
Published as a conference paper at ICLR 2023

A TECHNICAL DETAILS

A.1 HYPER-PARAMETER CHOICES

Training Hyper-parameters. For data preprocessing, we split each dataset into 50K training data
and 10K validation data. We use the training data directly as query data Xq, and its augmented
version as positive data Xk+ . We use the same augmentation pipeline as Chen et al. (2020b). For the
backbone model, we remove the last fully-connected layer and replace it with a MLP head consisting
of two larger fully connected layers of 1024 neurons. To fit well with small batch size training, we
replace the batch normalization layers by group normalization layers and set the number of channels
per group to 4 while keeping the minimum number of groups to 1 if the number of channels is less
than 4. We also use the weight standardization technique (Qiao et al., 2019) in combination with
group normalization for better performance (Kolesnikov et al., 2020).

At the server-side, we use a feature memory of 6,000 negative keys that is implemented as a First-In-
First-Out (FIFO) queue, and we update it by pushing newly generated positive keys at every training
step. For contrastive loss calculation, we use the symmetric contrastive loss calculation introduced in
Moco-V3 (Chen et al., 2021), where the position of query and positive keys are swapped in Eq. (1),
and the new loss takes the form of (LQ,K,N + LK , Q,N)/2. For model updating, we update the
online model of both client-side and server-side model with the SGD optimizer with 0.06 initial
learning rate, 0.9 momentum and 0.0005 weight decay. We schedule the learning rate using the cosine
annealing trick for both client-side and server-side models. The momentum model update is done
through the moving average mechanism in He et al. (2020). According to previous study Chen et al.
(2020b), the training accuracy converges with extensive long training (i.e. >800 epochs), however,
such long training session is impractical for collaborative learning setting. Thus, we set the number
of epochs to 200 to maximize time and performance tradeoff. At the end of each epoch, we save the
model and perform a k-nearest-neighbor (knn) validation using the 20% validation dataset. Finally,
we use the saved model that has the best knn accuracy to perform the final linear probe evaluation.

Evaluation Hyper-parameters. For the knn validation, we feed the validation dataset and use the
normalized feature output of the backbone (together with the MLP head) and follow the implemen-
tation in Wu et al. (2018) to get the accuracy. For the linear probe evaluation, we follow exactly
the same procedure as in Zhuang et al. (2022), where we replace the MLP head with a randomly
initialized fully-connected layer, fine-tune the new model on the labeled dataset while keeping the
backbone parameters frozen. We train the single fully-connected layer for a total of 100 epochs on
the labeled training dataset and use the accuracy on the labeled validation dataset as final accuracy.
To optimize the single FC layer, we use a batch size of 128 and Adam optimizer with default learning
rate 0.001 and use cosine annealing to schedule its learning rate.

Collaborative Learning Hyper-parameters: Synchronization Frequency and Client Sampling
Ratio. In our proposed MocoSFL scheme, we use an auto-adjust mechanism for adjusting the
synchronization frequency, the client-sampling ratio, and the local batch size according to number
of clients. The auto-adjust mechanism aims to strike a balance between model divergence and
sample hardness and is based on two principles (also supported by empirical results shown in Table 7
and Table 8). The first principle is to always keep the server-side batch size around 100, so that
we can keep a good hardness (indicated by Eq. (3)). For example, for 5-client MocoSFL, we force
each client to have a batch size of 20 to keep the equivalent batch size to 100. For 1,000-client
MocoSFL, we use a client sampling ratio of 0.1 to let 100 clients join in each round. The second
principle is that the synchronization frequency must be adjusted according to the number of local
training steps. The reason is that more local updates leads to higher model divergence, which needs
to be mitigated using more frequent synchronization. For example, for a 100-client MocoSFL where
each client performs 500 local training steps, accuracy drops for a synchronization frequency of
“1/epoch”, and accuracy increases until “10/epoch”. However, for a 1,000-client MocoSFL where
each client has 50 data and performs 50 local training steps in each epoch (with batch size of 1),
setting synchronization frequency to “2/epoch” is sufficient. We provide further evidence of the above
two principles in Appendix B.3.

TAResSFL Hyper-parameters. For the Hyperparameter choices in TAResSFL, please refer to Ap-
pendix A.4.

14



Published as a conference paper at ICLR 2023

A.2 SFL-V1 PROCESS

Algorithm 1 Split Federated Learning V1 (Thapa et al., 2020)

Require: For NC clients, instantiate private training data (Xi,Yi) for 1, 2, ..., NC . Each client-
side model Ci has L layers and server-side model S contains the remaining layers.

1: for epoch t← 1 to num epochs do
2: C∗ = 1

NC

∑NC

i=1 Ci; Ci ← C∗ for all i {Model Synchronization}
3: for step s← 1 to num batches do
4: for client i← 1 to NC in Parallel do
5: data batch (xi,yi)← (Xi,Yi)
6: Ai = Ci(WCi

;xi) {Send Ai to Server}
7: end for

8: A = cat(A1,A2, ...,ANC
); y = cat(y1,y2, ...,yNC

)
9: L = LCE(S(WS ;A),y)

10: ∇AL ← back-propagation {Partition∇AL, Send∇AiL Correspondingly to Client i}
11: Update WS ;

12: for client i← 1 to NC in Parallel do
13: ∇xi

L ← back-propagation
14: Update WCi

;
15: end for
16: end for
17: end for

The training process of SFL-V1 in supervised learning is shown in Algorithm 1. Since a large
equivalent batch size at server side is essential for the success of contrastive learning, we adopt
SFL-V1. Here a large equivalent batch size (equal to the number of clients times clients’ batch size)
can be achieved due to latent vector concatenation as shown in line 8 of Algorithm 1. We choose
SFL-V1 over SFL-V2 because: V1 performs concatenation of clients’ latent vectors and feeds it to
S and updates the model only one time (call “optimizer.step() for one time” in pytorch), while V2
sequentially feeds them and updates S for a total of NC times, where NC is the number of clients. In
PyTorch, this means calling “optimizer.step() for NC time”.

A.3 DATA PRIVACY: MODEL INVERSION ATTACK

The MIA workflow is shown in Fig. 9. It follows the same procedure as previous works on the data
privacy of SFL (Vepakomma et al., 2020; Li et al., 2022).

Threat Model. The basic assumption is that the server follows the honest-but-curious assumption,
that is, it follows the protocol strictly, but can gather information during this process to breach the
privacy. We also assume the server party can access the 10K validation dataset since validation needs
to be done by the server for monitoring purpose (Bhagoji et al., 2019).

Attack Preparation. To perform MIA, the server needs to instantiate an inversion model. We assume
that the server use the L3 inversion model (top-tier inversion model in Li et al. (2022)) as shown
in Fig. 10. Then, the server queries the client-side model using the 10K validation dataset. to gather
enough input-output pairs. These pairs are used to train the initialized inversion model, where we use
mean-squre-error (MSE) loss with Adam optimizer with 0.001 learning rate for 50 epochs and set the
batch size to 32.

Attack Evaluation. Once the inversion model is ready, server can now use it on the latent vectors
sent by the target client to generate the reconstructed image. We use a fixed set of 128 images that
are randomly sampled from the training dataset to represent the private data of the target client, and
use the MSE metric between the ground-truth image and reconstructed image to evaluate the data
privacy (higher the MSE, higher the data privacy).

15



Published as a conference paper at ICLR 2023

MocoSFL
+ TAResSFL

MocoSFL

Ground-truth

Latent 

Vector
Server-side 

Model

Client-side 

Model
Input

L3 Inversion 

Model

Reconstructed Input

Validation 

Data

Client-side 

Model

Reconstructed 

Validation Data
Matching

Attack

Prepare

Client’s View:

Server’s View:

(Honest-but-

curious)

Figure 9: Details of model inversion attack using L3 inversion model done by an honest-but-curious
server.

Teaser
Inversion_Model_L3(
(m): Sequential(
(0): ResBlock(128, 64 , BN = True)
(1): ReLU()
(2): ResBlock(64, 64 , BN = True)
(3): ReLU()
(4): ResBlock(64, 64, BN = True)
(5): ReLU()
(6): ResBlock(64, 64 , BN = True)
(7): ReLU()
(8): ResBlock(64, 64 , BN = True)
(9): ReLU()
(10): ConvTranspose2d(64, 64, kernel_size=(3, 3), 

stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(11): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True)
(12): ReLU()
(13): ConvTranspose2d(64, 64, kernel_size=(3, 3), 

stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(14): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True)
(15): ReLU()
(16): ResBlock(64, 3 , BN = True)
(17): Sigmoid()

)
)

Figure 10: Details of L3 inversion model architecture.

16



Published as a conference paper at ICLR 2023

Tail momentum

InfoNCE
Loss

Tail online

𝑲+

𝑸

𝑵Server
C-model momentum

C-model online

𝑿𝑺,𝒌+
∗

𝑿𝑺,𝒒
∗

Augmentation

Server momentum

InfoNCE
Loss

Server online

𝑲+

𝑸

𝑵

DeQueue

EnQueue

𝑲+

Server

𝑨𝒌+

𝑨𝒒

𝑨𝒌+,𝒊

Pretrained C-model

𝑿𝒌+,𝒊𝑿𝒒,𝒊

Client 𝒊

𝑿𝒊 Augmentation
𝑨𝒒,𝒊

Wireless communication

𝑨𝒌+,𝒋

Pretrained C-model

𝑿𝒌+,𝒋𝑿𝒒,𝒋

Client 𝒋

𝑿𝒋 Augmentation
𝑨𝒒,𝒋

+
Regularization𝑿𝑺

* = {𝑿𝑺} ∪ {𝒑𝑿𝒕}
(𝒑 ≪ 𝟏)

No Sync 
is needed

Freeze

Freeze

L3 Inversion 

Model

MSE

𝑨𝑺,𝒒
∗

𝑨𝑺,𝒌+
∗

𝑿𝑺
∗

(a) Pretraining step: centralized training

(b) Transfer step: MocoSFL + TAResSFL

Figure 11: Overall MocoSFL + TAResSFL scheme.

A.4 TARESSFL MODULE

The MocoSFL+TAResSFL scheme is depicted in Fig. 11. It consists of a pretraining step and a
transfer step. The default architecture is modified by introducing a pair of bottleneck layers (the
last layer of “C-model” and the first layer of the tail model). The pretraining step is done offline at
the server and the transfer step is the actual MocoSFL collaborative learning step, where clients use
the pretrained “C-model” as the initial client-side model and participate in the SFL-based training
to protect data privacy from MIA attacks. In the pretraining step in Fig. 11 (a), the input X∗

S is the
mixture of source dataset XS (an out-of-distribution dataset/auxiliary dataset) and a small proportion
p of target dataset XS . The optimization process follows Eq. (5), whose objective is to make “C-
model” have enough resistance to MIA attack while keeping a high accuracy. In the transfer step
in Fig. 11 (b), all client-side models are initialized using the pretrained “C-model” and kept frozen.
All clients feed augmented images to “C-model” locally and send latent vectors to the server to
perform the MocoSFL training process. This design reduces communication overhead dramatically
thanks to bottleneck layers. It also reduces computation and memory since client-side model’s
backward computation and synchronization costs are saved.

TAResSFL hyperparameters. For the pretraining step, we use a single-client MocoSFL scheme to
simulate the offline server pretraining process. We use batch size of 128 with learning rate of 0.06
that is scheduled by cosine annealing. We add a pair of bottleneck layers, both with 3x3 kernel size.
The first bottleneck layer is a Conv2D layer that has output channel size of 4 and stride of 2 and is
placed at the end of client-side model as part of “C-model”, the second one is a Transpose Conv2d
layer (“torch.nn.ConvTranspose2d” in pytorch), having a stride of 2 that is placed at the front end
of the tail model. The training data is a combination of source data and a small proportion of target
data. For example, we use CIFAR-100 as the source data and combine it with 0.0%, 0.5%, and 1.0%
randomly sampled target data to derive the training dataset of the pretraining step. Then, we use MSE
loss to optimize the inversion model and use Structural Similarity Index (SSIM) loss of the inversion
model as the regularization term of the contrastive loss. We set λ to 2.0 and SSIM threshold to 0.6. If
SSIM is lower than 0.6, then we disable the regularization term temporarily, until it is higher than 0.6

17



Published as a conference paper at ICLR 2023

again. to stabilize the training. As described earlier, we perform one inversion model training step
and one classification model (C-model + tail model) training step for every source data batch. The
number of epochs for the pretraining step is set to 200.

For the transfer step, we initialize the client-side model using the “C-model” derived in the pretraining
step and initialize the server-side model using the “tail model”. During training, the client-side model
update is disabled (keep client-side model frozen), and the server-side model is optimized using SGD
with a small learning rate of 0.001, to be able to achieve high accuracy on the target data. We also
remove client-side momentum models, the client-side model backward operation and the client-side
models’ synchronization step since they are not required for frozen client-side models. The number
of epochs for the transfer step is set to 200.

A.5 COMMUNICATION, COMPUTATION AND MEMORY OVERHEAD CALCULATION

For communication overhead calculation, we divide it into two parts, which are latent vector size
and weight size. The latent vector size is determined by the output size of client-side model, and
the weight size is determined by the parameter size of client-side model. In each epoch, weight
communication is weight size multiplies by the number of synchronization times per epoch, while
latent vector communication is latent vector size multiplied by the total number of data sent in
this epoch. For FL, we only need to consider the weight communication. For MocoSFL without
TAResSFL module, we need to consider the weight communication and also double the latent vector
communication since clients receive the gradients sent back by the server. For MocoSFL with
TAResSFL module, we do not double the latent vector communication because gradients are not
needed, also, the weight communication is zero since synchronization is not needed. Finally, we
multiply communication overhead per epoch by the total number of epochs.

For computation overhead, we use FLOPs to represent since floating-point operation dominates the
computation. The FLOPs of the models were counted by the ‘fvcore’ library developed by Facebook
AI Research. To count the inference FLOPs, we multiply the output of ‘fvcore.nn.FlopCountAnalysis’
on a single image by the number of data per client and then multiply it with the total number of
epochs. Due to symmetry, the FLOPs of model backpropagation are approximately equal to that of
the model inference. And we also need to count the momentum model inference. Thus, the FLOPs
number we show for training is three times of the model inference FLOPs.

For memory overhead, we use ‘torch.cuda.memory allocated’ API to measure the allocated memory
for training and inference.

B EXTENSIVE EMPIRICAL RESULTS

In this section, we perform extensive empirical evidence of the proposed MocoSFL scheme on differ-
ent architecture (Appendix B.1), evidence of two hyperparameter choice principles (Appendix B.3),
performance evaluation of TAResSFL with different hyperparameters (Appendix B.4), performance
evaluation of MocoSFL in a semi-supervised learning application (Appendix B.6), and extensive
comparison with other schemes.

B.1 RESNET-50 RESULTS

We follow the same setup as in Table 2 and Table 3 on ResNet-50 architecture for cross-silo (5 and 20
clients) and cross-client settings (100 clients). Table 5 shows that compared with ResNet-18 model,
ResNet-50 has ∼3% better accuracy performance.

B.2 MOBILENETV2 AND VGG-13 CROSS-CLIENT RESULTS

We follow the same setup as in Table 2 and Table 3 on MobileNet-V2, VGG-13 architecture for
cross-client settings (100 clients). Table 6 shows that MobileNet-V2 and VGG-13 suffers from a
large accuracy drop compared with ResNet-18 model.

18



Published as a conference paper at ICLR 2023

Method NC = 5 NC = 20 NC = 100

IID Non-IID IID Non-IID IID Non-IID

MocoSFL-1 (ResNet-18) 87.38 87.81 87.21 85.84 87.29 87.71
MocoSFL-3 (ResNet-18) 87.09 87.29 87.09 85.32 87.29 87.10
MocoSFL-1 (ResNet-50) 90.68 90.78 91.07 89.35 90.59 90.96
MocoSFL-3 (ResNet-50) 90.86 90.94 90.58 89.83 90.67 90.66

Table 5: MocoSFL Performance (linear probe accuracy) on a ResNet-18 and ResNet-50 models

Method ResNet-18 MobileNetV2 VGG-13

IID Non-IID IID Non-IID IID Non-IID

MocoSFL-3 (NC = 100) 87.29 87.10 81.64 74.48 81.41 76.02

Table 6: MocoSFL Performance (linear probe accuracy) on a MobileNetV2 and VGG-13 models

B.3 EFFECT OF BATCH SIZE, SYNCHRONIZATION FREQUENCY AND FEATURE SHARING

We provide some empirical evidence to support the two principles presented in Appendix A.1. The
first is keeping the batch size to above 100. Table 7 provides the accuracy performance when the
number of clients is set to 5 for different server-side batch size B (after vector concatenation). So
B = 50 corresponds to local batch size of 10 since there are 5 clients. A small batch size has much
worse performance (around 5% lower), while a large batch size (i.e., 100, 200) helps keep a good
hardness and maintains good accuracy. However, when batch size increases further to 400, we notice
small degradation in accuracy. Thus, as stated in the first principle, when the number of clients is
larger than 200 and each client locally uses a batch size of 1 (resulting in a batch size of 200), we
have to apply client sampling to force a smaller total batch size.

Table 7: MocoSFL-3’s accuracy performance (ResNet-18 on CIFAR-10) varies with batch size. This
observation leads to the first principle of hyperparameter choice.

Distribution Batch Size

B = 25 B = 50 B = 100 B = 200 B = 400

IID 79.66 85.00 86.77 87.49 86.61
Non-IID 74.51 80.31 83.14 84.90 84.64

We also investigate the necessity of synchronization frequency when the number of clients increases.
While previous experiments (Fig. 5) demonstrate significant benefit of increasing synchronization
frequency, we find that for a cross-client application where each client has very small amount of
data, increasing synchronization frequency does not have much impact on the accuracy. Table 8
illustrates this finding. The accuracy performance quickly saturates at “2/epoch” and shows no further
improvement when frequency is increased further. This is because the number of local training steps
becomes less as stated in second principle (see Appendix A.1).

Next, we investigate the effectiveness of feature sharing in MocoSFL. In MocoSFL, the negative
keys from different clients are shared. If such sharing is disabled and server stores keys contributed
from different clients separately in different feature memories, the accuracy is significantly lower. As
shown in Fig. 12, without feature sharing, both IID and non-IID accuracy drop significantly.

B.4 DIFFERENT TARESSFL SETTINGS

We vary the hyperparameter settings of the proposed “MocoSFL + TAResSFL” scheme on ResNet-18
on CIFAR-10 dataset. In Table 9, we change the source dataset to SVHN. Here, we observe that
using SVHN as source data gets worse accuracy performance than using CIFAR-100. This is because
the domain difference between SVHN and CIFAR-10 (target dataset) is much larger than CIFAR-100

19



Published as a conference paper at ICLR 2023

Table 8: MocoSFL-3’s accuracy performance (ResNet-18 on CIFAR-10) quickly saturates with
synchronization frequency when the number of clients is large (so the amount of data in each client is
small).

Synchronization Frequency

1/epoch 2/epoch 3/epoch 5/epoch

Non-IID Accuracy 84.75 87.47 87.41 87.38

and CIFAR-10. However, even with such domain difference, the proposed method still works. For
MocoSFL with cut-layer of 3, we can still achieve over 80% accuracy with 0.034 MSE.

In Table 10, we vary the bottleneck layer settings, where we set the bottleneck layer size to C2S2,
C4S2 and C8S2. A smaller channel size leads to better “bottlenecking” effect that is, lower
communication overhead, better resistance to attack, but lower accuracy performance. For MocoSFL-
3, we observe that C2S2 achieves the highest resistance with lowest accuracy, and using C8S2
cannot meet the required resistance. We find that using C4S2 is the best choice in our specific case.

In Table 11, we vary the regularization strength λ. The λ affects the gradient magnitude contributed by
the regularization; using higher λ can boost the resistance but may lead to accuracy drop. However, we
observe resistance almost saturates when λ = 2.0 and hence use this setting across our experiments.

Batch Size

Online

Momentum

Q

K+

Nhard

Nhard Neasy

Neasy

Feature Space

30%

55%

80%

0 50 100

K
N

N
 A

cc
u

ra
cy

Number of Clients

FL-BYOL

FL-MoCoV2

30%

55%

80%

0 32 64 96 128

K
N

N
 A

cc
u

ra
cy

Batch Size

FL-BYOL

FL-MoCoV2

8

83%

85%

87%

89%

1 2 5 10 20Li
n

ea
r 

P
ro

b
e

Sync Frequency

MocoSFL-1
MocoSFL-3

10K 1K 500
Number of Data

5

0.3GB 0.6GB 1.1GB
Memory Consumption

A
cc

u
ra

cy
 (

%
)

Client-5 Client-100

Feature Sharing w/o Feature Sharing

Figure 12: Effect of feature sharing in MocoSFL.

Method Metric Target Data
0.0% 0.5% 1.0%

MocoSFL-1 Accuracy (%) 70.54 79.26 74.25
Attack MSE 0.039 0.035 0.037

MocoSFL-3 Accuracy (%) 79.41 76.02 80.19
Attack MSE 0.041 0.035 0.034

Table 9: Performance of “MocoSFL + TAResSFL”
using SVHN as source dataset, with 0.0%, 0.5%
and 1.0% of CIFAR-10 as target dataset.

Method Metric Bottleneck Layer
C2S2 C4S2 C8S2

MocoSFL-1 Accuracy (%) 78.21 77.86 76.12
Attack MSE 0.037 0.040 0.020

MocoSFL-3 Accuracy (%) 80.94 84.81 82.39
Attack MSE 0.050 0.038 0.009

Table 10: Performance of “MocoSFL + TA-
ResSFL” using CIFAR-100 as source dataset and
1.0% of CIFAR-10 target dataset as training data,
with different bottleneck layer settings.

Method Metric Regularization λ

1.0 2.0 4.0

MocoSFL-1 Accuracy (%) 79.83 77.86 80.43
Attack MSE 0.019 0.040 0.040

MocoSFL-3 Accuracy (%) 82.58 84.81 80.82
Attack MSE 0.040 0.038 0.041

Table 11: Performance of “MocoSFL + TA-
ResSFL” using CIFAR-100 as source dataset and
1.0% of CIFAR-10 target dataset as training data,
with different regularization strength λ.

B.5 EXTENSIVE IMAGE QUALITY METRICS FOR TARESSFL

In Appendix B.5, we report other image quality metrics Structural Similarity Index Measure (SSIM)
and Peak Signal-to-Noise Ratio (PSNR) metrics for Table 4.

B.6 SEMI-SUPERVISED LEARNING EVALUATION

We report the performance of using the proposed MocoSFL for semi-supervised learning applications
for both cross-silo (5 and 20 clients) and cross-client setting (100 clients). As shown in Table 12, the
proposed MocoSFL achieves competitive accuracy performance. For ResNet-18 model, we achieve
10% higher accuracy than FL-BYOL (Zhuang et al., 2022) for the semi-supervised learning setting
where only 1% label is given on a CIFAR-10 dataset.

20



Published as a conference paper at ICLR 2023

Method Metric Target Data
0.0% 0.5% 1.0%

MocoSFL-3
MSE 0.039±0.005 0.033±0.014 0.039±0.002
SSIM 0.487±0.029 0.545±0.207 0.424±0.012
PSNR 15.35±0.436 15.93±1.924 14.79±0.090

MocoSFL-1
MSE 0.045±0.003 0.035±0.003 0.039±0.002
SSIM 0.417±0.001 0.593±0.155 0.438±0.036
PSNR 14.43±0.259 16.32±1.732 14.74±0.168

Arch Method NC = 5 NC = 20 NC = 100

1% 10% 1% 10% 1% 10%

ResNet-18
FL-BYOL (Zhuang et al., 2022) 73.44 79.49 N/A N/A N/A N/A

MocoSFL-1 84.69 87.05 76.80 84.46 82.27 86.84
MocoSFL-3 84.46 86.50 76.70 84.20 81.72 85.91

ResNet-50
FL-BYOL (Zhuang et al., 2022) 72.52 80.68 N/A N/A N/A N/A

MocoSFL-1 86.28 89.55 80.34 86.09 84.83 88.78
MocoSFL-3 87.09 90.33 81.59 87.21 84.65 88.81

Table 12: MocoSFL Semi-supervised learning Performance (Non-IID).

B.7 EXTENSIVE COMPARISON WITH OTHER SCHEMES

We provide a comprehensive comparison with prior SoTA works (Zhuang et al., 2021; 2022) in Ta-
ble 13. Our proposed MocoSFL scheme shows significantly better accuracy performance, especially
for ResNet-50 model, where we achieve 5% higher accuracy than Zhuang et al. (2022) on all metrics
(linear probe and semi-supervised with 1% and 10% labels).

Table 13: Top-1 accuracy comparison under linear evaluation protocol, on 1% and 10% of labeled
data for semi-supervised learning on the non-IID setting of CIFAR datasets. MocoSFL outperforms
all other methods (number of clients is set to 5).

Method Arch CIFAR-10 (%) CIFAR-100 (%)

Linear 1% label 10% label Linear 1% label 10% label

FedU (Zhuang et al., 2021) ResNet-18 80.52 69.52 77.06 57.21 29.00 46.67
FedEMA (Zhuang et al., 2022) ResNet-18 83.34 73.44 79.49 61.78 33.04 50.48

MocoSFL-1 (ours) ResNet-18 87.81 84.69 87.05 58.78 33.09 51.59
MocoSFL-3 (ours) ResNet-18 87.29 73.44 79.49 57.70 32.44 51.21

FedCA (Zhang et al., 2020) ResNet-50 68.01 28.50 36.28 42.34 16.48 22.46
FedU (Zhuang et al., 2021) ResNet-50 83.25 69.76 80.25 61.94 28.42 48.42

FedEMA (Zhuang et al., 2022) ResNet-50 84.31 72.52 80.68 62.77 29.68 50.75
MocoSFL-1 (ours) ResNet-50 90.78 85.59 89.81 67.09 35.31 56.97
MocoSFL-3 (ours) ResNet-50 90.94 87.09 90.33 66.45 35.30 56.98

21


	Technical Details
	Hyper-parameter Choices
	SFL-V1 Process
	Data Privacy: Model inversion attack
	TAResSFL module
	Communication, Computation and Memory Overhead Calculation

	Extensive Empirical Results
	ResNet-50 results
	MobileNetV2 and VGG-13 cross-client results
	Effect of batch size, synchronization frequency and feature sharing
	Different TAResSFL settings
	Extensive Image Quality Metrics for TAResSFL
	Semi-supervised Learning Evaluation
	Extensive Comparison with Other Schemes




