypt(y|x)dy∥op ≤ CL for any t ∈ [T0, 1].

The higher degree of smoothness is assumed around the boundary of Id in (A1) for a technical reason
to compensate for the nondifferentiability of p0(x) at the boundary by (A2). In (A3), it may be more
natural to require σ2

t +m2
t = 1 so that signal power can be maintained. However, in this paper, to

pursue the flexibility of choosing σt and mt, we allow bounded changes of σ2
t +m2

t over t. (A4) is
required to limit the complexity of the neural network model (see Lemma 5). In (A3), κ is assumed
to be not less than 1/2, because for κ < 1/2, the integral

∫
T0
(σ′

t)
2dt with T0 = N−R0 diverges to

infinity as N → +∞, which causes the divergence of the complexity bound in Lemma 5. Note that
the boundary case κ = 1/2 is, in fact, popularly used for the diffusion model. In this case, (σ′

t)
2 is

the order 1/t for t→ 0+ and the integral from T0 is of the order logN , which still diverges to infinity
as n→ ∞. As discussed in Section 4.3, we consider this integral only for a short time interval, and
we will see that the W2 distance converges to zero as n→ ∞. (A5) is made to bound the Lipschitz
factor in Theorem 3 under (A3) (see Lemma 10).

4.2 GENERALIZATION BOUND

It is known (Albergo and Vanden-Eijnden, 2023; Benton et al., 2023b) that, given two vector fields,
the W2-distance of the pushforwards of the same distribution by the corresponding flows admits an
upper bound by the L2-risk of the vector fields;

Theorem 3. Let vt(x) and v̂t(x) be vector fields such that x 7→ v̂t(x) is Lt-Lipschitz for each t,
and Pt and P̂t be the pushfowards of distribution P0 by the corresponding flows at time t from t = 0.
Then, for any t ∈ [0, 1], we have

W2(P̂t, Pt) ≤
√
t

(∫ t

0

∫
e2

∫ t
s
eLudu∥v̂s(x)− vs(x)∥2dPs(x)dxds

)1/2

. (13)

See Appendix B for the proof. From Theorem 3, we can consider the L2-error E[
∫ ∫

∥v̂(x, s) −
v(x, s)∥2dPs(x)dxds] of the vector field to obtain the bound of the W2 distance of the distributions.
From the fact Wr ≤Wr′ (1 ≤ r ≤ r′), the same upper bound holds for Wr for 1 ≤ r ≤ 2.

We first review a general method for bounding the generalization. We consider training within the
general time interval [Tℓ, Tu] where T0 ≤ Tℓ < Tu ≤ 1. For an estimator ϕ(x, t) of the true vector
field vt(x), we define the loss function ℓTℓ,Tu

ϕ (x) for x ∈ Id by

ℓTℓ,Tu

ϕ (x) :=

∫ Tu

Tℓ

∫
∥ϕ(xt, t)− vt(xt|x)∥2pt(xt|x)dxtdt, (14)
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where x is the condition of vt(xt|x). Although the definition depends on Tℓ and Tu, we omit them
when there is no confusion. Given the training data {xi}ni=1, the vector field is trained with the
teaching data vt(xt|xi) at the location (xt, t) (t ∈ [Tℓ, Tu]), which is sampled from pt(xt|xi) and
the uniform distribution U([Tℓ, Tu]). Note that given xi, we can generate any number of (xt, t). Thus,
the sampling error in (14) is negligible and the training by a NN can be regarded as minimization of

1

n

∑n
i=1ℓϕ(x

(i)). (15)

See Oko et al. (2023, Section 4) for the discussion of the effect of sampling.

Let ϕ̂ be the minimizer of (15) among the function class S . The generalization error is then given by

Egen := E
[∫ ∫ ∫ Tu

Tℓ

∥ϕ̂(x, t)− vt(x)∥2pt(x|y)dtdxp0(y)dy
]
= E

[∫
ℓϕ̂(y)p0(y)dy

]
. (16)

Let L := {ℓϕ | ϕ ∈ S} and N (L, ∥ · ∥L∞(Id), ε) be the covering number of the function class L
with the ∥ · ∥L∞(Id)-norm. Then, a standard argument on the generalization error analysis derives the
following upper bound (see Oko et al. (Theorem C.4, 2023) and also Hayakawa and Suzuki (2020)).
Theorem 4. The generalization error of the minimizer of (15) among ϕ ∈ S is upper bounded by

Egen ≤ 2 inf
ϕ∈S

∫ ∫ Tu

Tℓ

∥ϕ(x, t)− vt(x)∥2pt(x)dtdx

+
supϕ∈S ∥ℓϕ∥L∞(Id)

n

(
37

9
logN (L, ∥ · ∥L∞(Id), ε) + 32

)
+ 3ε. (17)

From Theorems 3 and 4, it suffices to consider the approximation error (1st term) and complexity
(2nd term) in (17) for deriving the W2 distributional bound.

4.2.1 COMPLEXITY TERM IN GENERALIZATION BOUND

We first consider the complexity term, where the class S is given by NN. A class of NN
M(L,W, S,B) with height L, width W , sparsity constraint S, and norm constraint B is defined as

M(L,W, S,B) := {ψA(L),b(L) ◦· · ·◦ψA(2),b(2)(A
(1)x+b(1)) | A(i) ∈ RWi+1×Wi , b(i) ∈ RWi+1 ,∑L

i=1(∥A
(i)∥0 + ∥b(i)∥0) ≤ S, maxi∥A(i)∥∞ ∨ ∥b(i)∥∞ ≤ B},

where ψA,b(z) = AReLU(z) + b. As shown in Theorems 7 and 8 later, it suffices to consider the
NNs that satisfy

∥ϕ(x, t)∥∞ ≤ D
(
|σ′

t|
√
log n+ |m′

t|
)

for some constant D. Also, we can see in Lemma A.2 that x 7→ vt(x) is Lipschitz continuous with
Lipschitz constant proportinal to 1/t under (A3) and (A5). Reflecting these facts, we define the
following NN class for training the vector field:

Hn :=
{
ϕ ∈ M(L,W, S,B) | ∥ϕ(·, t)∥∞ ≤ D

(
|σ′

t|
√
log n+ |m′

t|
)

for ∀t ∈ [T0, 1],

x 7→ ϕ(x, t) is Lt-Lipschitz for each t ∈ [T0, 1] where Lt = C̃L/t
}
, (18)

where D and C̃L are some positive constants.

The supremum norm and the covering number in Theorem 4 are given in the following lemmas.
Lemma 5. Let T0 ≤ Tℓ < Tu ≤ 1. Under Assumption (A4), there is Cs > 0 such that

supϕ∈Hn
∥ℓϕ∥L∞(Id) ≤ Cs(log n)

b+1, (19)

where b = b1 in (A4) for κ = 1/2, and b = 0 for κ > 1/2.

See Appendix C.1 for the proof. To obtain this bound, we need to impose the upper bound of ϕ as in
(18). In practice, the vectors in the teaching data satisfy this upper bound, and thus ϕ will naturally
satisfy the same bound by the least square error solution. The following bound of the covering
number for neural networks is given by Suzuki (Lemma 3, 2019).
Lemma 6. For the function class Hn, the covering number satisfies

logN (L, ∥ · ∥L∞(Id), ε) ≤ SL log
(
ε−1∥W∥∞Bn

)
.
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4.2.2 APPROXIMATION ERROR FOR SMALL t

Recall that N specifies the number of basis functions of the B-spline for the approximation. We
derive upper bounds of the approximation error of the NN model M(L,W,S,B), where L,W, S,
and B are specified in terms of N . We will separate [T0, 1] into two intervals, [T0, 3T∗] and [T∗, 1],
where T∗ := N−(κ−1−δ)/d, and provide different upper bounds. The reason for this choice of division
point T∗ is sketched as follows and is detailed in C.2. In the approximation of the vector field, we use
the B-spline approximation of densities as in Oko et al. (2023). To show a fast convergence rate, the
first interval is more subtle because pt(x) is rougher. In approximating the density on the smoother
boundary region, we divide the region into small cubes, each of which uses Nδ bases for B-spline
approximation. To make the total number of B-spline bases comparable with N , the width a0 of the
region should be a0 = N (1−κδ)/d. On the other hand, in Theorem 7, we need a concentration of an
integral around the boundary region for a better approximation by the higher smoothness, and this
limits the variance of the Gaussian kernel so that σt = tκ ≤ a0. This derives t ≤ N−(κ−1−δ)/d. As a
result, the division point is small enough as T∗ := N−(κ−1−δ)/d.

The approximation bound for t ∈ [T0, 3T∗] with T∗ := N−κ−1−δ
d is given in the following Theorem

(see Appendix C.4 for the proof).
Theorem 7. Under assumptions (A1)-(A5), there is a neural network ϕ1 ∈ M(L,W, S,B) and a
constant C6, which is independent of t, such that, for sufficiently large N ,∫

∥ϕ1(x, t)− vt(x)∥2pt(x)dx ≤ C6

{
(σ′

t)
2 logN + (m′

t)
2
}
N− 2s

d , (20)

for any t ∈ [T0, 3T∗], where L = O(log4N), ∥W∥∞ = O(N log6N), S = O(N log8N), B =
exp

(
O(logN log logN)

)
. Additionally, we can take ϕ1 to satisfy

∥ϕ1(x, t)∥ ≤ C̃6

{
(σ′

t)
√
log n+ |m′

t|
}
,

where C̃6 is a constant independent of t.

4.2.3 APPROXIMATION ERROR FOR LARGE t

We derive a bound of the approximation error on any interval [2t∗.1], where t∗ ≥ T∗ = N−κ−1−δ
d .

This is used to discuss the optimal convergence rate in Section 4.3.
Theorem 8. Fix t∗ ∈ [T∗, 1] and take an arbitrary η > 0. Under Assumptions (A1)-(A5), there is a
neural network ϕ2 ∈ M(L,W, S,B) and C7 > 0, which does not depend on t, such that the bound∫

∥ϕ2(x, t)− vt(x)∥2pt(x)dx ≤ C7

{
(σ′

t)
2 logN + (m′

t)
2
}
N−η (21)

holds for all t ∈ [2t∗, 1], and the NN model satisfies L = O(log4N), ∥W∥∞ = O(N), S =
O(t−dκ

∗ Nδκ), and B = exp(O(logN log logN). Moreover, ϕ2 can be taken so that

∥ϕ2(·, t)∥∞ ≤ C̃7

{
(σ′

t) logN + |m′
t|
}

with constant C̃7 > 0 independent of t.

See Appendix C.5 for the proof. The approximation errorN−η is arbitrarily small and is not dominant,
while S may be dominant in the complexity term.

4.3 CONVERGENCE RATE UNDER WASSERSTEIN DISTANCE

We can consider a generalization bound based on Theorems 3, 4, 7, and 8 deriving the bounds for
[T0, 2T∗] and [2T∗, 1]. However, if we apply Theorem 8 for [2t∗, 1] with t∗ = T∗ = N−(κ−1−δ)/d,
the dominant factor of the log covering number in (17) is the sparsity S = O(t−dκ

∗ Nδκ) = O(N).
From Theorems 3 and 4, the complexity part gives O((N/n)1/2) term in the W2 generalization error.
If we plug N = n(2s+d)/d, which is optimal for the MSE generalization, we have O(n−s/(2s+d)) for
the upper bound of W2 generalization, which is slower than the lower bound in Proposition 2. To
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achieve a better convergence rate, we will make use of the factor
√
t in front of (13) by dividing the

interval [T0, 1] into small pieces and using a NN for each small interval, as in Oko et al. (2023) for
diffusion models.

Notice that, when time t is far from 0, the convolution of pt(x|y) with larger σt results in a smoother
target vector field vt(x), which is easier to approximate with a low-complexity model. On the other
hand, when t approaches 0, with the fixed number of B-spline bases N , the approximation error
bound {(σ′

t)
2
√
logN + (m′

t)
2}N−2s/d can increase for large σ′

t or m′
t (e.g. σt ∼ tκ with κ < 1).

We therefore need a more complex model (that is, larger N ) than the one needed for larger t. Thus, it
will be more efficient if the number of B-spline bases N , which controls the approximation error and
complexity, is chosen adaptively to the time region t.

Specifically, we make a partition T0 = t0 < t1 < t2 < · · · < tK = 1 such that tj = 2tj−1 for
1 ≤ j ≤ K − 1 with 2tK−1 ≥ 1, and build a neural network for each [tj−1, tj ] (j = 1, . . . ,K). Note
that we train each network for interval [tj−1, tj ] with n training data (xi)

n
i=1. We assume that tj∗

with T∗ ≤ tj∗ ≤ 3T∗ serves as the boundary to apply two different error bounds. The total number
of intervals K is O(logN) = O(log n), since 2KT0 ≥ 1 with T0 = N−R0 can be achieved by
K ≥ R0 log2N . The constant R0 is fixed as R0 ≥ s+1

min(κ,κ̄) so that W2(PT0 , P0) is negligible (see
the proof sketch of Theorem 9). In this setting, we have the following main result.
Theorem 9 (Main result). Assume (A1)-(A5) and d ≥ 2. If the above time-partition is applied and a
neural network is trained for each time division, for arbitrarily small δ > 0 and 1 ≤ r ≤ 2, we have

E
[
Wr(P̂T0 , Ptrue])

]
= O

(
n−

s+(2κ)−1−δ
2s+d

)
(n→ ∞). (22)

Proof Sketch. Let Jj := [tj−1, tj ] (j = 1, . . . ,K). We use a smaller neural network model for larger
j. Specifically, the number of B-spline bases for Jj is N ′

j := t−dκ
j−1N

δκ for j > j∗, while N ′
j = N

for j ≤ j∗, where j∗ is defined as above. Note that N ′
j → ∞ as N → ∞ due to δ > 0, and that

N ′
j ≤ N1−δκNδκ = N for j ≥ j∗ due to tj ≥ N−κ−1−δ

d , which means a lower complexity. See
also Figure E.1 in Appendix.

Next, we consider the bound of W2-distance based on the partition. For each of j = 1, . . . ,K, we
introduce a vector field ṽ

(j)
t such that it coincides with the target vt for t ∈ [tj , 1] and with the learned

v̂t for t ∈ [T0, tj ]. Let Q(j) be the pushforward from P1 = Nd(0, Id) to t = T0 by the flow of the
vector field ṽ

(j)
t . Then, Q(0) = PT0

, the pushforward by the flow of the target vt from t = 1 to T0,
and also Q(K) = p̂T0 . Note also that ṽ(j) and ṽ(j−1) differ only in Jj by vt(x)− v̂t(x). Therefore,
from Theorem 3 and the Lipschitz assumption on Hn, we have

W2(P0, P̂T0
) ≤W2(P0, PT0

) +
∑K

j=1W2(Q
(j−1), Q(j))

≤ θn + C
∑K

j=1

√
tj

{∫ tj
tj−1

e2
∫ tj
t (C̃/u)du

∫
∥ϕ̂(x, t)− v(x, t)∥2pt(x)dxdt

}1/2

,

where θ2n = db20n
− 2R0κ

2s+d +
∫
∥y∥2dP0(y)b̃

2
0n

− 2R0κ̃
2s+d , which is derived from Lemma 11 and (A3). We

take a constant R0 ≥ (s+ 1)/min(κ, κ̄) so that θn is of O(n−
s+1
2s+d ) and thus θn is negligible. It is

easy to see that the factor e
∫ tj
t (C̃/u)du is bounded by a constant because of tj = 2tj−1 by definition.

For simplicity, let t∗ := tj∗ . From Theorems 7, 8, and 4, the generalization bound of P̂T0 is given by

E
[
W2(P0, P̂T0

)
]

≤ θn +
∑j∗

j=1

√
t∗

{
C6

∫ tj
tj−1

{(σ′
t)

2 logN + (m′
t)

2}N−2s/ddt+ N
nO(poly(log n))

}1/2

+
∑K

j=k∗

√
tj

{
C7

∫ tj
tj−1

{(σ′
t)

2 logN + (m′
t)

2}N−ηdt+
t−dκ
j Nδκ

n O(poly(log n))

}1/2

≤ θn + C ′′′√t∗tκ−1/2
∗ N−s/dO(poly(log n)) + C ′′′

√
N
nO(poly(log n))

+C ′′′ ∑K
j=k∗

{
√
tjN

−η/2O(poly(log n)) +
√
tj

t
−dκ/2
j Nδκ/2

√
n

O(poly(log n))

}
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≤ θn + C ′′′tκ∗n
−s/(2s+d)O(poly(log n)) + C ′′′√t∗n−s/(2s+d)O(poly(log n))

+C ′′′ ∑K
j=k∗

{√
tjN

−η/2O(poly(log n)) + t
1−dκ

2
j n

dδκ
2(2s+d)

− 1
2O(poly(log n))

}
.

In the third inequality, we use
∫ tj
tj−1

{(σ′
t)

2 + (m′
t)

2}dt = O(poly(log n)) for κ = 1/2, and the fact
that it is bounded by a constant for κ > 1/2. Since η is arbitrarily large and κ ≥ 1/2, neglecting the
factors of poly(log n), the candidates of the dominant terms in the above expression are t1/2∗ n−

s
2s+d

in the third term and t
1−dκ

2
∗ n

dδκ
2(2s+d)

− 1
2 in the last summation. By balancing these two terms, the

upper bound can be minimized by setting

t∗ = C∗n
−κ−1−δ

2s+d , (23)

for some contact C∗, and the dominant term of the upper-bound is given by

Õ
(
n−

s+(2κ)−1−δ/2
2s+d

)
. (24)

This proves the claim by replacing δ/2 with δ and absorbing the poly(log) factor in δ.

From Proposition 2 and Theorem 9, if κ = 1/2, the FM method achieves an almost optimal rate up
to the poly(log n) factor and arbitrary small δ > 0. On the other hand, for κ > 1/2, the obtained
upper bound is not optimal. This suggests that the choice of σt ∼

√
t around t→ 0+ is theoretically

reasonable. This is also a popular choice for the diffusion model.

4.4 DISCUSSION

In the derivation of the almost minimax optimal convergence rate, the use of neural networks for
divided time intervals is a limitation of the current theoretical analysis. As discussed before Theorem
9, without this partition, the current analysis gives only Õ(n−

s
2s+d ), which is not optimal for W2.

It is obviously an important question of how to avoid such a time division. In Oko et al. (2023),
the optimal convergence rate for the diffusion model has been proved without time division for the
total variation, which is Õ(n−

s
2s+d ). The bound is based on Girsanov’s theorem, which gives an

upper bound of the KL divergence of SDE by the L2 losses of the drift estimation. To the best of our
knowledge, no bounds are known for ODE with respect to the KL or total variation for the difference
of vector fields. This is an important future direction for understanding the ability of FM theoretically.

5 CONCLUSION

This paper has rigorously analyzed the convergence rate of flow matching, demonstrating for the
first time that FM can achieve the almost minimax optimal convergence rate under the 2-Wasserstein
distance. This result positions FM as a competitive alternative to diffusion models in terms of
asymptotic convergence rates, which concurs with empirical results in various applications. Our
findings further reveal that the convergence rate is significantly influenced by the variance decay rate
in the Gaussian conditional kernel, where σt ∼

√
t is shown to yield the optimal rate. Although

there are several popular proposals for the mean and variance functions, theoretical justification or
comparison has not been explored intensively. The current result on the upper bound (Theorem 9)
provides theoretical insight on the influence of the choice of these functions.

Although this study offers substantial theoretical contributions, these insights are still grounded
in specific modeling assumptions that limit broader applicability. In addition to the time-partition
discussed in Sec. 4.4, this paper focuses primarily on assumptions utilizing Gaussian conditional
kernels. However, other FM implementations might employ different path constructions, as suggested
by recent proposals Kerrigan et al. (2023); Isobe et al. (2024). The theoretical implications of these
alternative approaches remain an essential area for future research.
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Appendix
This section summarizes some basic mathematical facts, which can be easily derived and used in the
proof of our main results, and known facts developed in Oko et al. (2023).

A BASIC MATHEMATICAL RESULTS

A.1 DEFINITION OF BESOV SPACE

Besov space is an extension of the Sobolev space, allowing for non-integer orders of smoothness, and
is effective in measuring both the local regularity and the global behavior of functions. It is formally
defined as follows.

Let Ω be a domain in Rd. For a function f ∈ Lp′(Ω) for some p′ ∈ (0,∞], the r-th modulus of
smoothness of f is defined by

wr,p′(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥p′ ,

where

∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) if x+ jh ∈ Ω for all j,

0 otherwise.

For 0 < p′, q′ ≤ ∞, s > 0, r := |s|+ 1, let the seminorm | · |Bs
p′,q′

be defined by

|f |Bs
p′,q′

:=


(∫∞

0
(t−swr,p′(f, t))q

′ dt
t

) 1
q′

(q′ <∞),

supt>0 t
−swr,p′(f, t) (q′ = ∞).

The norm of the Besov space Bs
p′,q′(Ω) is defined by

∥f∥Bs
p′,q′

:= ∥f∥p′ + |f |Bs
p′,q′

,

and
Bs

p′,q′(Ω) := {f ∈ Lp′(Ω) | ∥f∥Bs
p′,q′

<∞}.

The parameter s serves as the order of smoothness. If p′ = q′ and s is an integer, Bs
p′,q′ coincides

with the Sobolev space. For details of Besov spaces, see Triebel (1992), for example.

A.2 LIPSCHITZ CONDITION

This section shows a lemma that provides a Lipschitz constant of x 7→ vt(x) under the assumptions
(A3) and (A5).
Lemma 10. Let vt(x) be a vector field defined by (3) and (8), i.e.,

vt(x) =

∫ {
σ′
t

x−mty

σt
+m′

ty

}
pt(y|x)dy

where

pt(y|x) =
pt(x|y)p0(y)∫
pt(x|ỹ)p0(ỹ)dỹ

, pt(x|y) =
1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t .

Then, under (A3) and (A5), vt(x) is Lipschitz continuous with Lipschitz constant C̃L/t for any
sufficiently small t, where C̃L is independent of t.

Proof. By the definition of vt and the form of σt and mt in (A3), we can compute explicitly
∂vt(x)

∂x
=
κ

t
Id +

∫ {κ
t
(x−mty) +

κ̄

t
y
} ∂pt(y|x)

∂x
dy.

As ∂
∂x

∫
pt(y|x)dy = ∂

∂x1 = 0, we further obtain

∂vt(x)

∂x
=
κ

t
Id +

κ̄−mtκ

t

∂

∂x

∫
ypt(y|x)dy.

The claim is obvious under (A5).

13
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A.3 WASSERSTEIN DISTANCE FOR CONVOLUTION

The following lemma is used in the proof sketch of Theorem 9, where W2(Pt, PT0
) is bounded.

Lemma 11. Let P be a probability distribution on Rd with V :=
∫
∥y∥2dP (y) <∞ and Pm,σ be

given by the density
∫

1
(
√
2πσ)d

exp(−∥x−my∥2

2σ2 )dP (y). Then,

W2(P, Pm,σ) ≤
√

(1−m)2V + dσ2.

Proof. The proof is elementary, but we include it for completeness. Let Y and Z be independent
random variables with probability P and Nd(0, Id), respectively. Let X := mY + σZ, then the
distribution of X is Pm,σ . Considering a coupling (X,Y ),

W2(P, Pm,σ)
2 ≤ E∥X − Y ∥2

= E∥(m− 1)Y + σZ∥2

= (1−m)2V + dσ2,

which completes the proof.

A.4 APPROXIMATION OF A FUNCTION IN BESOV SPACE

In this subsection, we present several approximation results developed in Suzuki (2019); Oko et al.
(2023). Although these results are already known, we include them here for ease of reference.

Let N (x) be the function defined by N (x) = 1 for x ∈ [0, 1] and 0 otherwise. The cardinal B-spline
of order ℓ ∈ N is defined by

Nℓ(x) := N ∗N ∗ · · · ∗ N (x),

which is the convolution (ℓ+ 1) times of N . Here, the convolution f ∗ g is defined by

(f ∗ g)(x) =
∫
f(x− y)g(y)dy.

For a multi-index k ∈ Nd and j ∈ Zd, the tensor product B-spline basis in Rd of order ℓ is defined by

Md
k,j(x) :=

d∏
i=1

Nℓ(2
kixi − ji).

The following theorem says that a function f in the Besov space is approximated by a superposition
of Md

k,j(x) of the form

fN (x) =
∑
(k,j)

αk,jM
d
k,j(x).

In the sequel, we fix the order ℓ of the B-spline. (a)+ denotes max{0, a}.
Theorem 12 (Oko et al. (2023); Suzuki (2019)). Let C > 0 and 0 < p′, q′, r ≤ ∞. Under
s > d(1/p′ − 1/r)+ and 0 < s < min{ℓ, ℓ − 1 + 1/p′}, where ℓ ∈ N is the order of the cardinal
B-spline bases, for any f ∈ Bs

p′,q′([−C,C]d), there exists fN that satisfies

∥f − fN∥Lr([−C,C]d) ≲ CsN−s/d∥f∥Bs
p′,q′ ([−C,C]d)

for N ≫ 1 and has the following form:

fN (x) =

K∑
k=0

∑
j∈J(k)

αk,jM
d
k,j(x) +

K∗∑
k=K+1

nk∑
i=1

αk,jiM
d
k,ji(x)

with
K∑

k=0

|J(k)|+
K∗∑

k=K+1

nk = N,

where J(k) = {−C2k − ℓ,−C2k − ℓ + 1, . . . , C2k − 1, C2k}, (ji)
nk
i=1 ⊂ J(k), K =

O(d−1 log(N/Cd)), K∗ = (O(1) + log(N/Cd))ν−1 + K, nk = O((N/Cd)2−ν(k−K)) (k =
K + 1, . . . ,K∗) for ν = (s − ω)/(2ω) with ω = d(1/p′ − 1/r)+. Moreover, we can take αk,j so
that |αk,j | ≤ N (ν−1+d−1)(d/p′−s)+ .

14
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Based on the above theorem, the following result shows the accuracy of approximating the true
density p0 by the B-spline functions with support restriction.
Theorem 13 (Oko et al. (2023)). Under Assumptions (A1)-(A5), there exists fN of the form

fN (x) =

N∑
i=1

αi1 [∥x∥∞ ≤ 1]Md
ki,ji(x)+

3N∑
i=N+1

αi1

[
∥x∥∞ ≤ 1−N−κ−1−δ

d

]
Md

ki,ji(x), (25)

that satisfies
∥p0 − fN∥L2(Id) ≤ CaN

−s/d, (26)

∥p0 − fN∥L2(Id\Id
N ) ≤ CaN

−š/d, (27)

for some Ca > 0 and fN (x) = 0 for any x with ∥x∥∞ ≥ 1. Here, −2(ki)m − ℓ ≤ (ji)m ≤ 2(ki)m

(i = 1, 2, . . . , N ; m = 1, 2, . . . , d), |ki| ≤ K∗ = (O(1) + logN)ν−1 + O(d−1 logN) for ν =
(2s− ω)/(2ω) with ω = d(1/p− 1/2)+. The notations (ki)m and (ji)m are the m-th component of
the multi-indices ki and ji, respectively. Moreover, we can take |αi| ≤ N(ν−1 + d−1)(d/p− s)+.

Proof. See Oko et al. (2023, Lemma B.4).

The following result shows the accuracy of approximating the “smoothed" B-spline basis function
by a neural network. This is essential to consider the approximation of pt(x) and vt(x) by a neural
network taken for p0(x).
Theorem 14. Let C > 0, k ∈ Z+, j ∈ Zd, ℓ ∈ Z+ with −C2k − ℓ ≤ ji ≤ C2k (i = 1, 2, . . . , d),
and Cb,1 = 1 or 1 − N−(1−δ). For any ε (0 < ε < 1/2), there exists a neural network ϕk,j3 (x, t)

and ϕk,j4 (x, t) in M(L,W,S,B) with

L = O(log4 ε−1 + log2 C + k2),

∥W∥∞ = O(log6 ε−1 + log3 C + k3),

S = O(log8 ε−1 + log4 C + k4),

B = exp(O(log ε−1 log log ε−1 + logC + k)) (28)
such that ∣∣∣∣∣ϕk,j3 (x, t)−

∫
Rd

1 [∥y∥∞ ≤ Cb,1]M
d
k,j(y)

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t dy

∣∣∣∣∣ ≤ ε (29)

and ∣∣∣∣∣ϕk,j4 (x, t)−
∫
Rd

x−mty

σt
1 [∥y∥∞ ≤ Cb,1]M

d
k,j(y)

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t dy

∣∣∣∣∣ ≤ ε (30)

hold for all x ∈ [−C,C]d. Furthermore, we can choose the networks so that ∥ϕk,j3 ∥∞ and ∥ϕk,j4 ∥∞
are of class O(1).

Proof. See Oko et al. (2023, Lemma B.3)

A.5 APPROXIMATION OF GAUSSIAN INTEGRALS

The following lemma is an elementary fact about Gaussian integrals used in the proof of Theorem 7
in Section C.4. We include it here for completeness.
Lemma 15. Let x ∈ Rd, 0 < ε < 1/2, and α ∈ {0, 1}. For any function F (y) supported on Id,
there is Cb > 0 that depends only on d such that∣∣∣∣∣

∫
Id

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t F (y)dy −

∫
Ax

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t F (y)dy

∣∣∣∣∣ ≤ ε, (31)

where

Ax :=

{
y ∈ Id |

∥∥∥∥y − x

mt

∥∥∥∥
∞

≤ Cb
σt
√
logN

mt

}
.

Proof. See Oko et al. (2023, Lemma F.9).

15



Published as a conference paper at ICLR 2025

B PROOF OF THEOREM 3

Although the proof of Theorem 3 is basically the same as the proof of Benton et al. (2023b, Theorem
1), a slight difference appears since the current bound shows for arbitrary time t. We include the
proof here for completeness.

Let v(x, t) and v̂(x; t) be smooth vector fields and φs,t and φ̂s,t be respective flows;

d

dt
φs,t(x) = v(φs,t(x), t), φs,s(x) = x,

d

dt
φ̂s,t(x) = v̂(φ̂s,t(x), t), φ̂s,s(x) = x

Lemma 16 (Alekseev-Gröbner). Under the above notations, for any T ≥ 0,

φ̂0,T (x0)−φ0,T (x0) =

∫ T

0

(
∇xφ̂s,T (x)

∣∣
x=φ0,s(x0)

)(
v̂(φ0,s(x0), s)−v(φ0,s(x0), s)

)
ds. (32)

Note that on the right-hand side, the vector fields v̂ and v are evaluated at the same point φ0,s(x0).

Proof of Theorem 3. Let P̂t := (φ̂0,t)#P0 and Pt := (φ0,t)#P0 be pushforwards. By the definition
of the 2-Wasserstein metric,

W2(P̂t, Pt) ≤
(∫

∥φ̂0,t(x0)−φ0,t(x0)∥2dP0(x0)

)1/2

. (33)

From Lemma 16,

∥φ̂0,t(x0)−φ0,t(x0)∥ ≤
∫ t

0

∥∥∥∇xφ̂s,t(x)
∣∣
x=φ0,s(x0)

∥∥∥
op

∥v̂(φ0,s(x0), s)− v(φ0,s(x0), s)∥ ds.

As a general relation of the largest singular value, we have

∂

∂t

∥∥∇xφ̂s,t(x)
∥∥
op

≤
∥∥ ∂
∂t

∇xφ̂s,t(x)
∥∥
op
.

Then, it follows from ∂
∂t∇xφ̂s,t(x) = ∇yv̂(y, t)|y=φs,t(x)∇xφ̂s,t(x) that the inequality

∂

∂t

∥∥∥∇xφ̂s,t(x)
∣∣
x=φ0,s(x0)

∥∥∥
op

≤ Lt

∥∥∇xφs,t(x)|x=φ0,s(x0)

∥∥
holds by the Lt-Lipschitzness of v̂(·, t). Accordingly, noting that ∥∇xφ̂s,s(x)∥op = ∥∇xx∥op = 1,
the standard ODE argument leads to∥∥∥∇xφ̂s,t(x)

∣∣
x=φ0,s(x0)

∥∥∥
op

≤ e
∫ t
s
Ludu,

and therefore

∥φ̂0,t(x0)−φ0,t(x0)∥ ≤
∫ t

0

e
∫ t
s
Ludu∥v̂(φ0,s(x0), s)− v(φ0,s(x0), s)∥ds.

From Cauchy-Schwarz inequality,

∥φ̂0,t(x0)−φ0,t(x0)∥2

≤
∫ t

0

12ds

∫ t

0

e2
∫ t
s
Ludu∥v̂(φ0,s(x0), s)− v(φ0,s(x0), s)∥2ds

= t

∫ t

0

e2
∫ t
s
Ludu∥v̂(φ0,s(x0), s)− v(φ0,s(x0), s)∥2ds.

Since the distribution of φ0,s(x0) with x0 ∼ P0 is given by Ps, combining the above bound with
(33) completes the proof.
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C PROOF OF MAIN THEOREMS

C.1 PROOF OF LEMMA 5: SUP OF LOSS FUNCTIONS

Proof.

ℓϕ(x) =

∫ Tu

Tℓ

∫
∥ϕ(xt, t)− vt(xt|x)∥2pt(xt|x)dxtdt

≤ 2

∫ Tu

Tℓ

∫
∥ϕ(xt, t)∥2pt(xt|x)dxtdt+ 2

∫ Tu

Tℓ

∫
∥vt(xt|x)∥2pt(xt|x)dxtdt

From the definition of Hn and Assumptions (A3-A4), the first term is bounded by

4C2

∫ 1

T0

(
(σ′

t)
2 log n+ (m′

t)
2
)
dt ≤ 8C̃

(
(log n)b+1 + (log n)b

)
,

where C̃ > 0 is a constant, and b = 0 for κ > 1/2 and b = b0 for κ = 1/2. From the definition

vt(xt|x) = σ′
t

xt −mtx

σt
+m′

tx

and the fact ∥x∥ ≤ 1, the second term is upper bounded by

4

∫ 1

T0

∫ {
(σ′

t)
2 ∥xt −mtx∥2

σ2
t

+ (m′
t)∥x∥2

}
pt(xt|x)dxtdt

≤ 4

∫ 1

T0

{
d(σ′

t)
2 + (m′

t)
2
}
dt ≤ 4dD̃(log n)b

for some constants D̃ > 0. Note that the first inequality is given by pt(xt|x) = Nd(mtx, σ
2
t Id).

This completes the proof.

C.2 DIVISION POINT

The appropriate division point of the time interval [T0, 1] arises from the width a0 of the smoother
region around the boundary of Id, which is assumed in (A1). Suppose that the smoothness of p0(x) is
š, higher than s, in the region Id\[−1 + a0, 1− a0]

d. We should make the smoother region as small
as possible to ensure that p0 is essentially in Bs

p,1(I
d). We set a0 = N−γ and consider the partition

of Id\[−1 + a0, 1− a0]
d by Ndγ − (Nγ − 2)d cubes of size a0 = N−γ (see Figure C.1). Suppose

that we use Nδ′ bases (N ≫ 1) of B-spline for each small cube with arbitrarily small δ′ > 0. The
condition δ′ > 0 guarantees that the approximation can be arbitrarily accurate in each small cube.
Since p0 restricted to each cube has a smooth degree š, Theorem 12 tells that it can be approximated
by a B-spline function with the accuracy

a−š
0 N−šδ′/d.

The total number of B-spline bases is then

(Ndγ − (Nγ − 2)d)Nδ′ ∼ N (d−1)γ+δ′ ,

To make the number of bases equal to or less than N , which is the number used for the Bs
p′,q′ -region

of p0, we set γ = (1− δκ)/d, i.e., a0 = N−(1−δκ)/d (we set δ′ = δκ for notational simplicity).

As seen in the proof of Theorem 7, to obtain the desired bound, the deviation σt should satisfy
σt ≤ a0 to bound the integral around the boundary. When t is small so that σt ∼ tκ, σt ≤ a0 means
t ≲ T∗ := N−(κ−1−δ)/d, which gives a constant on T∗. Consequently, we divide the time interval
into [T0, T∗] and [T∗, 1], and show the different bounds for the approximation error.

C.3 BASIC BOUNDS OF pt(x) AND vt(x)

Recall that

pt(x) =

∫
[−1,1]d

1

(2πσt)d
e
− ∥x−mty∥2

2σ2
t p0(y)dy.

17
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𝑎𝑎0

Figure C.1: Division of the cube into smoother small regions and the general region.

Lemma 17. There exists C1 = C1(d,C0) > 0 such that

C−1
1 exp

(
−
(∥x∥∞ −mt)

2
+

σ2
t

)
≤ pt(x) ≤ C1 exp

(
−
(∥x∥∞ −mt)

2
+

2σ2
t

)
(34)

for any x ∈ Rd and t ∈ [T0, 1].

Proof. The proof is elementary and the same as Oko et al. (2023, Lemma A.2). We omit it.

Lemma 18. (i) Let k ∈ N be arbitrary. There is C2 = C2(d, k, C0) > 0 such that∥∥∥∂xi1
· · · ∂xik

pt(x)
∥∥∥ ≤ C2

σk
t

(∀t ∈ [T0, 1]).

(ii) There is C3 = C3(d,C0) > 0 such that

∥vt(x)∥ ≤ C3

{
σ′
t

( (∥x∥∞ −mt)+
σt

∨ 1
)
+ |m′

t|
}

for any x ∈ Rd and t ∈ [T0, 1].

Proof. (i) is standard and the same as (Lemma A.3 Oko et al., 2023). We omit it.

For (ii), let g(x;mty, σ
2
t ) = pt(x|y) = 1

(2πσt)d/2
exp

{
−∥x−mty∥2

2σ2
t

}
. Note that

vt(x) =

∫
vt(x|y)g(x;mty, σ

2
t )p0(y)dy

pt(x)
.

The norm of the numerator is upper bounded by∥∥∥∥∫ {
σ′
t

x−mty

σt
+m′

ty
}
g(x;mty, σ

2
t )p0(y)dy

∥∥∥∥
≤σ′

t

∥∥∥∫ x−mty

σt
g(x;mty, σ

2
t )p0(y)dy

∥∥∥+ |m′
t|
∫

∥y∥g(x;mty, σ
2
t )p0(y)dy.

Since Supp(p0) = [−1, 1]d by assumption (A1), the second term in the last line is upper bounded by

|m′
t|
∫
g(x;mty, σ

2
t )p0(y)dy = |m′

t|pt(x). (35)

To bound the first term, we use the restriction of the integral region as in Lemma F.9, Oko et al.

(2023). Namely, letting ε := C−1
1 exp(− (∥x∥∞−mt)

2
+)

2σ2
t

, the lower bound of pt(x), the integral is
approximated as for any j = 1, . . . , d,∣∣∣∣∫

Rd

(xj −mtyj
σt

)α

g(x;mty, σ
2
t )p0(y)dy −

∫
Ax

(xj −mtyj
σt

)α

g(x;mty, σ
2
t )p0(y)dy

∣∣∣∣ ≤ ε,
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whereAx :=
∏d

i=1

[
xi

mt
− Cσc

mt

√
log(1/ε), xi

mt
+ Cσt

mt

√
log(1/ε)

]
, C is a positive constant depending

only on d, and α ∈ {0, 1}. Then, the first term is upper-bounded by

σ′
t

∥∥∥∫
Ax

x−mty

σt
g(x;mty, σ

2
t )p0(y)dy + ε1

∥∥∥.
Noting that y ∈ Ax is equivalent to |xi −mtyi|/σt ≤ C

√
log(1/ε), the above quantity is further

upper-bounded by
√
dCσ′

t

√
log(1/ε)

∫
Ax

g(x;mty, σ
2
t )p0(y)dy +

√
dε ≤ C ′

(
σ′
t

√
log(1/ε)pt(x) + ε

)
.

Noting that ε = C−1
1 exp(− (∥x∥∞−mt)

2
+)

σ2
t

) and pt(x) ≥ ε, we obtain

∥vt(x)∥ ≤
C ′(σ′

t

√
log(1/ε)pt(x) + ε) + |m′

t|pt(x)
pt(x)

≤C ′′
{
σ′
t

( (∥x∥∞ −mt)+
σt

)
+ σ′

t + |m′
t|
}

≤C ′′′
{
σ′
t

( (∥x∥∞ −mt)+
σt

∨ 1
)
+ |m′

t|
}
.

This completes the proof.

The following lemma shows an upper bound of vt(x) when x is in a bounded region of σt
√
1/ε,

and presents bounds of relevant integrals.
Lemma 19. Let ε > 0 be sufficiently small.

(i) For any C4 > 0, we have

∥vt(x)∥ ≤ C4

(
σ′
t

√
log(1/ε) + |m′

t|
)

(36)

for any x with ∥x∥∞ ≤ mt + C4σt
√
log(1/ε) and t ∈ [T0, 1].

(ii) For any C5 > 0, there is C̃ > 0 such that∫
∥x∥∞≥mt+C5σt

√
log(1/ε)

pt(x)∥vt(x)∥2dx ≤ C̃
{
(σ′

t)
2 log

d
2
(
ε−1

)
+(m′

t)
2 log

d−2
2
(
ε−1

)}
ε

C2
5
2

(37)
and ∫

∥x∥∞≥mt+C5σt

√
log(1/ε)

pt(x)dx| ≤ C̃ log
d−2
2
(
ε−1

)
ε

C2
5
2 (38)

hold for any ε > 0 and t ∈ [T0, 1].

Proof. (i) is obvious from Lemma 18, since (∥x∥∞ −mt)+/σt ≤ C4

√
log(1/ε) under the assump-

tion of x.

We show (ii). It follows from Lemmas 17 and 18 that

pt(x)∥vt(x)∥2 ≤ 2C1C3 exp
(
−
(∥x∥∞ −mty)

2
+

2σ2
t

){
(σ′

t)
2 (∥x∥∞ −mt)

2
+

σ2
t

+ (m′
t)

2
}
.

Let r := (∥x∥∞−mt)+/σt andBi := {x = (x1, . . . , xd) ∈ Rd | |xi| = max1≤j≤d |xj |. The space
is divided into d regions ∪d

i=1Bi with measure-zero intersections. In B1, the variables x2, . . . , xd
satisfy |xj | ≤ mt + C4σt

√
log(1/ε), and integral (37) is upper bounded by

2C1C3d

∫
C4

√
log(1/ε)

e−
r2

2

(
(σ′

t)
2r2 + (m′

t)
2
}
(σtr +mt)

d−1dr

≤C ′
∫
C4

√
log(1/ε)

e−
r2

2

(
(σ′

t)
2rd+1 + (m′

t)
2rd−1

}
dr,
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where we use (σtr +mt)
d−1 ≤ (r + 1)d−1 ≤ 2d−1rd−1.

For ℓ ∈ N ∪ {0}, define

ψℓ(z) :=

∫ ∞

z

rℓe−
r2

2 dr.

It is easy to see ψ1(z) = e−
z2

2 and ψℓ(z) = xℓ−1e−
z2

2 + (ℓ− 1)ψℓ−1(z) by partial integral. Using
these formulas, we can see that for z ≥ 1

ψℓ(z) ≤ Bℓz
ℓ−1e−

z2

2 ,

where Bℓ is a positive constant that depends only on ℓ.

Thus, we obtain an upper bound

C̃
{
(σ′

t)
2 log

d
2
(1
ε

)
+ (m′

t)
2 log

d−2
2
(1
ε

)}
ε

C2
5
2 ,

which proves (37). The assertion (38) is similar.

C.4 BOUNDS OF THE APPROXIMATION ERROR FOR SMALL t

This subsection shows the proof of Theorem 7.

(I) Restriction of the integral.

We first show that the left-hand side of (20) can be approximated by the integral over the bounded
region

Dt,N := {x ∈ Rd | ∥x∥∞ ≤ mt + C4σt
√

logN}.
To see this, observe that from Lemma 18 (ii), for x ∈ Dt,N we have

∥vt(x)∥2 ≤ 2C2
3

{
(σ′

t)
2 logN + |m′

t|2
}
. (39)

From the bound of vt(x), we can restrict the neural network ϕ(x, t) so that it satisfies the same upper
bound. Therefore, (39) is applied to ∥ϕ(x, t)∥2 also. Combining this fact with Lemma 19 (ii), we
have ∫

DC
t,N

∥ϕ(x, t)− vt(x)∥2pt(x)dx

≤ 4C2
3

{
(σ′

t)
2 logN + |m′

t|2
}∫

DC
t,N

1

(
√
2πσ)d

e−
∥x−mty∥2

2σ2 dx

≤ 4C2
3 C̃

{
(σ′

t)
2 logN + |m′

t|2
}
N−C2

4/2 log
d−2
2 N.

If C4 is taken large enough to satisfy C2
4/2 >

2s
d , it follows that∫

∥ϕ(x, t)− vt(x)∥2pt(x)dx

≤
∫
Dt,N

∥ϕ(x, t)− vt(x)∥2pt(x)dx+ C ′ {(σ′
t)

2 logN + |m′
t|2

}
N− 2s

d (40)

for some constant C ′ > 0. Thus, we can consider the first term on the right-hand side.

Let ω > 0 be an arbitrary positive number. The integral over Dt,N in (40) can be restricted to the
region {x | pt(x) ≥ N− 2s+ω

d }. This can be easily seen by∫
Dt,N

1[pt(x) ≤ N− 2s+ω
d ]∥vt(x)− ϕ(x, t)∥2pt(x)dx

≤ 4C2
3

∫
Dt,N

{
(σ′

t)
2 logN + |m′

t|2
}
N− 2s+ω

d dx

≤ 4C2
3N

− 2s+ω
d

{
(σ′

t)
2 logN + |m′

t|2
}
2d(mt + C4σt

√
logN)d

≤ C ′′ {(σ′
t)

2 logN + |m′
t|2

}
N− 2s+ω

d log
d
2 N,
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where C ′′ depends only on d, C3, and C4. This bound is of smaller order than the second term on the
right-hand side of (40), and thus negligible. In summary, we have∫

∥ϕ(x, t)− vt(x)∥2pt(x)dx

≤
∫
Dt,N

1[pt(x) ≥ N− 2s+ω
d ]∥ϕ(x, t)− vt(x)∥2pt(x)dx+ C ′ {(σ′

t)
2 logN + |m′

t|2
}
N− 2s

d

(41)

for sufficiently large N .

(II) Decomposition of integral. Here, we give a bound of the integral
∫
∥ϕ(x, t)−vt(x)∥2pt(x)dx

over the region Dt,N ∩ {x | pt(x) ≥ N− 2s+ω
d }. The norm ∥ϕ(x, t)− vt(x)∥ is bounded in detail.

First, recall that

vt(x) =

∫
vt(x|y)pt(x|y)p0(y)dy

pt(x)
, pt(x) =

∫
pt(x|y)p0(y)dy. (42)

Based on Theorem 13, we can find fN in (25) such that

∥p0 − fN∥L2(Id) ≤ CaN
−s/d, ∥p0 − fN∥L2(Id\Id

N ) ≤ CaN
−š/d (43)

As an approximate of pt(x), define a function f̃1(x, t) by

f̃1(x, t) :=

∫
1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t fN (y)dy. (44)

Since we consider the region where pt(x) ≥ N−(2s+ω)/d, we further define

f1(x, t) := f̃1(x, t) ∨N− 2s+ω
d .

In a similar manner, the numerator of (42) can be approximated by

σ′
tf2(x, t) +m′

tf3(x, t),

where Rd-valued functions f2 and f3 are defined by

f2(x, t) :=

∫
x−mty

σt

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t fN (y)dy.

f3(x, t) :=

∫
y

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t fN (y)dy. (45)

We have an approximate of vt(x) by

f4(x, t) :=
σ′
tf2(x, t) +m′

tf3(x, t)

f1(x, t)
1

[∣∣∣∣f2

f1

∣∣∣∣ ≤ C5

√
logN

]
1

[∣∣∣∣f3

f1

∣∣∣∣ ≤ C5

]
.

We want to evaluate∫
Dt,N

1[pt(x) ≥ N− 2s+ω
d ]∥ϕ(x, t)− vt(x)∥2pt(x)dx

≤
∫
Dt,N

1[pt(x) ≥ N− 2s+ω
d ]∥ϕ(x, t)− f4(x, t)∥2pt(x)dx

+

∫
Dt,N

1[pt(x) ≥ N− 2s+ω
d ]∥f4(x, t)− vt(x)∥2pt(x)dx

=: IA + IB . (46)

(III) Bound of IA (neural network approximation of B-spline)
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We will approximate f1, f2, and f3 by neural networks. For k ∈ Z+ and j ∈ Zd, let E(a)
k,j,u

(a = 1, 2, 3, u = 0, 1) denote the functions defined by

E
(1)
k,j,u :=

∫
Rd

1 [∥y∥∞ ≤ Cb,1]M
d
k,j(y)

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t dy, (47)

E
(2)
k,j,u :=

∫
Rd

x−mty

σt
1 [∥y∥∞ ≤ Cb,1]M

d
k,j(y)

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t dy, (48)

and

E
(3)
k,j,u :=

∫
Rd

y1 [∥y∥∞ ≤ Cb,1]M
d
k,j(y)

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t dy, (49)

where Cb,1 = 1 for u = 0 and Cb,1 = 1 − N−κ−1−δ
d for u = 1. Then, from Theorem 12, fN is

written as a linear combination of 1[∥y∥∞ ≤ Cb,1]M
d
k,j with coefficients αk,j . From Theorem 13,

for any ε > 0, there are neural networks ϕ5,ϕ6 and ϕ7 such that

|f1(x, t)− ϕ5(x, t)| ≤ D5N max
i

|αi|ε

∥f2(x, t)− ϕ6(x, t)∥ ≤ D6N max
i

|αi|ε,

∥f3(x, t)− ϕ7(x, t)∥ ≤ D7N max
i

|αi|ε.

Since maxi |αi| ≤ N−(ν−1+d−1)(d/p−s)+ , by taking ε sufficently small, for any η > 0 we have

|f1(x, t)− ϕ5(x, t)| ≤ D5N
−η

∥f2(x, t)− ϕ6(x, t)∥ ≤ D6N
−η

∥f3(x, t)− ϕ7(x, t)∥ ≤ D7N
−η.

The operations to obtain the approximation of vt(x) based on ϕ5, ϕ6, and ϕ7 are given by the
following procedures:

ζ1 := clip(ϕ5;N
−(2s+ω)/d, NK0+1),

ζ2 := recip(ζ1),

ζ3 := mult(ζ2,ϕ6),

ζ4 := clip(ζ3;−C5

√
logN,C5

√
logN),

ζ5 := mult(ζ2,ϕ7),

ζ6 := clip(ζ5;−C5, C5),

ζ7 := mult(ζ4, σ̂′),

ζ8 := mult(ζ6, m̂′),

ϕ8 := ζ7 + ζ8.

As shown in Section D, the neural networks clip, recip, and mult achieve the approximation
error N−η with arbitrarily large η, while the complexity of the networks increases only at most
polynomials of N for B and ∥W∥∞, and at most poly(logN) factor for L and S. In the upper bound
of the generalization error, the network parameters B and ∥W∥∞ and the inverse error ε−1 = Nη

appear only in the log() part to the log covering number, and S and B appear as a linear factor.
We also need to use the approximations σ̂′

t and m̂′
t of σ′

t and m′
t, respectively, by neural networks

in construction. However, this can be done in a similar manner to (Section B1, Oko et al., 2023)
with all network parameters O(logr ε−1) for approximation accuracy ε, and thus they have only
O(poly(logN)) contributions. We omit the details in this paper. Consequently, the increase of the
neural networks to obtain ϕ8 from ϕ5, ϕ6, and ϕ7 contributes the log covering number only by the
poly(logN) factor.

As a result, we obtain
IA = O(N−ηpoly(logN)) (50)

for arbitrary η > 0, while the required neural network increases the complexity term only by
O(poly(logN)) factor.
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(IV) Bound of IB (B-spline approximation of the true vector field)

We evaluate here

IB =

∫
Dt,N

1[pt(x) ≥ N− 2s+ω
d ]∥f4(x, t)− vt(x)∥2pt(x)dx. (51)

Let h2(x, t) and h3(x, t) be functions defined by

h2(x, t) :=

∫
Rd

x−mty

σt

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t p0(y)dy,

h3(x, t) :=

∫
Rd

y
1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t p0(y)dy. (52)

Then,
∥f4(x, t)− vt(x)∥

= 1

[∥∥∥∥f2

f1

∥∥∥∥ ≤ C5

√
logN

]
1

[∥∥∥∥f3

f1

∥∥∥∥ ≤ C5

] ∥∥∥∥σ′
tf2(x, t) +m′

tf3(x, t)

f1(x)
− σ′

th2(x, t) +m′
th3(x, t)

pt(x)

∥∥∥∥ .
(53)

We evaluate the integral (51) by dividing Dt,N into the two domains {x | ∥x∥∞ ≤ mt} and
{x | mt ≤ ∥x∥∞ ≤ mt + C4σt

√
logN}.

Due to condition pt(x) ≥ N−(2s+ω)/d, it suffices to take the network f1(x, t) so that it satisfies
f1(x, t) ≥ N−(2s+ω)/d by clipping the function if necessary. We therefore assume in the sequel that
f1(x, t) ≥ N−(2s+ω)/d holds.

(IV-a) case: ∥x∥∞ ≤ mt.

In this case, Lemma 17 shows that C−1
1 ≤ pt(x) ≤ C1 for some C1 > 0, which depends only on d

and p0. Using this fact and the conditions
∥∥f2

f1

∥∥ ≤ C5

√
logN and

∥∥f3

f1

∥∥ ≤ C5, we have∥∥∥∥σ′
tf2(x, t) +m′

tf3(x, t)

f1(x)
− σ′

th2(x, t) +m′
th3(x, t)

pt(x)

∥∥∥∥
≤ |σ′

t|
∥∥∥∥f2(x, t)

f1(x)
− h2(x, t)

pt(x)

∥∥∥∥+ |m′
t|
∥∥∥∥f3(x, t)

f1(x)
− h3(x, t)

pt(x)

∥∥∥∥
≤ |σ′

t|
{∥∥∥∥f2(x)

f1(x)
− f2(x, t)

pt(x)

∥∥∥∥+

∥∥∥∥f2(x, t)

pt(x)
− h2(x, t)

pt(x)

∥∥∥∥}
+ |m′

t|
{∥∥∥∥f3(x)

f1(x)
− f3(x, t)

pt(x)

∥∥∥∥+

∥∥∥∥f3(x, t)

pt(x)
− h3(x, t)

pt(x)

∥∥∥∥}
≤ C1|σ′

t|
{
C5

√
logN |pt(x)− f1(x, t)|+ ∥f2(x, t)− h2(x, t)∥

}
+ C1|m′

t| {C5|pt(x)− f1(x, t)|+ ∥f3(x, t)− h3(x, t)∥}

≤ C̃
{
(|σ′

t|
√

logN + |m′
t|)|f1(x, t)− pt(x)|+ |σ′

t|∥f2(x, t)− h2(x, t)∥+ |m′
t|∥f3(x, t)− h3(x, t)∥

}
.

(54)

We evaluate the integral on {x | ∥x∥∞ ≤ mt}. From the bound (54), we have

IB,1 :=

∫
∥x∥∞≤mt

1[pt(x) ≥ N− 2s+ω
d ]∥f4(x, t)− vt(x)∥2pt(x)dx

≤ C ′

[{
(σ′

t)
2 logN + (m′

t)
2
}∫

∥x∥∞≤mt

1[pt(x) ≥ N− 2s+ω
d ]|f1(x, t)− pt(x)|2pt(x)dx

+ (σ′
t)

2

∫
∥x∥∞≤mt

1[pt(x) ≥ N− 2s+ω
d ]∥f2(x, t)− h2(x, t)∥2pt(x)dx

+(m′
t)

2

∫
∥x∥∞≤mt

1[pt(x) ≥ N− 2s+ω
d ]∥f3(x, t)− h3(x, t)∥2pt(x)dx

]
. (55)
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We write J (1)
B , J (2)

B , and J (3)
B for the three integrals that appear in the right-hand side of (55).

We will show only the derivation of an upper bound for J (2)
B , since the other two cases are similar.

Recall that by the definition of f2 and h2,

f2(x, t)− h2(x, t) =

∫
Id

x−mty

σt

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))dy.

Then, using pt(x) ≤ C1, we have

J
(2)
B ≤ C1

∫
∥x∥∞≤mt

1[pt(x) ≥ N− 2s+ω
d ]

∥∥∥∥∥
∫
Id

x−mty

σt

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))dy

∥∥∥∥∥
2

dx

≤ C1

∫
∥x∥∞≤mt

∥∥∥∥∥ 1

md
t

∫
Rd

1[∥y∥∞ ≤ 1]
x−mty

σt

(
mt√
2πσt

)d

e
− ∥y−x/mt∥2

2(σt/mt)
2 (fN (y)− p0(y))dy

∥∥∥∥∥
2

dx

≤ C1

m2d
t

∫
∥x∥∞≤mt

∫
Rd

1[∥y∥∞ ≤ 1]

∥∥∥∥x−mty

σt

∥∥∥∥2 ( mt√
2πσt

)d

e
− ∥y−x/mt∥2

2(σt/mt)
2 (fN (y)− p0(y))

2dydx

=
C1

md
t

∫
∥x∥∞≤mt

∫
Rd

1[∥y∥∞ ≤ 1]

∥∥∥∥x−mty

σt

∥∥∥∥2 1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))

2dydx,

(56)

where the third line uses Jensen’s inequality for ∥ · ∥2. For t ∈ 3N−κ−1−δ
d with sufficiently large

N , we can find c0 > 0 such that mt ≥ c0 on the time interval [T0, 3N−κ−1−δ
d ]. We can thus further

obtain for some C ′ > 0

J
(2)
B ≤ C ′

∫
Id

∫
Rd

∥x−mty∥2

σ2
t

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t dx(fN (y)− p0(y))

2dy

= dC ′
∫
Id

(fN (y)− p0(y))
2dy

= dC ′∥fN − p0∥2L2(Id)

≤ C ′′N− 2s
d (57)

by the choice of fN . Similarly, we can prove that J (1)
B and J (3)

B have the same upper bounds of N− 2s
d

order. This proves that there is CB,1 > 0 such that

IB,1 ≤ CB,1

{
(σ′

t)
2 logN + (m′

t)
2
}
N− 2s

d . (58)

(VI-b) case: mt ≤ ∥x∥∞ ≤ mt + C4σt
√
logN .

Unlike case (i), we do not have a constant lower bound of pt(x) in this region, and thus we resort
to the bound pt(x) ≥ N−(2s+ω)/d, that is 1/pt(x) ≤ N (2s+ω)/d and 1/f1(x, t) ≤ N (2s+ω)/d. We
have ∥∥∥∥σ′

tf2(x, t) +m′
tf3(x, t)

f1(x)
− σ′

th2(x, t) +m′
th3(x, t)

pt(x)

∥∥∥∥
≤ 1

f1(x, t)
∥(σ′

tf2(x, t) +m′
tf2(x, t))− (σ′

th2(x, t) +m′
th3(x, t))∥

+ ∥vt(x)∥
1

f1(x, t)
|f1(x)− pt(x)|

≤ N (2s+ω)/dC̃
{(

|σ′
t|
√
logN + |m′

t|
)
|pt(x)− f1(x, t)|+ |σ′

t|∥f2(x, t)− h2(x, t)∥

+ |m′
t|∥f3(x, t)− h3(x, t)∥

}
, (59)

where in the last inequality we use Lemma 19 (i).
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Let ∆t,N := {x ∈ Rd | mt ≤ ∥x∥∞ ≤ mt + C4σt
√
logN}. By the same argument using Jensen’s

inequality as the derivation of (56), we can obtain

IB,2 :=

∫
∆t,N

1[pt(x) ≥ N− 2s+ω
d ]∥f4(x, t)− vt(x)∥2pt(x)dx

≤ C ′′′N
4s+2ω

d

[{
(σ′

t)
2 logN + (m′

t)
2
}∫

∆t,N

∫
Id

1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))

2dydx

+ (σ′
t)

2

∫
∆t,N

∫
Id

∥∥∥∥x−mty

σt

∥∥∥∥2 1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))

2dydx

+(m′
t)

2

∫
∆t,N

∫
Id

∥y∥2 1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))

2dydx

]
(60)

Due to the factor N (4s+2ω)/d, the integrals must have orders smaller than in the case of (56) to derive
the desired bound of IB,2. We will make use of Assumption (A1) about the higher-order smoothness
around the boundary of Id.

Because the three integrals can be bounded in a similar manner, we focus only on the second one,
denoted by K(2)

B . Since δ, ω > 0 can be taken arbitrarily small, we can assume š > 6s−1+ δκ+2ω.
From Lemma 15 with ε = N−š/d, there is Cb > 0, which is independent of x, t, and sufficiently
large N , such that∣∣∣∣∣

∫
Id

∥∥∥∥x−mty

σt

∥∥∥∥2 1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))

2dy

−
∫
Ax

∥∥∥∥x−mty

σt

∥∥∥∥2 1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))

2dy

∣∣∣∣∣ ≤ N− š
d , (61)

where Ax is given by

Ax :=

{
y ∈ Id |

∥∥∥∥y − x

mt

∥∥∥∥
∞

≤ Cb
σt
√
logN

mt

}
.

Note that if x ∈ ∆t,N and y ∈ Ax, then

−1 ≤ yj ≤ −1 +
Cbσt

√
logN

mt
or 1− Cbσt

√
logN

mt
≤ yj ≤ 1

for each j = 1, . . . , d. Because we assume that t ≤ 3N−κ−1−δ
d and σt ∼ b0t

κ, we can assume
that mt ≥

√
D0/2 from Assumption (A3). Then, for sufficiently large N , we see that y ∈ Id\IdN .

This can be seen in σt ∼ b0t
κ ≤ b03

κN− 1−δκ
d and thus Cbσt

√
logN/mt ≤ 2Cbb03

κ
√
D0

N− 1−δκ
d . For

y ∈ Id\IdN , we can use the second bound in (25); ∥fN − p0∥L2(Id\Id
N ) ≤ N−š/d. It follows from

(61) that

K
(2)
B =

∫
∆t,N

∫
Id

∥∥∥∥x−mty

σt

∥∥∥∥2 1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))

2dydx

≤
∫
∆t,N

{∫
Ax

∥∥∥∥x−mty

σt

∥∥∥∥2 1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t (fN (y)− p0(y))

2dy +N−š/d

}
dx

≤
∫
Id\Id

N

∫
Rd

∥∥∥∥x−mty

σt

∥∥∥∥2 1

(
√
2πσt)d

e
− ∥x−mty∥2

2σ2
t dx(fN (y)− p0(y))

2dy +N−š/d|∆t,N |.

Since the volume |∆t,N | is upper bounded by D′σt
√
logN with some constant D′ > 0, we have

K
(2)
B ≤ d∥fN − p0∥2L2(Id\Id

N ) + C ′(σt
√

logN)N−š/d

≤ C ′′
(
N−2š/d +N−(š+1−δκ)/d logd/2N

)
= O

(
N− š+1−δκ

d logd/2N
)
, (62)
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where the last line uses š > 1 (A1). The integrals K(1)
B and K(3)

B have an upper bound of the same
order. As a result, there is CB,2 > 0 which does not depend on n or t such that

IB,2 ≤ CB,2

{
(σ′

t)
2 logN + (m′

t)
2
}
N− š+1−4s−2ω−δκ

d .

Since we have taken š so that š > 6s− 1 + δκ+ 2ω, we have

IB,2 ≤ CB,2

{
(σ′

t)
2 logN + (m′

t)
2
}
N− 2s

d . (63)

(VI-c)

It follows from (58) and (63) that there is CB > 0 such that

IB ≤ CB

{
(σ′

t)
2 logN + (m′

t)
2
}
N− 2s

d (64)

for sufficiently large N .

(V) Concluding the proof.

Combining (41), (46), (50), and (64) leads to the upper bound of the statement of the theorem. The
argument of the network size in part (III) proves the corresponding statement.

C.5 BOUNDS OF THE APPROXIMATION ERROR FOR LARGER t

This subsection gives a proof of Theorem 8. The proof is parallel to that of Theorem 7 in many places,
while the smoothness of the target density is more helpful.

(I)’ Restriction of the integral. In a similar manner to part (I) of Section C.4, there is C8 > 0, which
does not depend on t such that for any neural network ϕ(x, t) with ∥ϕ(x, t)∥ ≤ C3{|σ′

t|
√
logN +

|m′
t|} the bound∫

∥x∥≥mt+C8

√
logN

pt(x)∥ϕ(x, t)− vt(x)∥2dx ≲ {|σ′
t|
√

logN + |m′
t|}N−η

holds for any t ∈ [N−κ−1−δ
d , 1]. Also, in a similar way, we can restrict the integral to the region

{x | pt(x) ≥ N−η} up to a negligible difference. Consequently, we obtain∫
Rd

pt(x)∥ϕ(x, t)− vt(x)∥2dx

=

∫
∥x∥≤mt+C8

√
logN

1[pt(x) ≥ N−η]pt(x)∥ϕ(x, t)− vt(x)∥2dx

+O
(
{|σ′

t|
√
logN + |m′

t|}N−η
)
. (65)

(II)’ Decomposition of integral. We consider aB-spline approximation of pt(x). Unlike Section C.4,
we can regard pt∗ as the target distribution, which is of class C∞. This will cause a tighter bound than
in Section C.4 and easier analysis. More precisely, it is easy to see that pt, the convolution between
p0 and the Gaussian distribution Nd(mty, σ

2
t Id), can be rewritten as the convolution between pt∗

and Nd(m̃ty, σ̃
2
t Id) for any t > t∗, that is,

pt(x) =

∫
Rd

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t pt∗(y)dy,

where

m̃t :=
mt

mt∗

, σ̃t :=

√
σ2
t −

( mt

mt∗

)2

σ2
t∗ . (66)

We can thus apply a similar argument to Section C.4.

We use a B-spline approximation of pt∗ . For η > 0, take α ∈ N such that α > 3dη
2δκ . It is easy to see

that the derivatives of pt∗(x) satisfy∥∥∥∥ ∂k

∂xi1 · · · ∂xik
pt∗(x)

∥∥∥∥ ≤ Ca

σk
t∗
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for any k ≤ α and (i1, . . . , ik). From Assumption (A3), there are t† ∈ [0, 1] and b† > 0 such that
σt ≥ b†tκ for any 0 ≤ t ≤ t†. If we set c† := (t†)κ > 0, then σt ≥ b†tκ ∨ c† for any t ∈ [0, 1]. We
can see that

pt∗
t−ακ
∗ ∨ c†

∈ Bα
∞,∞(Rd)

holds, because for any k ≤ α we have∥∥∥∥ ∂k

∂xi1 · · · ∂xik
pt∗(x)

t−ακ
∗ ∨ c†

∥∥∥∥ ≤ Cα(b
†t−kκ

∗ ∧ (c†)−k)

t−ακ
∗ ∨ c†

≤ Cα(b
†t

(α−k)κ
∗ ∧(c†)−(k+1)) ≤ Cα((b

†∧(c†)−(k+1)),

which implies pt∗
t−ακ
∗ ∨c†

∈Wα
∞(Rd) and ∥ pt∗

t−ακ
∗ ∨c†

∥Wα
∞(Rd) ≤ Cα((b

† ∧ (c†)−(k+1)) (constant).

Notice that, by a similar argument as in the proof of Lemma 19 (ii), there is C5 > 0 such that∫
∥y∥∞≥C5

√
logN

(∥y∥2 + 1)pt∗(y)dy ≤ N−3η (67)

holds. We therefore consider a B-spline approximation on [−C5

√
logN,C5

√
logN ]d. Letting

N∗ := ⌈t−dκ
∗ Nδκ⌉

be the number of B-spline bases, from Theorem 12, we can find a function fN∗ of the form

fN∗(x) = (t−ακ
∗ ∨ c†)

N∗∑
i=1

αi1[∥x∥∞ ≤ C5

√
logN ]Md

ki,ji(x)

with |αi| ≤ 1 and C9 > 0 such that

∥pt∗ − fN∗∥L2([−C5

√
logN,C5

√
logN ]d) ≤ C9(logN)α/2(N∗)−

α
d (t−ακ

∗ ∨ c†)
holds.

From N∗ ≥ t−dκ
∗ Nδκ and α > 3dη

2δκ , the right-hand side is bounded by

C ′(logN)α/2N−δακ/d ≤ C ′N−3η/2

for sufficiently large N , which implies

∥pt∗ − fN∗∥L2([−C5

√
logN,C5

√
logN ]d) ≤ C10N

−3η/2 (68)

for sufficiently large N . Note also that the coefficient α̃i := αi(t
−ακ
∗ ∨ c†) of the basis Md

ki,ji
in fN∗

is bounded by

|α̃i| ≤ t−ακ
∗ ∨ c† ≤ N

κ−1−δ
d ακ = N

α(1−δκ)
d .

In a similar manner to part (II) of Section C.4, define f1,f2,f3, and f4 using fN∗ as

f1(x, t) := f̃1(x, t) ∨N−η with f̃1(x, t) :=

∫
1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t fN∗(y)dy, (69)

f2(x, t) :=

∫
x− m̃ty

σ̃t

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t fN∗(y)dy.

f3(x, t) :=

∫
y

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t fN∗(y)dy, (70)

f4(x, t) :=
σ̃′
tf2(x, t) + m̃′

tf3(x, t)

f1(x, t)
1

[∣∣∣∣f2

f1

∣∣∣∣ ≤ C5

√
logN

]
1

[∣∣∣∣f3

f1

∣∣∣∣ ≤ C5

]
.

We have a similar decomposition of the integral to (46):∫
Dt,N

1[pt(x) ≥ N−η]∥ϕ(x, t)− vt(x)∥2pt(x)dx

≤
∫
Dt,N

1[pt(x) ≥ N−η]∥ϕ(x, t)− f4(x, t)∥2pt(x)dx

+

∫
Dt,N

1[pt(x) ≥ N−η]∥f4(x, t)− vt(x)∥2pt(x)dx

=: ĨA + ĨB (71)
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(III)’ Bound of ĨA (neural network approximation of B-spline)

Using exactly the same argument as in part (III) of Section C.4, we can show

ĨA = O(poly(logN)N−η′
)

for arbitrary η′ > 0, and thus it is negligible.

The size of the neural network is given by L = O(log4N), ∥W∥∞ = O(N), S = O(N∗) =
O(t−dκ

∗ Nδκ), and B = exp(O(logN log logN).

(IV)’ Bound of ĨB (B-spline approximation of the true vector field)

By replacing p0 with pt∗ in (52), define h2(x, t) and h3(x, t) with m̃t and σ̃t by

h2(x, t) :=

∫
Rd

x− m̃ty

σ̃t

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t pt∗(y)dy,

h3(x, t) :=

∫
Rd

y
1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t pt∗(y)dy.

Then, by a similar argument to (19), we have

∥f4(x, t)− vt(x)∥ ≤ NηC̃
{(

|σ̃′
t|
√

logN + |m̃′
t|
)
|pt(x)− f1(x, t)|

+|σ̃′
t|∥f2(x, t)− h2(x, t)∥+ |m̃′

t|∥f3(x, t)− h3(x, t)∥}

for some constant C̃, and thus

ĨB ≤ C ′N2η

{(σ̃′
t)

2 logN + (m̃′
t)

2
}∫

Dt,N

∣∣∣∣∣
∫
Rd

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t (fN∗(y)− pt∗(y))dy

∣∣∣∣∣
2

dx

+ (σ̃′
t)

2

∫
Dt,N

∥∥∥∥∥
∫
Rd

x− m̃ty

σ̃t

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t (fN∗(y)− pt∗(y))dy

∥∥∥∥∥
2

dx

+ (m̃′
t)

2

∫
Dt,N

∥∥∥∥∥
∫
Rd

y
1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t (fN∗(y)− pt∗(y))dy

∥∥∥∥∥
2

dx

 . (72)

Here, we show a bound of

J̃B,2 :=

∫
Dt,N

∥∥∥∥∥
∫
Rd

x− m̃ty

σ̃t

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t (fN∗(y)− pt∗(y))dy

∥∥∥∥∥
2

dx.

The other two integrals can be bounded similarly.

Let ρ := 1√
2D0

> 0, where D0 is given in Assumption (A3). We derive a bound of J̃B,2 in the two
cases of t separately: (IV-a)’ m̃t ≥ ρ, and (IV-b)’ m̃t ≤ ρ.

Case (IV-a)’: m̃t ≥ ρ.
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By rewriting the inner integral on y by a Gaussian integral, we have

J̃B,2 =

∫
Dt,N

1

m̃2d
t

∥∥∥∥∥
∫
Rd

x− m̃ty

σ̃t

(
m̃t√
2πσ̃t

)d

e
− m̃2

t∥y−x/m̃t∥2

2σ̃2
t (fN∗(y)− pt∗(y))dy

∥∥∥∥∥
2

dx

≤
∫
Dt,N

1

m̃2d
t

∫
Rd

∥∥∥∥x− m̃ty

σ̃t

∥∥∥∥2 ( m̃t√
2πσ̃t

)d

e
− m̃2

t∥y−x/m̃t∥2

2σ̃2
t (fN∗(y)− pt∗(y))

2dydx

≤
∫
Dt,N

1

m̃d
t

∫
Rd

∥∥∥∥x− m̃ty

σ̃t

∥∥∥∥2 1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t (fN∗(y)− pt∗(y))

2dydx

≤ (2D0)
d/2

∫
Rd

∫
Rd

∥∥∥∥x− m̃ty

σ̃t

∥∥∥∥2 1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t (fN∗(y)− pt∗(y))

2dxdy

≤ ρ−d/2d

∫
Rd

(fN∗(y)− pt∗(y))
2dy

≤ ρ−d/2d

[∫
[−Ct

√
logN,C5

√
logN ]d

(fN∗(y)− pt∗(y))
2dy +

∫
∥y∥≥C5

√
logN

pt∗(y)
2dy

]
≤ ρ−d/2d

{
∥fN∗ − pt∗∥2L2([−C5

√
logN,C5

√
logN ]d) +N−3η

}
≤ C N−3η

where the second line uses Jensen’s inequality and the last two lines are based on (67) and (68). The
constant C > 0 does not depend on t or N .

Case (IV-b)’ m̃t ≤ ρ.

In this case, we can show σ̃2
t ≥ 1

2D0
. In fact, from m̃t ≤ ρ, we have

σ̃2
t = σ2

t − m̃2
tσ

2
t∗ ≥ σ2

t − ρ2σ2
t∗ .

From Assumption (A3), m2
t + σ2

t ≥ D−1
0 . Since m2

t ≤ ρ2m2
t∗ by assumption, we have

σ2
t ≥ D−1

0 −m2
t ≥ D−1

0 − ρ2m2
t∗ .

Combining these two inequalities, we obtain

σ̃2
t ≥ D−1

0 − ρ2(m2
t∗ + ρ2t∗) ≥ D−1

0 − ρ2D0 =
1

2D0
,

where the last equality holds from the definition ρ = 1√
2D0

.

We divide the integral of ĨB,2 into the regions {y | ∥y∥∞ ≥ C5

√
logN} and {y | ∥y∥∞ ≤

C5

√
logN}. In the region {y | ∥y∥∞ ≥ C5

√
logN}, using σ̃2

t ≥ 1/(2D0) and fN∗(y) = 0, we
have a bound∥∥∥∥∥

∫
{∥y∥∞≥C5

√
logN}

x− m̃ty

σ̃t

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t (fN∗(y)− pt∗(y))dy

∥∥∥∥∥
2

≤
(
D0

π

)d

(2D0)
2

∫
{∥y∥∞≥C5

√
logN}

∥x− m̃ty∥2(pt∗(y))2dy

≤ C

(
D0

π

)d

(2D0)
2

∫
{∥y∥∞≥C5

√
logN}

(
C ′ logN + ρ−2∥y∥2

)
pt∗(y)dy

≤ C ′′N−3η logN,

where we use (67) and the fact x ∈ Dt,N implies ∥x∥2 ≤ C ′ logN for some C ′.
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For the other region {y | ∥y∥∞ ≤ C5

√
logN}, first notice that for x ∈ Dt,N , we have ∥x −

m̃ty∥/σ̃t ≤ D′√logN for some D′ > 0. Application of Cauchy-Schwarz inequality derives∥∥∥∥∥
∫
{∥y∥∞≤C5

√
logN}

x− m̃ty

σ̃t

1

(
√
2πσ̃t)d

e
− ∥x−m̃ty∥2

2σ̃2
t (fN∗(y)− pt∗(y))dy

∥∥∥∥∥
2

≤ D′2 logN

(
D0

π

)∫
{∥y∥∞≤C5

√
logN}

dy

∫
{∥y∥∞≤C5

√
logN}

(fN∗(y)− pt∗(y))
2dy

≤ D′′(logN)
d
2+1∥fN∗ − pt∗∥L2([−C5

√
logN

2
,C5

√
logN ]d)

≤ D′′(logN)
d
2+1N−3η.

From the above two cases (IV-a)’ and (IV-b)’, we have for any t ∈ [t∗, 1]

J̃B,2 ≤ poly(logN)N−η.

As a consequence, there is a constant C ′′ that does not depend on t and m ∈ N such that

ĨB ≤ C ′′{(σ′
t)

2 logN + (m′
t)

2}N−ηpoly(logN).

The factor poly(logN) can be erased if we take a larger η in the proof.

D APPROXIMATION OF FUNCTIONAL OPERATIONS BY NEURAL NETWORKS

This section reviews the accuracy of the approximation and the increase in complexity when we
approximate functional operations by neural networks. The following results are shown in Oko et al.
(2023, Section F) as well and in more original literature Nakada and Imaizumi (2020),Petersen and
Voigtlaender (2018),Schmidt-Hieber (2019).

The operations used directly in this article are recip, mult, clip, and sw. The usage in Section
C.4 (III) is explained as examples.

D.1 CLIPPING FUNCTION

First, we consider the realization of the component-wise clipping function.
Lemma 20. For any a, b ∈ Rd with ai ≤ bi (i = 1, 2, . . . , d), there exists a neural net-
work clip(x; a, b) ∈ M(L,W,S,B) with L = 2, W = (d, 2d, d)T , S = 7d, and B =
max1≤i≤d max{|ai|, bi} such that

clip(x; a, b)i = min{bi,max{xi, ai}} (i = 1, 2, . . . , d)

holds. When ai = cmin and bi = cmax for all i, we also use the notation clip(x; cmin, cmax) :=
clip(x; a, b).

D.2 RECIPROCAL FUNCTION

Second, the reciprocal function x 7→ 1/x is approximated by neural networks as follows.
Lemma 21. For any 0 < ε < 1, there is recip(x′) ∈ M(L,W, S,B) such that∣∣∣∣recip(x′)− 1

x

∣∣∣∣ ≤ ε+
|x− x′|
ε2

(73)

holds for any x ∈ [ε, ε−1] and x′ ∈ R with L = O(log2(ε−1)), ∥W∥∞ = O(log3(ε−1)), S =
O(log4(ε−1)), and B = O(ε−2).

D.3 MULTIPLICATION

Lemma 22. Let d ≥ 2, C ≥ 1, 0 < ϵerr ≤ 1. For any ε > 0, there exists a neural network
mult(x1, x2, . . . , xd) ∈ M(L,W,S,B) with L = O(d log ε−1 + d logC)), ∥W∥∞ = 48d, S =
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O(d log ε−1 + d logC)), B = Cd such that (i)∣∣∣∣∣mult(x′1, . . . , x
′
d)−

d∏
d′=1

x′i

∣∣∣∣∣ ≤ ε+ dCd−1ϵerr,

holds for all x ∈ [−C,C]d and x′ ∈ Rd with ∥x−x′∥∞ ≤ ϵerr, (ii) |mult(x)| ≤ Cd for all x ∈ Rd,
and (iii) mult(x′1, . . . , x

′
d) = 0 if at least one of x′i is 0.

We note that some of xi, xj (i ̸= j) can be shared; for
∏I

i=1 xαi
with αi ∈ Z+ (i = 1, . . . , I) and∑I

i=1 αi = d, there exists a neural network satisfying the same bounds as above; the network is
denoted by mult(x;α).

D.4 SWITCHING

Lemma 23. Let t1 < t2 < s1 < s2, and f(x, t) be a scaler-valued function. Assume that
|φ1(x, t)− f(x, t)| ≤ ε on [t1, s1] and |φ2(x, t)− f(x, t)| ≤ ε on [t2, s2]. Then, there exist neural
networks sw1(t; t2, s1) and sw2(t; t2, s1) in M(L,W, S,B) with L = 3, W = (1, 2, 1, 1)T , S = 8,
and B = max{t1, (s1 − t2)

−1} such that

|sw1(t; t2, s1)φ1(x, t) + sw2(t; t2, s1)φ2(x, t)− f(x, t)| ≤ ε

holds for any t ∈ [t1, s2].

D.5 CONSTRUCTION OF NETWORK IN SECTION C.4 (III)

We detail the network size required for the approximation procedure presented in Section C.4 (III).

Clipping to ζ1: From (39) and assumption (A3), ϕ5 can be upper bounded by NK0+1 for sufficiently
large N . Then, from Lemma 20, we can see that in the clipping of ϕ5, the increase in model sizes is
constant depending on d except B, which is multiplied by the upper bound NK0+1.

Approximating f−1
1 by ζ2: Since we assume f1 ≥ N−(2s+ω)/d, clipping ϕ5 from below by

N−(2s+ω)/d does not increase the difference; thus |ζ1 − f1| ≤ D5N
−η. In Lemma 21, substituting

x′ = ζ1, x = f1, and ε = N−χ for χ > χ0 + (2s+ ω)/d with an arbitrary χ0 > 0, we have∣∣∣∣recip(ζ1(x, t))− 1

f1(x, t)

∣∣∣∣ ≤ N−χ +N2χ|ζ1(x, t)− f1(x, t)|.

Since η > 0 is arbitrary, by setting η and χ so that η > 3χ, we have∣∣∣∣recip(ζ1(x, t))− 1

f1(x, t)

∣∣∣∣ ≤ (D5 + 1)N−χ. (74)

This is achieved by a neural network with L = O(log2N), S = O(log4N), ∥W∥∞ = O(log logN)
and B = O(N2χ).

ζ3 = mult(ζ2,ϕ6): Note that |ζ2| ≤ N (2s+ω)/d, ∥f2 − ϕ6∥ = O(N−η), and |ζ2 − f−1
1 | ≤

O(N−χ) from (74). We have also taken η so that η > 3χ. In applying Lemma 22, we can set
C = N (2s+ω)/d because |ζ2| ≤ N (2s+ω)/d. Also, ϵerr := max{|ζ2 − 1/f1|, ∥ϕ6 − f2∥} =
max{O(N−χ), O(N−η)} = O(N−χ). With d = 2 and ε = N−χ0 , we have

|ζ3(x, t)− ζ2 · ϕ6(x, t)| = O(N−χ0 + 2N (2s+ω)/dN−χ) = O(N−χ0 + 2N−χ0) = O(N−χ0),

where we use the fact that χ is taken to satisfy χ > χ0 + (2s+ ω)/d.

We then obtain ∥∥∥∥ζ3 − f2

f1

∥∥∥∥ ≤ ∥ζ3 − ϕ6ζ2∥+
∥∥∥∥ϕ6ζ2 −

f2

f1

∥∥∥∥
≤ ∥ζ3 − ϕ6ζ2∥+ ∥ϕ6ζ2 − f2ζ2∥+

∥∥∥∥f2ζ2 −
f2

f1

∥∥∥∥
= O(N−χ0) +O(N (2s+ω)/dN−η) +O(

√
logNN−χ)

= O(N−χ0), (75)
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where in the second last line we use ∥f2/f1∥ = O(
√
logN) and thus ∥f2∥ = O(

√
logN).

A similar argument derives ∥∥∥∥ζ5 − f3

f1

∥∥∥∥ = O(N−χ0). (76)

For the neural network architecture in this multiplication, L and S are added by the order of
O(log ε−1 + logC) = O(logN). The width W is of constant order and thus negligible. The width
W is O(N2(2s+ω)/d).

Clipping to obtain ζ4 and ζ6: For these clipping procedures, the approximating networks have L,
W and S of constant order, while the weight values B are of O(

√
logN) and O(1), respectively, and

thus they are negligible. The approximation errors are kept as N−χ0 .

Multiplication to obtain ζ7 and ζ8: As in the previous procedures, clipping by O(
√
logN) and

O(1) does not increase the approximation error, while the increase in the size of the network is
negligible.

In a similar manner to Oko et al. (Lemma B.1 2023), we can approximate σ′
t and m′

t by neural
networks so that |σ′

t − σ̂′
t| = O(N−η) and |m′

t − m̂′
t| = O(N−η). The network sizes are L =

O(log2N), ∥W∥∞ = O(log2N), S = O(log3N), and B = O(logN). With arguments similar to
those of the previous procedures, we can show∥∥∥∥ζ7 − (σ′

t)
f2

f1
1

[∥∥∥∥f2

f1

∥∥∥∥ ≤ C5

√
logN

]∥∥∥∥ = O(N−χ0),

and ∥∥∥∥ζ8 − |m′
t|
f3

f1
1

[∥∥∥∥f3

f1

∥∥∥∥ ≤ C5

]∥∥∥∥ = O(N−χ0),

In total, we can find a neural network to approximate vt(x) with the approximation error ofO(N−χ0)
so that the network has the size of most polynomial orders for B and ∥W∥∞, while O(poly(logN))
for S and L. As a result, the contributions to the log cover number are only O(poly(logN)).

E IDEA OF TIME DIVISION

The basic idea of the time division used to derive the almost optimal minimax convergence rate is
depicted in Figure E.1.
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𝒙

𝑝𝑡∗(𝑥)

𝑡

𝑝0(𝑥) 𝑝𝑡∗(𝑥)

𝑒
2 ∫𝑡∗

𝑡
𝑒𝐿𝑢𝑑𝑢

= 𝑒2 ሚ𝐶 log( Τ𝑡 𝑡∗) = Τ𝑡 𝑡∗
2 ሚ𝐶

• Lipschitz coefficient

𝑝2𝑡∗(𝑥)
𝑝𝑡(𝑥)

can be large around 𝑡∗ = 𝑛−𝜁.

• Coefficient 𝑡 does not contribute 
for the large interval [𝑡∗, 1].

𝑒
2 ∫

𝑡𝑗

2𝑡𝑗
𝑒𝐿𝑢𝑑𝑢

= 𝑒2 ሚ𝐶 log 2 = 𝑐𝑜𝑛𝑠𝑡.

• Lipschitz coefficient is constant:

• Coefficient 𝑡 can be small around 𝑡 = 𝑡∗, 
which suppresses the complexity term. 

Division of time interval

...𝑡∗

Adapted number 
of B-spline bases
for approximation.

Large number
of B-spline bases

continues.

Figure E.1: The idea of time division for deriving the convergence rate
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