
Appendix for “Unbiased Classification Through
Bias-Contrastive and Bias-Balanced Learning”

Youngkyu Hong†

Naver AI Lab
youngkyu.hong@navercorp.com

Eunho Yang
KAIST

eunhoy@kaist.ac.kr

A Proofs

A.1 Proof of Theorem 1

We consider the data generation process that both target Y and bias B affect the generation of data X
as in Figure A1.

X

Y B

Figure A1: The data generation process of data X where B is a bias, and Y is a target.
Our objective is to train the model to estimate the conditional probability over Pu where Pu is the
data distribution shifted from Ptrain to have the uniform correlation between Y and B (Section 3.3):

Pu(X,Y,B) := Ptrain(X|Y,B)Pu(Y,B), (A.1)

Pu(Y,B) := Pu(Y |B)Ptrain(B) =
1

C
· Ptrain(B). (A.2)

Theorem A.1. (Bias-balanced Regression) Assume the multinomial logistic regression with the
model h(x)[y] = eηy∑

y′ e
η
y′ where ηy is the logit for class y, and the training data distribution

Ptrain(X,Y,B). Let Pu be the data distribution shifted from Ptrain to have the uniform correlation
between Y and B. If the model h estimates the conditional probability over Pu, i.e., h(x)[y] = pu(y|x),
then the estimate of the conditional probability over Ptrain is:

ptrain(y|x) =
exp (ηy + log ptrain(y|b))∑
y′ exp (ηy′ + log ptrain(y′|b))

, (A.3)

and the cross-entropy loss risk associated with h over Ptrain is EPtrain
[L(h(x), y, b)], where

L(h(x), y, b) is defined as follows:

L(h(x), y, b) := − log
exp (ηy + log ptrain(y|b))∑
y′ exp (ηy′ + log ptrain(y′|b))

. (A.4)

Proof. In the data generation process in Figure A1, the conditional probability p(y|x) can be decom-
posed using Bayesian interpretation:

p(y|x) = p(y|x, b) = p(x|y, b)
p(x|b)

p(y|b), (A.5)

†This work was done as a student at KAIST.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

where b is a bias class of x. Here, b is not an explicit input to the model but can be viewed as a latent
variable in the conditional probability as B entirely affects the generation of X .

For the notation simplicity, define ϕj and ϕ̂j :

ϕj := pu(y=j|x, b) = eηj∑C
i=1 e

ηi

, ϕ̂j := ptrain(y=j|x, b) = eη̂j∑C
i=1 e

η̂i

, (A.6)

where C is the number of target classes and η̂j is the modified logit for the prediction on Ptrain that
we will later express using ηj . Then, using the canonical link function of the multinomial logistic
regression,

ηj = log
ϕj

ϕC
, η̂j = log

ϕ̂j

ϕ̂C

. (A.7)

Since we assume pu(x|y, b) = ptrain(x|y, b), by using the decomposition in (A.5),

ϕ̂j = ϕj ·
ptrain(y=j|b)
pu(y=j|b)

· pu(x|b)
ptrain(x|b)

, (A.8)

where pu(y=j|b) = 1
C . Thus, when we apply (A.8) to (A.7),

η̂j = log
ϕj · ptrain(y=j|b) ·K

ϕ̂C

, (A.9)

where K is a constant that does not depend on j. Then, by combining (A.6) and (A.9),

ϕ̂j =
ϕj · ptrain(y=j|b)∑C
i=1 ϕi · ptrain(y=i|b)

=
exp (ηj + log ptrain(y=j|b))∑C
i=1 exp (ηi + log ptrain(y=i|b))

. (A.10)

Therefore, the cross-entropy loss risk associated with h over Ptrain is

EPtrain
[− log ptrain(y|x)] = EPtrain

[L(h(x), y, b)], (A.11)

where L(h(x), y, b) is defined as follows:

L(h(x), y, b) := − log
exp (ηy + log ptrain(y|b))∑
y′ exp (ηy′ + log ptrain(y′|b))

. (A.12)

A.2 Relationship between the BiasCon loss and EnD

Our BiasCon loss shares similar goal with EnD [17], but significantly improves the performance by
replacing the shortcomings of the EnD. The regularization term used in EnD is as follows:

L = − 1

N

∑
i∈I

(
α · 1

|P (i)|
∑

j∈P (i)

zi · zj − β · 1

|N(i)|
∑

j∈N(i)

zi · zj

)
, (A.13)

where α and β are weight hyperparameters, I := {1, ..., N} is the index set of the sampled batch,
P (i) := {j ∈ I : yj = yi, bj ̸= bi} is the index set of positive samples paired with i-th sample,
N(i) := {j ∈ I : bj = bi} is the index set of negative samples paired with i-th sample, zi =
f(xi)/∥f(xi)∥ is a normalized feature of i-th sample extracted from f . The most critical weakness
of the EnD is that even though the model successfully learned the target features without bias features,
the loss term still gives penalty to the negative pairs with the same biases (which are mostly the same
target classes as bias and target are highly correlated).

For the BiasCon loss, if we omit the multiviewed batch, the loss is defined as

L = − 1

N

∑
i∈I

1

|J(i)|
∑

j∈J(i)

log
exp (zi · zj/τ)∑

a∈I\{i} exp (zi · za/τ)
, (A.14)

where J(i) := {j ∈ I : yj = yi, bj ̸= bi} is the index set of positive samples paired with i-th
sample and τ is a temperature hyperparameter. Then, as shown in [18], we can give the following

2

approximation about the contrastive loss on j-th positive sample paired with i-th sample by applying
the limit τ → 0+.

lim
τ→0+

− log
exp (zi · zj/τ)∑

a∈I\{i} exp (zi · za/τ)
(A.15)

= lim
τ→0+

log

[
1 +

∑
a ̸=j

exp ((zi · za − zi · zj)/τ)

]
(A.16)

= lim
τ→0+

log

[
1 +

∑
zi·za≥zi·zj

exp ((zi · za − zi · zj)/τ)

]
(A.17)

= lim
τ→0+

1

τ
max

a
[zi · za − zi · zj , 0]. (A.18)

Therefore, the BiasCon loss gives penalty if there exist negative pairs that are closer than positive pairs.
In other words, we can roughly argue that if the model successfully learned target features without
bias features so that there is no preference among the same target classes with or without the same
bias features in terms of cosine distance, then the BiasCon loss is 0. This way, the shortcomings of the
EnD can be solved. The results in Table A11 show that the BiasCon loss without multiviewed batch or
oversampling strategy (row named BiasCon−Aug.− Samp.) outperforms EnD in BiasedMNIST [1]
dataset in high correlation settings. In conclusion, the BiasCon loss improves over the EnD by fixing
the shortcomings explained above.

A.3 Intuition behind BiasCon and SoftCon loss

Using the fact that the contrastive loss follows the formulation of InfoNCE [14], the estimator of the
mutual information, we can give a probabilistic interpretation of the BiasCon loss. For the brevity,
we omit the multiviewed batch used in the BiasCon loss. Then, the formulation of the BiasCon loss
is as follows:

L = − 1

N

∑
i∈I

1

|J(i)|
∑

j∈J(i)

log
exp (zi · zj/τ)∑

a∈I\{i} exp (zi · za/τ)
, (A.19)

where I := {1, ..., N} is the index set of the sampled batch, J(i) := {j ∈ I : yj = yi, bj ̸= bi} is the
index set of positive samples paired with i-th sample, zi = f(xi)/∥f(xi)∥ is a normalized feature
of i-th sample extracted from f , the network up to the penultimate layer, and τ is a temperature
hyperparameter. Now, we consider the function u(z1, z2) where u = 1 if x1 and x2 have same target
class but different bias classes and the probability function P (z1, z2) =

u(z1,z2)∑
(i,j) u(z1i,z2j)

. Then, if we

define the random variable (Z1, Z2) ∼ P , InfoNCE estimator of I(Z1;Z2), is defined as

I(Z1;Z2) ≥ E

[
1

N

N∑
i=1

log
h(z1i, z2i)

1
N

∑
j h(z1i, z2j)

]
, (A.20)

where the expectation is over N independent samples (z1i, z2j) from (Z1, Z2), and h is the critic
function. If we consider the critic function h(z1, z2) := exp (zi · zj/τ), we can see that the absolute
value of the BiasCon loss is the same as InfoNCE estimator of I(Z1;Z2) with a constant difference.
Thus, we can interpret that minimizing the BiasCon loss is equal to inducing the model to maximize
the mutual information I(Z1;Z2), which are the normalized features of samples from the same target
class but different bias classes. Therefore, the feature extractor f learns to extract the target features
while discarding the bias features.

We can give a similar probabilistic interpretation of the SoftCon loss. Likewise, we omit the
multiviewed batch used in the SoftCon loss. Then, the formulation of the SoftCon loss is

L = − 1

N

∑
i∈I

1

C(i)

∑
j∈J(i)

dcos(w(xi), w(xj)) · log
exp (zi · zj/τ)∑
a∈I exp (zi · za/τ)

, (A.21)

where I , zi and τ inherit the definitions in BiasCon loss, J(i) := {j ∈ I : yj = yi}, w(xi) is a
feature embedding of sample xi extracted from the penultimate layer of the bias-capturing model,

3

dcos(u, v) := 1 − u·v
∥u∥∥v∥ is a cosine distance and C(i) =

∑
j∈J(i) dcos(w(xi), w(xj)). Similar to

the BiasCon loss case, we consider the function u(z1, z2) ∝ dcos(w(x1), w(x2)) only for x1 and x2

of the same target class and the probability function P (z1, z2) =
u(z1,z2)∑

(i,j) u(z1i,z2j)
. Then, if we define

the random variable (Z1, Z2) ∼ P , InfoNCE estimator of I(Z1;Z2), is defined as

I(Z1;Z2) ≥ EP

[
1

N

N∑
i=1

log
h(z1i, z2i)

1
N

∑
j h(z1i, z2j)

]
(A.22)

∝ EUnif

[
1

N

N∑
i=1

dcos(w(x1i), w(x2i)) · log
h(z1i, z2i)

1
N

∑
j h(z1i, z2j)

]
, (A.23)

where the first expectation is over N independent samples (z1i, z2j) from (Z1, Z2), the second
expectation is over N independent samples (z(x1i, z(x2j)) from (X1, X2) ∼ Unif, Unif is a uniform
distribution over training samples, and h is the critic function. If we again consider the critic function
h(z1, z2) := exp (zi · zj/τ), we can see that the absolute value of the SoftCon loss is the same as
InfoNCE estimator of I(Z1;Z2) with a constant difference. Thus, we can similarly interpret that
minimizing the SoftCon loss is equal to inducing the model to maximize the mutual information
I(Z1;Z2). Therefore, the feature extractor f learns to extract the features that are orthogonal to the
bias-capturing model, i.e., if two samples are close in the feature space of the bias-capturing model,
then two samples are far from each other in the feature space of the main model.

4

B Full algorithm

We show the full algorithm of training with the BiasCon and BiasBal loss for the known bias label
case and training with SoftCon loss for the unknown case.

Algorithm 1 Training with Bias-Contrastive loss

Input: Dataset D = {(xi, yi, bi)}, number of classes Nc, number of bias classes Nb, random
augmentation a(x), batch size N and training epochs T .
Output: Debiased model hθT

For each y ∈ {1, . . . , Nc} and b ∈ {1, . . . , Nb}, calculate p(b|y)
Calculate sampling frequency Q(i) for each i-th sample
Initialize θ0

for t← 1 to T do
Dt

CE ← {xi : xi ∼ Unif(D)}
Dt

BC ← {xi : xi ∼ Q(i)}

Dt
MV ←

2⋃
j=1

{a(xi) : xi ∈ Dt
BC}

L← LCE(Dt
CE) + LBiasCon(Dt

MV)
θt ← θt−1 − η∇θL

end for

Algorithm 2 Bias-Balanced Regression

Input: Dataset D = {(xi, yi, bi)}, number of classes Nc, number of bias classes Nb, batch size N
and training epochs T .
Output: Debiased model hθT

For each y ∈ {1, . . . , Nc} and b ∈ {1, . . . , Nb}, calculate p(y|b)
Initialize θ0

for t← 1 to T do
Dt ← {xi : xi ∼ Unif(D)}
θt ← θt−1 − η∇θLBiasBal(Dt)

end for

5

Algorithm 3 Training with Soft Bias-Contrastive loss

Input: Dataset D = {(xi, yi)}, bias-capturing model gθB , bias-capturing model training epochs
TB , anchor samples Na, number of classes Nc, random augmentation a(x), batch size N and
training epochs T .
Output: Debiased model hθT

Initialize θ0B
for t← 1 to TB do
Dt ← {xi : xi ∼ Unif(D)}
θtB ← θt−1

B − η∇θBLCE(Dt)
end for
for y ∈ {1, . . . , Nc} do

Randomly select Na anchor samples {x1, . . . , xNa
} from Dy for calculating t(x)

for x ∈ Dy do

t(x)←
Na∑
i=1

dcos(w(x), w(xi))

end for
end for
Calculate sampling frequency Q(i) for each i-th sample using t(x)
Initialize θ0

for t← 1 to T do
Dt

CE ← {xi : xi ∼ Unif(D)}
Dt

BC ← {xi : xi ∼ Q(i)}

Dt
MV ←

2⋃
j=1

{a(xi) : xi ∈ Dt
BC}

L← LCE(Dt
CE) + LSoftCon(Dt

MV)
θt ← θt−1 − η∇θL

end for

(a) BiasedMNIST (b) CelebA (c) UTKFace

Figure A2: Example samples of BiasedMNIST [1], CelebA [10] and UTKFace [22]. (a) In BiasedM-
NIST, each digit is correlated with certain background color. (b) CelebA with target Blonde and bias
Gender. (c) UTKFace with target Gender and bias Age.

C Experimental configurations

In this section, we explain the details of the experimental configurations used for all experiments in
Section 4. Experiments are conducted with three different seeds and with the NVIDIA V100 GPU.
We use Naver Smart Machine Learning (NSML) platform [16] to manage experiments.

C.1 BiasedMNIST for known bias label case

We use the BiasedMNIST implementation of [1]. The data of class y has the background color of
b(y) with the probability of ρ and has random background color among the rest colors with the
probability of (1−ρ). The example sample of each class with its biased background color is shown in
Figure A2a. The size of the image is 28× 28, and the batch size is 128. For the BiasCon loss, we first
sample the batch of size 64 and generate multiviewed batch with random augmentation of (a) random
rotation with maximum 20◦, (b) random color jitter (change in brightness, contrast and saturation)
with the factor of 0.4 and with the probability of 0.8. Note that we only apply the augmentation for
the generation of multiviewed batch (Algorithm 1). The base architecture we use for the experiment

6

Table A1: Network architecture used for BiasedMNIST [1]. The kernel is written in the order of
H ×W × C. We use k = 7, p = 2 for the main model and k = 1, p = 0 for the bias-capturing
model where k is the kernel size and p is the padding size used for the convolution.

Layer Kernel Padding Batch Norm Activation

Conv k × k×16 p ⃝ ReLU
Conv k × k×32 p ⃝ ReLU
Conv k × k×64 p ⃝ ReLU
Conv k × k×128 p ⃝ ReLU

AvgPool - - - -
FC - - - Softmax

Table A2: Number of training samples used for
CelebA [10].

BlondHair HeavyMakeup

0 1 0 1

Male 0 1558 18279 25789 49804
1 53577 1098 54460 163

Table A3: Number of training samples used for
UTKFace [22].

Age Race

0 1 0 1

Gender 0 8229 822 4354 435
1 134 1346 534 5344

is explained in Table A1, where we use the kernel size of k = 7 and the padding size of p = 2. We
use the Adam [9] optimizer with the learning rate of 0.001 for BiasCon loss and 0.0001 for BiasBal
loss, hyperparameters β1 = 0.9, β2 = 0.999 and weight decay rate of 0.0001. We decay the learning
rate by 0.1 at 1/3 and 2/3 of the total training epochs. All experiments are trained for 80 epochs. We
use the temperature τ = 0.07 for all experiments and the rest of the hyperparameters are reported
in Table A4 for the BiasCon loss and in Table A5 for the joint use of BiasCon and BiasBal losses.
We randomly sample 10000 images from training set and use random background color (without
correlation) to construct validation set. The average training time with NVIDIA V100 GPU is 36m
1s for the BiasBal loss and 58m 59s for the BiasCon loss.

C.2 CelebA

Following the experimental configuration of [13], we train a binary classifier that classifies whether
the input image has the target attribute or not. We use the HeavyMakeup and BlondHair attributes
as target attributes and Male as a bias attribute. However, for the task of classifying BlondHair
attribute, both bias classes are skewed toward the BlondHair attribute. This means that the model
cannot decide whether the class has BlondHair attribute or not by looking at the bias features. Thus,
we intentionally truncate a part of the dataset and make each target class to be biased toward a certain
bias class. The number of training samples used for each task is available in Table A2. The size of the
image is 224×224, and the batch size is 128. For the BiasCon loss, we first sample the batch with the
size 64 and apply additional random augmentations to generate the multiviewed batch (Algorithm 1).
By default, we apply the augmentation of random flip. For the BiasCon loss, we additionally apply (a)
random resized crop, (b) random color jitter (change in brightness, contrast, and saturation) with the
factor of 0.4 and with the probability of 0.8, and (c) random grayscale conversion with the probability
of 0.2. Note that we only apply the additional augmentation for the generation of the multiviewed
batch. We use the ResNet18 [4] model pretrained on the ImageNet [15] dataset. We use the Adam [9]
optimizer with the learning rate of 0.001, hyperparameters of β1 = 0.9, β2 = 0.999, and weight
decay rate of 0.0001. For the HeavyMakeup attribute classification task, we train the model for 40
epochs and BlondHair attribute classification task, we train the model for 10 epochs as the model
converges much faster in this task. We decay the learning rate by 0.1 at 1/3 and 2/3 of the total
training epochs. We use the temperature τ = 0.07 for all experiments. We report the hyperparameters
in Table A4 for the BiasCon loss, and in Table A5 for the joint use of BiasCon and BiasBal losses.
The average training time with NVIDIA V100 GPU is 2h 23m 37s / 21m 7s for the BiasBal loss and
4h 16m 19s / 37m 32s for the BiasCon loss for HeavyMakeup / Blonde attribute classification task,
respectively.

7

Table A4: Hyperparameter α and γ used for the BiasCon loss.

Param
BiasedMNIST CelebA UTKFace

0.999 0.997 0.995 0.99 0.95 0.9 Blonde Makeup Race Age

α 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
γ 10 10 10 10 10 10 30 50 10 10

Table A5: Hyperparameter α and γ used for the joint use of BiasCon and BiasBal losses.

Param
BiasedMNIST CelebA UTKFace

0.999 0.997 0.995 0.99 0.95 0.9 Blonde Makeup Race Age

α 1 1 1 1 1 1 1 1 1 1
γ 10 10 10 10 10 10 30 50 10 10

Table A6: Hyperparameter α and γ used for the SoftCon loss.

Param
BiasedMNIST ImageNet

0.999 0.997 0.995 0.99 0.95 0.9 -

α 0.01 0.01 0.01 0.01 0.01 0.01 1
γ 50 50 50 50 50 50 0

C.3 UTKFace

We also experiment on the UTKFace [22] where it has meta-information about the Race, Age, and
Gender of the person in the image. We first assign bias classes using Age and Race attributes.
Specifically, for the Age attribute, we divide samples into two groups; bias class 0 for samples
with age ≥ 20 and bias class 1 for samples with age ≤ 10. For the Race attribute, we also divide
samples into two groups; bias class 0 for samples with race=white and bias class 1 for samples with
race ̸= white. The target class is divided using Gender attribute, where target class 0 is male, and
target class 1 is female. We then construct a biased dataset for the gender classification task, which
is biased toward Age or Race bias class by truncating a portion of samples. The number of training
samples used for each task is available in Table A3. The size of the image is 64× 64, and the batch
size is 128. By default, we apply the augmentation of (a) random resized crop and (b) random flip.
For the BiasCon loss, we first sample the batch with the size of 64 and generate the multiviewed
batch by additionally applying (a) random color jitter (change in brightness, contrast, and saturation)
with the factor of 0.4 and with the probability of 0.8, and (b) random grayscale conversion with the
probability of 0.2 (Algorithm 1). We use the ResNet18 [4] model pretrained on the ImageNet [15]
dataset. Note that we only apply the additional augmentation for the generation of multiviewed batch
(Algorithm 1). We use the Adam [9] optimizer with the learning rate of 0.001, hyperparameters of
β1 = 0.9, β2 = 0.999, and weight decay rate of 0.0001. For both tasks, we train the model for 20
epochs. We decay the learning rate by 0.1 at 1/3 and 2/3 of the total training epochs. We use the
temperature τ = 0.07. We report the hyperparameters in Table A4 for the BiasCon loss, and in Table
A5 for the joint use of BiasCon and BiasBal losses. The average training time with NVIDIA V100
GPU is 3m 24s / 4m 4s for the BiasBal loss and 6m 3s / 5m 31s for the BiasCon loss for Age / Race
bias attribute task, respectively.

C.4 BiasedMNIST for unknown bias label case

We mostly follow the experimental setup explained in C.1. However, instead of using the bias label,
we utilize the auxiliary bias-capturing model with the same architecture in Table A1 but with the
kernel size k = 1 and the padding size p = 0. In the training with SoftCon loss, the bias-capturing
model is pretrained for 80 epochs. In addition, for the sampling frequency calculation, we randomly

8

select 1,024 samples for each class as explained in Section 3.4 (Algorithm 3). We use the temperature
τ = 0.07 and the rest of the hyperparameters are shown in Table A6. The average training time with
NVIDIA V100 GPU is 1h 1s for the SoftCon loss.

C.5 ImageNet

We use the 9-Class ImageNet [6] with 9 super-classes. Most of the experimental configurations
follow [1]. We use the ResNet18 [4] model without any pretraining. For the auxiliary bias-capturing
model, we use the BagNet18 [2]. In the training with SoftCon loss, we pretrain the bias-capturing
model for 120 epochs (Algorithm 3). Following [1], we use the Adam [9] optimizer with learning
rate of 0.001, hyperparameters β1 = 0.9, β2 = 0.999, and weight decay rate of 0.0001 with cosine
annealing learning rate scheduler [11]. The size of the image is 224× 224, and the batch size is 128.
By default, we apply the augmentation of (a) random resized crop, (b) random flip. For the SoftCon
loss, we additionally apply (a) random color jitter (change in brightness, contrast, and saturation)
with the factor of 0.4 and with the probability of 0.8, and (b) random grayscale conversion with the
probability of 0.2. Note that we only apply the additional augmentation for the generation of the
multiviewed batch (Algorithm 3). For all methods, we train the model for 120 epochs. We use the
temperature τ = 0.07 and Table A6 shows the rest of the hyperparameters used for the SoftCon
loss. Interestingly, the oversampling with sampling frequency Q(i) does not help for the ImageNet
training, thus we do not apply the oversampling in this experiment. For the calculation of the unbiased
accuracy, we use the texture bias labels directly copied from [1]1. We also use the ImageNet-A [5]
dataset as an additional test set. The average training time with NVIDIA V100 GPU is 7h 23m 34s
for the SoftCon loss.

D Additional experiments

D.1 Robustness of the SoftCon loss on the performance of the bias-capturing model

We evaluate the dependency of the SoftCon loss to the performance of the bias-capturing model with
the BiasedMNIST [1] dataset. To check this, we first vary the performance of the bias-capturing
model by constructing deteriorated bias-capturing model with the same architecture to Table A1, but
with the kernel size of k = 7 and the padding size of p = 2. Large kernel size prevents the model
from focusing only on the local feature, deteriorating the bias-capturing ability. The performance of
the deteriorated bias-capturing model is measured by the bias accuracy. Bias accuracy is an accuracy
measured with label y−1(b), the target class that is highly correlated with the bias class of the sample.
If the model only uses the bias features in the prediction, the model will output the highly correlated
target class y−1(b) for the input of samples with the bias class b, and thus the bias accuracy will be
high. To vary the bias-capturing performance of the deteriorated bias-capturing model, we train the
model with different target-bias correlation ρ ∈ {0.99, 0.995, 0.997} of BiasedMNIST dataset. The
bias-capturing performance of the model will be better when it is trained with a higher target-bias
correlation. Here, we report unbiased accuracy of the final model after the full training.

Table A7 shows the performance of the SoftCon loss trained based on the deteriorated bias-capturing
models. As shown in the second row of Table A7, the bias accuracy of the deteriorated bias-capturing
model is 53.0% when it is trained on the dataset with ρ = 0.997 and gets down to 21.4% when
trained on the dataset with ρ = 0.99. For the highly correlated cases with ρ ∈ {0.997, 0.999}, even
if the bias-capturing model is worst broken, the SoftCon loss still retains an unbiased accuracy of
43.2%, much higher than the previous baselines. This indicates that our SoftCon loss is robust to
the noise originated from the failure of the bias-capturing model. However, when the dataset bias is
less severe, the model suffers from the poor bias-capturing ability. We expect that this is because the
same high weight is applied to the SoftCon loss even when the bias-capturing model is corrupted. We
believe that performing a hyperparameter search by constructing a small bias-labeled validation set
can address this issue.

1https://github.com/clovaai/rebias

9

https://github.com/clovaai/rebias

Table A7: Performance dependency of the SoftCon loss on the performance of the bias-capturing
model. We measure the unbiased accuracy evaluated on the BiasedMNIST [1] dataset with various
target-bias correlations. Performance of the deteriorated bias-capturing model is measured by the bias
accuracy and reported in the second row (values under ‘Bias-capturing model accuracy’). Reported
values are mean and standard error over three independent runs with different seeds.

Corr ReBias [1] LfF [13] SoftCon
Bias-capturing model accuracy

53.0 34.7 21.4

0.999 26.5±1.4 15.3±2.9 65.0±3.2 47.8±1.2 41.3±0.6 43.2±1.0

0.997 65.8±0.3 63.7±20.3 88.6±1.0 68.8±1.9 64.3±0.7 58.5±1.1

0.995 75.4±1.0 90.3±1.4 93.1±0.2 79.1±2.4 73.0±1.3 68.9±1.8

0.99 88.4±0.6 95.1±0.1 95.2±0.4 91.0±1.3 85.6±2.1 85.2±0.6

0.95 97.0±0.0 97.7±0.2 98.0±0.1 96.8±0.3 94.3±0.9 92.0±1.2

0.9 98.1±0.1 96.1±1.1 98.4±0.1 98.0±0.2 96.0±1.9 96.6±0.4

Table A8: Comparison of the design choice of separately and jointly using the BiasCon loss with the
cross-entropy loss. Design type ‘Separate’ means the separate training of the feature representation
and the classifier head as in [8], and ‘Joint’ means our proposed way of using the BiasCon loss. We
report the unbiased accuracy and standard error of two methods on the BiasedMNIST [1] dataset.

Design type 0.999 0.997 0.995 0.99 0.95 0.9

Separate 85.4±1.0 90.1±0.8 92.4±0.9 93.4±1.2 97.9±0.1 93.7±0.5

Joint (Ours) 94.5±0.4 97.0±0.0 97.4±0.1 97.7±0.1 98.6±0.1 98.9±0.1

D.2 Comparison of performance according to design choice of BiasCon loss

In [8], the SupCon loss is first solely used in feature representation training, then the fully-connected
(FC) layer head is trained with the cross-entropy loss upon the frozen feature representation. However,
we use the BiasCon loss as a regularizer that is jointly used with the cross-entropy loss so that the
signal to incorporate all of the same target class samples is given during the feature representation
training. Here, we compare the performance of two design choices on BiasedMNIST [1].

We report the performance of two design choices in Table A8. The separate use of the BiasCon
and cross-entropy losses shows much worse unbiased accuracy in all correlations. This shows
that the BiasCon loss helps the debiasing, but itself is not powerful enough to train a good feature
representation. The result validates the design choice of ours, which uses the BiasCon loss jointly
with the cross-entropy loss.

We further investigate on the loss design of the BiasCon loss. As explained in Section A.2, the
BiasCon loss regularizes the model from having a feature space that same target and same bias
samples are closer than the same target and different bias samples. To achieve this, we set the same
target and same bias samples as a negative pairs of the contrastive loss. However, some might concern
that this might exacerbate the effect of the cross-entropy loss on learning target features. To address
this concern, we assess some variants that can induce similar effect.

• Loss variant 1: positive pair - same class / negative pair - different class but same bias

• Loss variant 2: positive pair - same class but different bias / negative pair - different class

• Loss varaint 3: Train a feature representation with two contrastive losses; Loss 1: positive
pair - same class / negative pair - diff class, Loss 2: positive pair - different bias / negative
pair - same bias, then train the classifier head upon the frozen representation.

Table A9 shows the results of each loss variant on BiasedMNIST dataset. Poor performance of the
first loss variant is expected since it cannot give enough penalty as positive pairs contain most of the
same bias samples (as targets and biases are highly correlated) while the negative pairs contain much
fewer same bias samples. The second loss variant removes the same class samples from the negative
pairs. This loss shows a debiasing effect to some extent as it induces the same class but different bias

10

Table A9: Comparison of the alternative loss design choices of the BiasCon loss. We report the
unbiased accuracy and standard error of two methods on the BiasedMNIST [1] dataset with various
target-bias correlations.

Loss type 0.999 0.997 0.995 0.99

Variant 1 11.6±0.2 20.5±1.5 26.8±2.9 35.7±3.0

Variant 2 81.2±1.5 83.8±0.1 85.3±1.3 85.9±2.2

Variant 3 60.3±1.2 77.9±0.4 86.1±0.8 89.9±0.8

BiasCon 94.5±0.4 97.0±0.0 97.4±0.1 97.7±0.1

Table A10: Unbiased accuracy and standard error of baseline trained with/without BiasBal loss on
BiasedMNIST [1].

Method
BiasedMNIST

0.999 0.997 0.995 0.99 0.95 0.9

ReBias [1] 26.5±1.4 65.8±0.3 75.4±1.0 88.4±0.6 97.0±0.0 98.1±0.1

ReBias + BB 45.5±2.3 88.1±0.9 92.5±0.2 95.5±0.2 98.0±0.1 98.5±0.1

EnD [17] 59.5±2.3 82.7±0.3 94.0±0.6 94.8±0.3 98.3±0.1 98.7±0.0
End + BB 77.7±0.3 84.7±1.3 88.6±0.2 93.6±0.1 97.8±0.0 98.3±0.1

samples to be closer than the different class samples, but it still cannot penalty the same class and
same bias samples being closer than the same class but different bias samples. The last loss variant
does not use the cross-entropy loss on training the feature representation and counts on the model’s
ability to find the sweet spot that is expected to be an unbiased feature representation. However, even
if the model only learned the target features, the second contrastive loss keeps on giving a penalty to
the model since the different bias samples are mostly the different class samples. Therefore, the final
performance of the model is worse than BiasCon loss.

D.3 Joint training of baselines with the BiasBal loss

Our proposed BiasBal loss can replace the cross-entropy loss and it shows high performance on
various datasets. The BiasBal loss can also improve the baseline methods that use the cross-entropy
loss. To check this, we jointly use the BiasBal loss with EnD [17] and ReBias [1] which are previously
the state-of-the-art debiasing methods of the known/unknown bias label cases. Note that ReBias is a
method that does not use the bias labels, but here we assume using it on the known bias label case and
replace the cross-entropy loss with BiasBal loss in the ReBias training. We evalute the performance
of joint use of the BiasBal loss on the BiasedMNIST [1]. For ReBias, we report the test accuracy
of the last epoch, and for EnD, we report the test accuracy of the epoch with the highest validation
accuracy.

Table A10 shows the unbiased accuracy of the baseline methods trained with the BiasBal loss. For
ReBias, joint use of the BiasBal loss improves the performance of the baseline method for all cases.
However, BiasBal loss is not helpful for EnD loss in most cases. We suspect that this is due to the
hyperparameter settings of the End+BB loss. For End+BB loss, we use the same hyperparameters
reported in the original EnD paper [7], which are results of the rigorous hyperparameter search, and
we only search for the weight hyperparameter applied to EnD which balances its effect with the
BiasBal loss. However, we find that EnD is very sensitive to the hyperparameter settings, and thus
we expect that the same hyperparameters do not work when it is jointly used with the BiasBal loss.

D.4 Ablation study of the BiasCon loss

In order to check whether the effectiveness of our method indeed comes from our bias-contrastive
framework, we do the ablation study on the BiasCon loss. We first assess the removal of the
augmentation and the multiviewed batch. Upon that, we also remove the oversampling used for the

11

Table A11: Ablation study of BiasCon loss. We first remove the additional augmentation and
multiviewed batch. We then remove the oversampling with Q(i). We report the unbiased accuracy
and standard error on the BiasedMNIST [1] dataset with various target-bias correlations.

Method 0.999 0.997 0.995 0.99 0.95 0.9

BiasCon + BiasBal 94.0±0.6 97.3±0.1 97.7±0.1 98.1±0.1 98.9±0.0 99.3±0.0
BiasCon 94.5±0.4 97.0±0.0 97.4±0.1 97.7±0.1 98.6±0.1 98.9±0.1

BiasCon− Aug. 89.4±0.5 93.8±0.1 94.6±0.4 96.3±0.2 98.0±0.1 98.4±0.1

BiasCon− Aug.− Samp. 86.6±1.2 95.4±0.1 96.2±0.1 97.6±0.0 97.8±0.1 98.2±0.0

EnD [17] 59.5±2.3 82.7±0.3 94.0±0.6 94.8±0.3 98.3±0.1 98.7±0.0

Table A12: The unbiased accuracy (UA), bias-conflict accuracy (BA), equalized odds (EO), and
demographic parity (DP) of the model trained on the UTKFace [22] dataset. We compare with
an additional fairness baseline LAFTR [12] with target fairness criteria, DP and EO. For better
comparison, we scale DP and EO by 100, and report % value.

Bias Metric Vanilla DI [19] LAFTR-DP [12] LAFTR-EO [12] BiasCon BiasBal BC+BB

Race

UA (↑) 87.4±0.3 88.9±1.2 82.1±0.7 82.1±0.6 90.3±0.2 90.4±0.3 91.0±0.2
BA (↑) 79.1±0.3 89.1±1.6 83.3±1.1 83.6±0.1 88.8±0.5 89.9±0.6 89.2±0.1

EO (↓) 16.5±0.3 1.4±0.6 3.6±1.0 3.0±1.3 3.1±0.6 1.3±0.3 3.5±0.2

DP (↓) 21.7±0.3 5.1±1.0 2.5±1.8 1.9±1.1 8.7±0.5 6.5±0.4 9.2±0.3

Age

UA (↑) 72.3±0.3 75.6±0.8 67.4±0.5 64.7±0.9 75.7±0.2 78.8±0.4 79.1±0.3
BA (↑) 46.5±0.2 60.0±0.2 41.2±0.5 43.2±2.5 61.7±0.5 76.7±3.2 71.7±0.8

EO (↓) 53.8±0.2 33.3±1.7 54.1±1.7 44.9±3.0 29.3±0.8 30.2±0.8 28.1±1.1
DP (↓) 54.8±0.2 34.5±1.4 54.8±1.8 45.2±2.9 31.5±0.7 9.8±3.9 18.7±1.3

batch sampling of the BiasCon loss, which is solely applying the contrastive loss. We evaluate the
ablations of the BiasCon loss components on the BiasedMNIST [1] dataset.

We report the results in Table A11. As explained in Section A.2, the contrastive loss (row named
BiasCon−Aug.− Samp.) itself is very effective, outperforming the previous state-of-the-art in most
cases. Upon that, the oversampling strategy (row named BiasCon−Aug.) is critical for the case with
a high target-bias correlation (ρ = 0.999), but the gain decreases or may adversely impact when the
correlation is not very high. These results are expected because when the correlation decreases, a
single batch contains enough positive pairs, diminishing the gain of oversampling. Moreover, the
adverse impact that oversampling can bring is that the model focuses on learning features that are
only useful for the subset of the dataset and fails to learn more general features. If we utilize the
augmentation and multiviewed batch (our proposed BiasCon loss), it remedies the shortcomings of
the oversampling as it offers more diverse views of the oversampled data, and thus the model can
learn more useful and generalized invariances.

D.5 Comparison with fairness baselines

Learning fair representation [3, 12, 21] is highly related topic to the model debiasing problem. These
works define various criteria for group fairness of the model prediction. Two representative fairness
criteria are the following [20].

• Demographic parity (DP): The classifier prediction Ŷ satisfies the demographic parity
with respect to sensitive attributes S if Ŷ ⊥⊥ S. The metric to measure the quality of the
demographic parity is:

∆DP := |P (Ŷ = 1|S = 1)− P (Ŷ = 1|S = 0)|. (D.1)

• Equalized odds (EO): The classifier prediction Ŷ satisfies the demographic parity with
respect to sensitive attributes S if (Ŷ ⊥⊥ S) | Y . The corresponding metric is:

∆EO := Ey

[
|P (Ŷ = 1|S = 1, Y = y)− P (Ŷ = 1|S = 0, Y = y)|

]
. (D.2)

12

To measure the fairness of the prediction of the debiased model, we measure DP and EO of our
proposed methods and baselines on UTKFace [22] dataset. We also compare with LAFTR [12], a
baseline method for learning fair representation. LAFTR proposes an adversarial training scheme
which directly optimizes the fairness criterion (DP or EO). Note that we omit the decoder loss of
LAFTR as it requires a large additional decoder model to reconstruct an image. The results in
Table A12 show that our proposed BiasCon and BiasBal losses fairly induce the fair representation
learning, but unlike the results on the accuracy measures, they do not outperform the other baselines
in the Race task. LAFTR-DP and LAFTR-EO show good EO and DP results in the Race task, but
both methods result in worse unbiased accuracy than the vanilla model. This implies the trade-off
between accuracy and the fairness criteria. Finally, different trends of EO, DP, and two accuracy
measures indicate the importance of the evaluation with diverse metrics.

13

References
[1] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning

de-biased representations with biased representations. In International Conference on Machine
Learning, pages 528–539. PMLR, 2020.

[2] Wieland Brendel and Matthias Bethge. Approximating CNNs with bag-of-local-features models
works surprisingly well on imagenet. In International Conference on Learning Representations,
2019.

[3] Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa A. Weis, Kevin Swersky, Toniann
Pitassi, and Richard S. Zemel. Flexibly fair representation learning by disentanglement. In
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 1436–1445. PMLR, 2019.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[5] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural
adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 15262–15271, June 2021.

[6] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. In NeurIPS, pages
125–136, 2019.

[7] Ren Jiawei, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for
long-tailed visual recognition. Advances in Neural Information Processing Systems, 33, 2020.

[8] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in Neural
Information Processing Systems, 33, 2020.

[9] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[10] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[11] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

[12] David Madras, Elliot Creager, Toniann Pitassi, and Richard S. Zemel. Learning adversarially fair
and transferable representations. In International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 3381–3390, 2018.

[13] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from
failure: Training debiased classifier from biased classifier. In Advances in Neural Information
Processing Systems, 2020.

[14] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[16] Nako Sung, Minkyu Kim, Hyunwoo Jo, Youngil Yang, Jingwoong Kim, Leonard Lausen,
Youngkwan Kim, Gayoung Lee, Donghyun Kwak, Jung-Woo Ha, et al. Nsml: A machine
learning platform that enables you to focus on your models. arXiv preprint arXiv:1712.05902,
2017.

14

[17] Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. End: Entangling and disentan-
gling deep representations for bias correction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 13508–13517, June 2021.

[18] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2495–2504,
2021.

[19] Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, Kyle Genova, Prem Nair, Kenji Hata,
and Olga Russakovsky. Towards fairness in visual recognition: Effective strategies for bias
mitigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[20] Renzhe Xu, Peng Cui, Kun Kuang, Bo Li, Linjun Zhou, Zheyan Shen, and Wei Cui. Algo-
rithmic decision making with conditional fairness. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2125–2135, 2020.

[21] Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork. Learning
fair representations. In International Conference on Machine Learning, volume 28 of JMLR
Workshop and Conference Proceedings, pages 325–333, 2013.

[22] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adver-
sarial autoencoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

15

	Proofs
	Proof of Theorem 1
	Relationship between the BiasCon loss and EnD
	Intuition behind BiasCon and SoftCon loss

	Full algorithm
	Experimental configurations
	BiasedMNIST for known bias label case
	CelebA
	UTKFace
	BiasedMNIST for unknown bias label case
	ImageNet

	Additional experiments
	Robustness of the SoftCon loss on the performance of the bias-capturing model
	Comparison of performance according to design choice of BiasCon loss
	Joint training of baselines with the BiasBal loss
	Ablation study of the BiasCon loss
	Comparison with fairness baselines

