
ResT V2: Simpler, Faster and Stronger

Qing-Long Zhang, Yu-Bin Yang
State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 21023, China
wofmanaf@smail.nju.edu.cn, yangyubin@nju.edu.cn

A Comparison with different MSA variants.

This section provides more results about the effectiveness of the upsampling operation in different
MSA variants under 100 training epochs settings following Section 4.3. As shown in Table 1, MSA
variants with the “downsample-upsample” branch can compete favorably with the standard MSA in
terms of the Top-1 accuracy but with much higher inference throughput.

Table 1: Results of different MSAs. † means the implementation of adding an upsample operation for
SRA[10] or EMSA[14], and ∗ means replacing SRA or EMSA with the standard MSA, leaving other
components unchanged. Inference throughput (images / s) is measured on a V100 GPU, following
[14].

Methods Params FLOPs Throughput Top-1 (%)

PVT-Tiny[10] 13.27M 1.94G 1144 70.46
PVT-MSA-Tiny∗ 11.36M 4.81G 617 72.38
PVT-EMSAv2-Tiny† 13.95M 1.95G 947 72.53
ResTv1-Lite[14] 10.50M 1.44G 1091 74.108
ResTv1-MSA-Lite∗ 10.48M 4.37G 625 75.06
ResTv1-EMSAv2-Lite† 10.66M 1.45G 926 75.04

B Results of Multi-head Interaction Module

In this section, we estimate the role of the Multi-head Interaction Module (short for MHIM). Training
settings are the same as Section 4.3, i.e., under the 100 training epochs settings. As shown in Table 2,
MHIM can significantly improve the Top-1 accuracy with the cost of decreased inference throughput
when the channel dimension of each head dk is smaller. When dk is larger (e.g., 96), the accuracy
improvement is limited. Therefore, we may choose whether to apply MHIM in EMSAv2 according
to different scenarios.

Table 2: Results of short for MHIM. ResTv2-Lite is a shallow ResTv2 variant with blocks num-
ber={2, 2, 2, 2} and C = 64. Inference throughput (images / s) is measured on a V100 GPU,
following [14].

Methods head_dim Params FLOPs Throughput Top-1 (%)

ResTv2-Lite 64 10.66M 1.45G 945 74.54
+MHIM 64 10.66M 1.45G 926(-19) 75.04(+0.5)

ResTv2-Tiny 96 30.43 M 4.10G 826 80.33
+MHIM 96 30.44M 4.10G 792(-34) 80.47 (+0.14)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



C Experimental Settings

C.1 ImageNet pre-training and finetuning settings

We list the settings for training and fine-tuning on ImageNet-1k in Table 3. The settings are used for
our main results (Section 4.2). The fine-tuning starts from the best checkpoint weights obtained in
pre-training.

Table 3: ImageNet-1k training and fine-tuning settings. Mutiple stochastic depth rates (e.g.,
0.1/0.2/0.3/0.5) are for each model (e.g., ResTv2-T/S/B/L) respectively.

configure pre-training fine-tuning
input crop. 2242 3842

optimizer AdamW AdamW
base learning rate 1.5e-4 1.5e-5
weight decay 0.05 1e-8
optimizer momentum β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999

batch size 2048 512
training epoch 300 30
learning rate schedule cosine decay cosine decay
warmup epochs 50 N/A
warmup schedule linear N/A
RandAugment [3] (9, 0.5) (9, 0.5)
label smoothing [9] 0.1 0.1
Mixup [13] 0.8 N/A
Cutmix [12] 1.0 N/A
stochastic depth [5] 0.1/0.2/0.3/0.5 0.1/0.2/0.3/0.5
gradient clip 1.0 1.0
EMA [7] 0.9999 N/A

C.2 Downstream Tasks.

For COCO and ADE20K experiments, we follow the training settings used in ResTv1 [14] and
ConvNeXt [6]. We adopt Detectron2 [11] toolboxes for object detection, and MMSegmentation [2]
toolboxes for semantic segmentation. We use the best model weights (instead of EMA weights) from
ImageNet pre-training as network initialization.

Object Detection on COCO. We utilize multi-scale training, i.e., resizing the input such that the
short side is between 480 and 800 while the longer side is at most 1333, AdamW optimizer with
initial learning rate of 0.0001, weight decay of 0.05, and batch size of 16 (8 V100 GPUs with two
images per GPU) , “×1” schedule (90K iterations with learning rate decayed by ×10 at 60K and
80K steps) for ablation study, and “×3” schedule (270K iterations with learning rate decayed by
×10 at 210K and 250K steps) for main results. We apply standard data augmentation, that is resize,
random flip and normalize. Additionally, we adopt stochastic depth with ratio of 0.1/0.2/0.3 for
ResTv2-T/S/B. All results are reported on the validation set.

Semantic segmentation on ADE20K. We employ the AdamW optimizer with an initial learning
rate of 1.5e-4, a weight decay of 0.05, stage-wise learning rate decay with a ratio of 0.9, and a linear
warmup of 1,500 iterations. Models are trained on 8 GPUs with two images per GPU for 160K
iterations. Stochastic depth with ratio of 0.1/0.2/0.3 for ResTv2-T/S/B. All models are trained on
the standard setting with an input of 512× 512. We report validation mIoU results using multi-scale
testing.

2



D Detailed Architectures

The detailed architecture specifications are shown in Table 4, where an input image size of 224× 224
is assumed for all architectures. “Conv-K_C_S” means convolution layers with kernel size K, output
channel C and stride S. “MLP_C” is the FFN layer with hidden channel 4C and output channel C.
“Ev2_H_R” is the EMSAv2 operation with the number of heads H and reduction ratio R. “C” is 96
for ResTv2-T/S/B, and 128 for ResTv2-L.“PA” [14] is short for pixel-wise attention.

Table 4: Detailed architecture specifications. FLOPs are calculated with image size (224, 224).

Module Output ResTv2-T ResTv2-S ResTv2-B ResTv2-L

stem 56× 56 Patch Embedding: Conv-3_C/2_2, Conv-3_C_2, Conv-1_C_1, PA

stage1 56× 56

[
Ev2_1_8
MLP_96

]
×1

[
Ev2_1_8
MLP_96

]
×1

[
Ev2_1_8
MLP_96

]
×1

[
Ev2_2_8
MLP_128

]
×2

stage2 28× 28

Patch Embedding: Conv-3_2C_2, PA[
Ev2_2_4
MLP_192

]
×2

[
Ev2_2_4
MLP_192

]
×2

[
Ev2_2_4
MLP_192

]
×3

[
Ev2_4_4
MLP_256

]
×3

stage3 14× 14

Patch Embedding: Conv-3_4C_2, PA[
Ev2_4_2
MLP_384

]
×6

[
Ev2_4_2
MLP_384

]
×12

[
Ev2_4_2

MLP_384

]
×16

[
Ev2_8_2

MLP_512

]
×16

stage4 7× 7
Patch Embedding: Conv-3_8C_2, PA[

Ev2_8_1
MLP_768

]
×2

[
Ev2_8_1
MLP_768

]
×2

[
Ev2_8_1
MLP_768

]
×3

[
Ev2_16_1
MLP_1024

]
×2

Classifier Average Pooling, 1000D Fully-Connected Layer

FLOPs 4.0G 5.8G 7.7G 13.5G

E Positional Embedding

In Section ??, we explore three types of positional embedding in ResTv2. Here, we give the
mathematical definition of them. Assume x ∈ Rhw×dm be the input token sequence, where h, w and
dm are the input’s height, width and channel dimensions, respectively.

APE. Let θ ∈ Rn×c be position parameters, then APE[4] can be represented as

x̂ = x+ θ (1)

In APE, θ should be the same size as the input x, i.e., n = h ·w, whatever θ is sinusoidal or learnable.

RPE. RPE applied in this paper is the relative position variant introduced in [8], which is added to
the attention map to represent the structure of inputs (i.e., 2D images). Let Q be the queries, K be
the keys, k be the number of heads, and dk be the head dimension. Then position P can be obtained
by P = Ph + Pw, where Ph ∈ Rk×h′×1×dk and Pw ∈ Rk×1×w′×dk represent the positions along
the height dimension and the width dimension, respectively. The RPE can then be defined as:

Attn(Q,K) = Softmax(
Q(K + P )T√

dk
) (2)

Therefore, RPE can capture both the “content-content” and “content-position” information. However,
P is required to share the same resolution as K, i.e., h′ = h,w′ = w in the standard MSA, and
h′ = h/r, w′ = w/r in EMSAv2, where r is the reduction factor.

PA. PA is one kind of spatial attention that utilizes a simple 2D depth-wise convolution as the
transform function [14]. Thanks to the shared parameters and locality of convolution, PA can tackle
arbitrary lengths of inputs and capture their absolute positions with the help of zero paddings.The
mathematical formulation of PA can be defined as

PA(x) = x · σ(DWConv(x)) (3)

3



where σ(·) is the Sigmoid function adopted to scale the spatial attention weights.

PEG. PEG [1] adopt a 2D depth-wise convolution to obtain position parameters, i.e.,

x̂ = x+DWConv(x) (4)

Similar to PA, PEG can tackle arbitrary lengths of inputs without interpolating.

References
[1] Xiangxiang Chu, Bo Zhang, Zhi Tian, Xiaolin Wei, and Huaxia Xia. Conditional positional encodings for

vision transformers. arXiv preprint arXiv:2102.10882, 2021.
[2] MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and

benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.
[3] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated data

augmentation with a reduced search space. In Advances in Neural Information Processing Systems,
NeurIPS 2020, 2020.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR 2021. OpenReview.net, 2021.

[5] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In 14th European Conference on Computer Vision, ECCV 2016, volume 9908, pages 646–661.
Springer, 2016.

[6] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, 2022.

[7] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855, 1992.

[8] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, pages 16519–16529. Computer Vision Foundation / IEEE, 2021.

[9] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, pages 2818–2826. IEEE Computer Society, 2016.

[10] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and
Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions.
In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, pages 548–558. IEEE,
2021.

[11] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https:
//github.com/facebookresearch/detectron2, 2019.

[12] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, pages 6022–6031. IEEE, 2019.

[13] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In 6th International Conference on Learning Representations, ICLR 2018. OpenReview.net,
2018.

[14] Qinglong Zhang and Yu bin Yang. Rest: An efficient transformer for visual recognition. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, NeurIPS 2021, 2021.

4

https://github.com/open-mmlab/mmsegmentation
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Comparison with different MSA variants.
	Results of Multi-head Interaction Module
	Experimental Settings
	ImageNet pre-training and finetuning settings
	Downstream Tasks.

	Detailed Architectures
	Positional Embedding

