
Flex Attention: a Programming Model for Generating
Optimized Attention Kernels

Juechu Dong * 1 2 Boyuan Feng * 1 Driss Guessous * 1 Yanbo Liang * 1 Horace He * 1

Abstract
Over the past 7 years, attention has become one of the most important primitives in deep learning.
The primary approach to optimize attention is FlashAttention, which fuses the operation together,
drastically improving both the runtime and the memory consumption. However, the importance of
FlashAttention combined with its monolithic nature poses a problem for researchers aiming to try new
attention variants — a “software lottery”. This problem is exacerbated by the difficulty of writing efficient
fused attention kernels, resisting traditional compiler-based approaches. We introduce FlexAttention, a
novel compiler-driven programming model that allows implementing the majority of attention variants
in a few lines of idiomatic PyTorch code. We demonstrate that many existing attention variants (e.g.
Alibi, Document Masking, PagedAttention, etc.) can be implemented via FlexAttention, and that we
achieve competitive performance compared to these handwritten kernels. Finally, we demonstrate how
FlexAttention allows for easy composition of attention variants, solving the combinatorial explosion of
attention variants.

1 Introduction
High-performance scaled dot product attention kernels,
at the heart of Transformers (Vaswani et al., 2017),
have become one of the most important building blocks
in deep learning. FlashAttention (Dao et al., 2022;
Dao, 2024), the standard kernel strategy for attention,
fuses the tensor operations in self-attention into one
kernel, drastically improving the runtime and memory
consumption. These optimizations are essential in en-
abling efficient training and decoding, particularly for
long sequences. Unfortunately, this performance comes
at the cost of flexibility. In exchange for the perfor-
mance and memory benefits, users are restricted to only
the handful of popular attention variants supported.

However, new attention mechanisms continue to be a
focus of significant research. The goal of these changes
vary widely, including reductions in computational com-
plexity (Sliding Window Attention (Beltagy et al.,
2020b)), improvements to training stability (Softcap-
ping (Team et al., 2024)), ability to work with se-

*Equal contribution 1Meta Platforms, Menlo Park, Cal-
ifornia, USA 2Computer Science and Engineering Depart-
ment, University of Michigan-Ann Arbor, Ann Arbor, MI,
USA (work done while at Meta). Correspondence to: Ho-
race He <horace@thinkingmachines.ai>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA,
USA, 2025. Copyright 2025 by the author(s).

quences of differing lengths (Document Masking), bet-
ter length extrapolation (ALiBI (Press et al., 2022)),
applying attention to other domains such as images
(Neighborhood Attention (Hassani & Shi, 2022)), mod-
ifications for better inference throughput (PagedAtten-
tion (Kwon et al., 2023a)), etc. Furthermore, users
often want combinations of these (such as Sliding Win-
dow Attention combined with ALiBI), leading to a
combinatorial explosion of possible attention kernels.
These modifications are not merely speculative either
– many of the most popular Large Language Models
(LLMs) released use these variants, such as Sliding Win-
dow Attention in Mistral-7B, Softcapping in Gemma-2,
or ALiBI in MPT-7B.

The importance of FlashAttention combined with its
limited ability to support all attention variants poses
a problem for researchers aiming to try new attention
variants — a ”software lottery” of sorts. If a particu-
lar attention variant is not supported by the existing
kernels, further exploration can be hindered by slow
runtime and memory limitations.

This problem is exacerbated by the difficulty of auto-
matically generating fused attention kernels, resisting
traditional compiler-based approaches. In addition to
all the standard difficulties with generating efficient
matrix multiplication-based primitives on accelerators,
there also exist several algebraic rewrites that are diffi-
cult for compilers to perform. For example, although

Mirage (Wu et al., 2024) is able to generate attention
forward from primitive operations, it misses key com-
ponents for practical usage of attention such as safe
softmax or the backwards pass. Furthermore, many
variants of attention require block sparsity, a further
difficulty for traditional compiler-based approaches.

1.1 Our Approach

We present FlexAttention, a novel compiler-driven pro-
gramming model that allows implementing the majority
of attention variants in a few lines of idiomatic PyTorch
code.

Flexible Programming Model. Instead of a con-
strained interface designed with specific attention vari-
ants in mind, FlexAttention is a general programming
model for attention that can be used to define many
different flavors of scaled dot product attention. We
observe that many attention variants can be defined as
a score modification applied on the intermediate score
matrix before conducting softmax (Eq. 1). Addition-
ally, a good portion of these modifications take the
form of masks, which set part of the score matrix to
-inf.

Attention(Q, K, V) = softmax(QKT

√
dk

)V

FlexAttention(Q, K, V) = softmax(mod(QKT

√
dk

))V (1)

With these insights, we build FlexAttention, which
takes a score modification callable (score mod) and
an attention mask callable (mask mod) in addition to
tensor inputs. It enables users to implement a new
attention variant by defining how to update scores or
calculate boolean masks based on positional informa-
tion. We demonstrate that many existing attention
variants (e.g. Alibi, Document Masking, PagedAtten-
tion, etc.) can be implemented via FlexAttention. In
addition, our programming model allows for easy com-
position of attention variants via nested score mods
and boolean operations between mask mods, solving the
combinatorial explosion of attention variants.

Handwritten Template-Based Generation During
PyTorch compilation, score mod and mask mod are low-
ered and codegened into the main loop of a handwritten
attention kernel. This abstraction allows us to leverage
the performance of hand-written kernels behind the
scenes, while still providing significant flexibility in the
frontend. The torch.compile lowering framework is
natively compatible with PyTorch and offers strong
flexibility to handle diverse score mod and mask mod
defined by the users. Additionally it also supports auto-

matic backward pass generation via torch.autograd.
We build forward and backward graphs for score mod
and mask mod, perform operator fusion and produce
kernel code blocks to be integrated with attention ker-
nel templates. Compute buffers are pre-allocated for
inputs, outputs and saved intermediate values.

Block Sparsity Optimization. In addition to its
semantic changes, masking also introduces sparsity.
To take advantage of this, FlexAttention leverages
block sparsity and employs a pre-computed BlockMask.
BlockMask is a small matrix that tracks block-level
sparsity on wether a tiled score matrix block is
fully masked out. With the help of torch.vmap,
our create block mask utility automatically gener-
ates BlockMask from user defined mask mod. The
BlockMask unlocks the opportunity to save the work
for fully-masked score matrix blocks without loading a
large elementwise attention mask. For partially masked
score matrix blocks, we can still exploit mask mod to
elementwisely mask out score scalars, thus maintaining
the semantics. Additionally, BlockMask is implemented
as a index vector which can also serve as the mapping
used in PagedAttention(Kwon et al., 2023a) (subsec-
tion 5.1).

We evaluate FlexAttention on 7 popular attention vari-
ants and compare its performance against today’s most
commonly used infrastructures: PyTorch SPDA, and
handwritten kernels from FlashAttention (FAv2 (Dao,
2024), FAv3 (Shah et al., 2024) and FAKV(Dao et al.,
2023)). We show that FlexAttention delivers 0.68x-
1.43x the performance of FAv2 and 0.93x-1.45x of
FAKV for decoding on conventional attention variants
supported by FlashAttention. FlexAttention works
well with existing ML infrastructure and improves end-
to-end performance for inference by 2.04x in gpt-fast
for 16k context length and training by 2.4x in torch-
tune. Additionally, we show that FlexAttention sup-
ports paged attention at negligible overhead.

2 Background
2.1 Attention Variants

The attention mechanism plays a critical role at the core
of Transformers. Each attention layer takes three input
tensors: a query Q ∈ RB×H×Q LEN×D, and a key and
a value K, V ∈ RB×H×KV LEN×D, where B denotes
the batch size, H is the number of attention heads, D
is the feature dimension, and Q LEN and KV LEN
represents the query and key-value lengths, respectively.
The attention mechanism first computes a score matrix
S ∈ RB×H×Q LEN×KV LEN , which encodes context
information by attending each query token to every

key token.

S = softmax(QKT

√
dk

) (2)

Next, attention computes the output as SV ∈
RB×H×Q LEN×D, weighting the value features by the
score matrix.

Building on this foundational algorithm, ML re-
searchers are exploring methods to enhance it by modi-
fying the score matrix S for more effective and efficient
context extraction. For example, neighborhood (Has-
sani & Shi, 2022) and sliding window (Beltagy et al.,
2020b) attention attends each query token only to its
neighboring key tokens to reduce computational and
memory complexity for large images and long sequences.
Softcapping (Team et al., 2024) adds a tanh layer to
prevent excessive growth of logits. Alibi (Press et al.,
2022) embeds an elementwise bias in the score matrix
that penalizes distant tokens to allow models trained
on short inputs to perform on long prompts. This
large design space motivates efficient compiler designs
for facilitating the training and inference of attention
variants.

2.2 State-of-the-art Attention
Implementations

Many kernels have been manually implemented to effi-
ciently support attention. Among these, the IO-aware
FlashAttention (Dao, 2024) has become one of the
most widely adopted solutions. FlashAttention signifi-
cantly reduces memory access and achieves substantial
speedups. Specifically, it avoids materializing the large
score matrix S and computes it on the fly. Recently,
Flash Attention v3 has been released to further ac-
celerate attention by leveraging advanced hardware
features and manually tuning the performance. While
flash attention delivers state-of-the-art performance, it
is specifically tailored towards a limited selection of
attention variants (Table 1). One recent work Flash-
Mask (Wang et al., 2024) extends Flash Attention with
a column-wise sparse representation to support more
mask designs. However, it still lacks of flexibility in
terms of score modifications and adds large overhead for
complex masks. Given that attention variants exhibit
diverse computational characteristics such as sparsity
and locality, significant manual effort is required to
adapt existing attention implementations to support
numerous attention variants. This lack of flexibility
and efficient kernels has become a barrier for machine
learning researchers seeking to explore novel attention
variants.

2.3 Machine Learning Compilers

Many compilers have been built to accelerate machine
learning workloads. torch.compile (Ansel et al., 2024)
uses TorchDynamo to capture computation graph from
an arbitrary code and TorchInductor to optimize the
graph. TVM (Chen et al., 2018) allows users to describe
the computation of a kernel and generate optimized
code. Mirage (Wu et al., 2024) utilizes µgraph to ex-
plore operator-level optimization opportunities. How-
ever, these machine learning compilers fail to deliver
a satisfactory performance on attention variants due
to the special computing patterns in attention. First,
attention requires fusing two matrix-matrix multiplica-
tions (i.e., QKT and SV) while existing machine learn-
ing compilers usually focuses on optimizing one matrix-
matrix multiplications. Second, as shown in Flash
Attention (Dao, 2024), online softmax significantly re-
duces memory access and improve performance. Since
online softmax is tailored towards attention designs,
it is not well supported by existing general machine
learning compilers. To the best of our knowledge, we
are the first to compile arbitrary attention variants
while delivering state-of-the-art performance.

3 Front-end Design and
Implementation

In this section, we propose a unified abstraction of
diverse attention variants. This abstraction enables
programmers to easily express attention semantics with-
out worrying about implementation details and kernel
performance.

3.1 Unified Abstraction

Despite the numerous attention variants designed by
machine learning researchers, we unify these variants
into two commonly shared patterns. The first pat-
tern masks out features from certain tokens to manage
contextual relationships. For example, a causal mask
forces a model to predict based on previous tokens and
ignore future tokens. A sliding window mask (Beltagy
et al., 2020b) forces a model to concentrate on nearby
tokens for the local context.

The second pattern further adjusts the attention score
among tokens in a fine-grained style. For example,
Alibi (Press et al., 2022) adjusts the attention score
based on the relative position of two tokens, which helps
the model to better understand the context and handle
long sequences. It also adds bias to attention scores
based on head dimension, which specializes heads on
different types of information.
With these insights, we design a unified abstraction

Figure 1. Attention variants and mask mod examples, including causal mask, sliding window mask, document mask, and
prefixLM mask.

including a score modification callable (score mod) and
an attention mask callable (mask mod). It enables users
to build a new attention variant by defining how to
update scores or calculate boolean masks based on
positional information in idiomatic PyTorch code.
def mask_mod(batch_idx: int, head_idx: int, q_idx

: int, kv_idx: int) -> bool

def score_mod(score: T, batch_idx: int, head_idx:
int, q_idx: int, kv_idx: int) -> T

Specifically, consider a score matrix S ∈ RB×H×M×N .
mask mod takes the input position and specifies
whether the corresponding score scalar is set to -inf.
score mod additionally takes the score scalar of arbi-
trary type T (e.g., bfloat16 or float32) and applies
updated to the score based on its position.

While these two patterns generalize many attention
variants, it does not yet accommodate fundamentally
paradigm changes beyond scaled-dot-product-attention,
such as the Differential Transformer (Ye et al., 2025).

Mapping to concrete examples Our unified ab-
straction captures the two important patterns in at-
tention variants and enables automated compiler opti-
mizations. Figure 1 demonstrates 4 example attention
variants, each of which has been widely studied and
optimized. However, there is a lack of a unified opti-
mization approach that applies to all of them. Instead,
our abstraction provides full flexibility in specifying
masking and modification to the score matrix, enabling
machine learning researchers to easily explore novel
attention variants.

As we discussed earlier, a causal mask forces a token’s
query feature to only attend to key and value features
from previous tokens. This leads to a simple expression
of q idx ≥ kv idx. Since the causal mask is not related
to the batch and head dimension, the mask mod does
not involve b and h inputs.

A sliding window mask requires a token to only at-
tend to nearby tokens within a certain sliding win-

dow size. We can easily describe such requirement as
q idx − kv idx ≤ window.

A document mask trains multiple documents simul-
taneously and requires a token to only attend to
other tokens in the same document. We can record
‘document id‘ as a mapping from the token index
to the document index, and keep the score only if
document id[q idx] == document id[kv idx].

A alibi bias modifies each score scalar by adding a
bias scalar, which scales with the distance between the
query index and the key value index. We can easily
describe it as score + alibi bias[h] ∗ (q idx − kv idx).
Note that we can easily support other score modifica-
tions such as scaling the score scalar, softcapping or
even non-linear transformations.

Why mask mod? mask mod is a special case of
score mod and any mask mod can be easily converted
to a score mod semantically. However, we still observe
two fundamental reasons for distinguishing these two
APIs. First, score mod applies expensive modification
to every score scalar. When converting mask mod to
score mod, we multiply each score with 1 or 0, leading
to extra overhead. Second, comparing with score mod,
mask mod provides extra semantic information that cer-
tain score computations can be skipped. We exploit
this information to further accelerate attention compu-
tation, as detailed in subsection 4.2.

3.2 Logical Fusion for Composability

As many attention variants have been designed, one
recent trend is to compose existing attention variants
to further extract semantic information. We support
the logical fusion to enable the composability of mask
designs via and mask and or mask. By taking two
mask mod functions, we can automatically compose
them by applying elementwise logical operations. The
generated mask mod can be further combined with other
mask mod which significantly mitigates the programma-
bility burden when designing attention variants.

Figure 1 shows an example of logical fusion. PrefixLM
(Raffel et al., 2023) performs full bidirectional atten-
tion on prefix inputs and causal attention on the rest.
Instead of complex conditional branches, we can build
a simple prefix mask and compose it with a causal
mask via or mask.

Additionally, mask mod functions can be nested to con-
struct more complex masking patterns – for example,
Neighborhood Attention with Tiled Mapping (NAT-
TEN); see AppendixA.1.

4 Backend Design and Implementation
In this section, we propose a backend design that com-
piles attention variants to efficient kernels.

4.1 Template-based Lowering

We build a template-based lowering system that gener-
ates optimized GPU kernels, combining the flexibility
with state-of-the-art attention optimizations. The key
innovation of our approach lies in recognizing that at-
tention variants primarily differ in their pointwise score
modifications, allowing us to templatize the common
computational patterns. To this end, we build template-
based lowering to capture the common patterns and
apply score mod elementwisely on score matrix. We
will present BlockSparsity design on exploiting sparsity
from mask mod in subsection 4.2.

Template-based lowering first exploits TorchDynamo
(Ansel et al., 2024) to capture the computation graph
of score mod and mask mod. As shown in Figure 1,
these two functions are usually lightweight in terms of
computation and memory access, and could be fused
with other computation in attention. Then, we build a
highly optimized triton template for high performance.
The Triton kernel design adopts established optimiza-
tion techniques for fused attention kernels, including
online softmax, careful GPU occupancy management,
efficient memory handling via partitioning and broad-
casting, and specialized support for grouped query
attention (GQA) (Ainslie et al., 2023).

We capture these advanced techniques in three hand-
written attention kernel templates (forward, backward,
and decoding). The templates are designed to accept
custom score modification code blocks, which are gen-
erated from captured score mod and mask mod oper-
ations using torch.compile. TorchInductor translates
these subgraphs into Triton code, dynamically injecting
both forward and backward score modification opera-
tions into the predefined templates at runtime. This
approach results in attention kernels that closely match
the performance of manually optimized, variant-specific

…
score = q @ k
q_idx = tl.arange(BLOCK_M) + q_offset
kv_idx = tl.arange(BLOCK_N) + kv_offset
q_idx = q_idx[:, None]
kv_idx = kv_idx[None, :]

score = tl.where(mask, score, float("-inf"))

out = score @ v
…

def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx

mask = tl.where(q_idx - kv_idx, 1, 0)
mask = tl.where(q_idx - kv_idx, 1, 0)@triton.jit

score = score + (q_idx - kv_idx)
score = score + (q_idx - kv_idx)

@triton.jit

@triton.jit

torch.compile

Attention Template

User defined <mask_mod>

User defined <mask_mod>
def rel_pos(score, b, h, q_idx, kv_idx):

return score + (q_idx - kv_idx)

Figure 2. Compilation from user-defined attention patterns
to optimized Triton kernels. Top: User-defined Py-
Torch functions specify custom masking (causal mask)
and score modification (rel pos) operations. Bottom:
torch.compile captures and lowers these operations into
Triton primitives. Right: The resulting Triton code blocks
are integrated into our attention template, which handles
core attention computations while preserving the user-
defined modifications.

implementations. Figure 2 illustrates our lowering
pipeline, showing how user-defined PyTorch operations
are translated into optimized Triton code and inte-
grated into our attention templates.

4.2 Block Sparsity

Attention variants usually show high sparsity such as
50% sparsity from causal mask and significantly higher
sparsity from sliding window mask. One natural ques-
tion is,

could our compiler exploit such sparsity for accelera-
tion?

One naive approach is to check during runtime whether
a position is masked out and skip the computation.
However, this adds a large runtime overhead by it-
erating through all scalars even if it is masked out.
Another approach is to pre-compute a mask tensor of
shape B × H × Q LEN × KV LEN and compute a
score scalar according to the mask tensor. However,
this mask tensor adds significant memory overhead,
which contradicts the principle of flash attention that
avoids realizing the score matrix.

BlockMask FlexAttention implements a BlockMask
data structure to exploit the sparsity while adding
only negligible memory overhead. We pre-compute
a block mask during compilation time to remove the
runtime overhead. BlockMask first splits the score
matrix into blocks along the Q LEN and KV LEN
dimensions. Then, BlockMask specifies a block as non-
computed if all score scalars in it are masked as -inf.
By recording sparsity at the block level, we do not
realize a large sparsity matrix, significantly reducing
memory overhead.

0

1

2

2

2

[, , , ,]

[0 , , , ,]

[0 , 1 , , ,]

[1 , 2 , , ,]

[2 , 3 , , ,]

1

1

1

2

2

[0 , , , ,]

[1 , , , ,]

[2 , , , ,]

[0 , 3 , , ,]

[1 , 4 , , ,]

Full Blocks Partial Blocks

def rel_pos(score, b, h, q_idx, kv_idx):
return score + (q_idx - kv_idx)

def sliding_win_mask(b, h, q, kv):
return q >= kv and q <= kv + WINDOW

mask_mod

score_mod

BlockMask = (full_kv_num_blocks, full_kv_indices, kv_num_blocks, kv_indices)

Figure 3. BlockMask for Sliding Window Attention. Left:
The score matrix is divided into fully visible blocks (green),
partially masked blocks (yellow), and oblivious blocks
(white). Right: BlockMask encoded as an index matrix
plus block count per row. Top: score mod is applied to full
& partial blocks. Bottom: mask mod is applied to partial
blocks.

Concretely, BlockMask contains two tensors, a
kv num block of shape B × H × Num Row and a
kv indices of shape B × H × Num Row × Num Col.
Here, Num Row and Num Col are the number of
blocks in each row and column along the query and key
value dimension, respectively. kv num block stores the
number of non-zero blocks for each row and kv indices
stores the indices of these non-zero blocks. By access-
ing kv num block, FlexAttention skips masked blocks
and achieves proportional performance speedup.

Full Block Optimization We split BlockMask into
full blocks and partial blocks to further improve the
performance. Our key idea is to minimize runtime
overhead caused by applying mask mod, skipping it
whenever possible. We identify two types of blocks in
terms of sparsity.

1. Partial blocks where some score scalars are masked
as -inf, necessitating the application of mask mod
elementwise at runtime.

2. Full blocks where no score scalar is masked, allow-
ing us to skip mask mod and apply only score mod.

This optimization yields approximately a 15% per-
formance improvement for common patterns such as
causal masks. Figure 3 illustrates the BlockMask for
sliding window attention. The sliding win mask is
applied only to partial blocks while the rel pos score
modification is applied elementwise on both full and
partial blocks.

BlockMask Guided Indirect Memory Access
Exploiting sparsity in attention shows significant per-
formance speedup. Existing solutions such as FlashAt-

tention iterate through the KV LEN dimension and
manually specifies the start and end index of iteration
based on attention variants. This leads to a significant
programmability burden. Moreover, it requires extra
efforts to ensure that attention scores in the final block
are properly masked if the query token index is less
than the key token index.

FlexAttention utilize the BlockMask information to
automatically exploit the sparsity in attention variants.
It first adjusts the workload in each GPU block accord-
ing to the kv num block, which specifies the number
of score matrix blocks that are not masked out. Then,
it uses the KV Indices to map to the next block to be
processed. Here, we utilizes an indirect memory access
strategy since the indices need not point to contiguous
tokens in the sequence. This provides flexibility in
compiling various attention patterns, such as sliding
window attention, local-global attention, or custom
sparse patterns, without modifying kernel.

SM

SM

SM

SM

SM

prefetch

key / value

q
u
e
r
y

compute

SM

SM

SM

SM

Figure 4. Scheduling full and partial blocks to SM.

Data Prefetching Pipeline FlexAttention divides
the score matrix into tiles along the Q LEN dimen-
sion to parallelize the computation on multiple Stream
Processors(SM). Each SM iterates along the KV LEN
dimension and processes a row of blocks (Figure 4).
Special care needs to be taken in pipelining the data
fetch and compute for these blocks. When the first
score block is being computed from the first kv tile,
the second kv tile (shown in dashed borders) is being
pre-fetched from HBM to SRAM. Our BlockMask ac-
cess strategy removes conditional branch on checking
whether a score scalar is masked out, thus allowing effi-
cient pipelining and hiding data access latency between
iterations.

Overhead Analysis BlockMask representation
achieves memory efficiency through a careful bal-
ance of granularity and overhead. Although we
store auxiliary tensors to encode the sparsity pattern,

their memory footprint scales with O(⌈Q LEN/BS⌉ ×
⌈KV LEN/BS⌉), where BS is the block size (=128 by
default). This is significantly less than the O(M × N)
required for the full score matrix.

5 Case Study
5.1 Paged Attention Variants

PagedAttention (Kwon et al., 2023a) has been widely
deployed for inference on a batch of sentence requests to
reduce GPU memory consumption. However, the cur-
rent PagedAttention design requires manually rewriting
the attention kernel to support page table lookup for
its irregular memory accesses. Additionally, it is tightly
coupled with specific attention mask designs, limiting
composability with other attention variants. In this
subsection, we explain how FlexAttention enables pag-
ing support for arbitrary attention variants without
manually rewriting the kernels, while still delivering
high performance and low memory usage. 1

Page Table. PagedAttention introduces a page ta-
ble to efficiently manage the KV cache and reduce its
memory usage. As shown in Figure 5(a), a logical
KV cache stores the key and value features of each
sequence, typically in shape B × Max len × D where
B is the batch size, Max len is the maximum context
length, and D is the feature dimension. Since sequence
lengths vary significantly between sentences and could
be much shorter than Max len, a substantial portion
of the logical KV cache remains unused. To address
this fragmentation issue, PagedAttention instead allo-
cates a physical KV cache of shape 1×Max token×D,
where Max token is the maximum number of tokens
across all sentences combined. Storing sentences in
the physical KV cache reduces fragmentation and en-

1Due to the scope of this paper, we focus on supporting
KV cache in GPU memory and leave the memory swapping
to host disk as future work.

ables memory optimizations such as KV block sharing
between sentences.

PagedAttention maintains a page table as 2D matrix
that maps the batch index and logical KV index to the
corresponding physical KV index. Within the atten-
tion kernel, one scatter operation is used efficiently
translate indexes using this matrix, while minimizing
memory access overhead. During runtime, once a sen-
tence reaches its end token, we clear the corresponding
row in the page table and update it with a new request.

Fused indirect memory access. Having attention
kernel compute on the physical KV cache instead of the
logical KV cache, presents several challenges. First, the
page table adds an extra layer of indirection in memory
accesses, which existing designs typically handle with
manually rewritten CUDA kernels. Second, the page
table imposes a significant programming burden on al-
ready complex implementations for supporting diverse
attention variants.

FlexAttention tackles this problem through the Block-
Mask conversion, eliminating the need for kernel
rewrites. Our key idea is that since BlockMask al-
ready incorporates one layer of indirect memory access
to avoid unnecessary computations (subsection 4.2), we
can merge it with the indirect memory access from the
page table to further skip unnecessary memory accesses.
Specifically, as shown in Figure 5(b), given a Block-
Mask of an attention variant, we take the kv index and
map the logical block index to the corresponding phys-
ical block index according to the page table. During
runtime, FlexAttention relies on the converted kv index
to access tokens for a specific sentence from the physi-
cal KV cache. Note that we keep the kv num blocks
unchanged since paged attention does not change the
number of unmasked blocks.

4 1 5

3

Request A

logical block index

Page Table

Mirror Mirror who is

You are

A wonderful dream come

awesome

2 8 9

true

Logical KV Cache

0

Physical KV Cache

the fairest of them all 6 7

awesome who is A wonderful You are Mirror Mirror the fairest of them all 2 1 0 0 0 2 3 4

1 2 4 0 3KV Index
for Request A

Request B

Request C 1 5 7 4 6Converted
KV Index

(a)
(b)

(c)

Physical to Logical Map

dream come

true

Figure 5. Illustration of FlexAttention with paged attention. a) Update physical KV cache with a page table; b) Convert a
block mask especially KV Index; c) Physical to logical map for converting mask mod and score mod.

mask mod and score mod Conversion FlexAtten-
tion supports attention variants with mask mod and
score mod, which utilizes position information (e.g.,
logical KV index) to specify mask and score modifi-
cations. This position information is changed when
using paged attention and operating on the physical
KV cache. One naive approach is to manually rewrite
the mask mod and score mod to cater to such changes
on position information. However, this adds an large
programmability burden, considering numerous atten-
tion variants and even logical fusion of these variants
(subsection 3.2).
We automatically compile the mask mod and score mod
to support paged attention.
def converted_mask_mod(batch_idx: int, head_idx:

int, q_idx: int, physical_kv_idx: int)
-> bool

def converted_score_mod(score: T, batch_idx: int,
head_idx: int, q_idx: int, physical_kv_idx:

int) -> T

Specifically, we maintain a vector mapping physical
block indices to logical block indices using O(1) over-
head when updating the page table. Given the physical
KV token index, we can first compute the physical KV
block index and offset due to the fixed block size. Then,
we can lookup the corresponding logical KV block index
and regenerate the logical KV token index. Finally, we
call the user-provided mask mod and score mod with
the generated logical KV token index.

(a) (b)

Figure 6. mask mod conversion

5.2 Modification Conversion for Inference

In attention variants, the mask and score modifications
may change with query indices, which is supported
by taking q idx in mask mod and score mod. However,
LLM inference usually iteratively takes one query token
at a time and requires additional context information in
terms of the number of query tokens has been processed,
namely offset. Figure 6(a) shows the difference between
causal mask during training and inference. To tackle
this problem, we automatically convert mask mod and
score mod to their inference counterpart, as shown
in Figure 6(b). Specifically, we provide a decorator
that takes the user-defined mask mod and an offset, and
generate a converted mask mod that consumes the offset
information.

6 Evaluation
6.1 Experiment Setup

We evaluate the performance of FlexAttention on 7
popular attention modifications (Table. 1), includ-
ing the classic noop and causal, popular positional
embedding alibi (Press et al., 2022), local atten-
tion sliding window (Beltagy et al., 2020a), fully vis-
ible prefix prefixLM, additional tanh layer soft cap
and document mask for batching input of various
lengths. These attention variants are evaluated as
Multi-head Attention (MHA) and Grouped Query At-
tention (GQA).

These attention variants have varying levels of sup-
port across our five baselines. FlashAttention-
v2 (FAv2) (Dao, 2024) is a state-of-the-art, high-
performance attention kernel optimized to reduce HBM
read/write through kernel fusion, tiling and recom-
putation. FlashAttention-v3 (Shah et al., 2024)
(FAv3) is an experimental kernel that leverages new
hardware features in Hopper GPUs to further en-
hance performance. FlashAttention also provides a
FlashDecoding (FAKV) kernel optimized for inference
with kvcache support. Scale dot-product attention
(SDPA) is the native PyTorch functional API for atten-
tion, supporting math, memory-efficient attention
(mem efficient) (Rabe & Staats, 2022), FAv2, and
cuDNN backends. SDPA integrates smoothly into
the PyTorch framework, enabling optimizations and
features such as NestedTensor, torch.compile, and
CUDA graph support.

We evaluate end-to-end training and inference perfor-
mance on LLaMa3 and LLaMa3.1 models (Dubey et al.,
2024) using gpt-fast (gpt-fast maintainers & contrib-
utors, 2023) and torchtune (torchtune maintainers
& contributors, 2024). gpt-fast and torchtune are
native PyTorch libraries that provide accessible fine-
tuning and inference recipes for popular models They
rely on torch.compile to enable optimizations, includ-
ing CUDA graphs, kernel fusion and inlining, matmal
templates, parameter freezing etc., and use SDPA for
attention by default.

Our experiments are conducted on Nvidia H100 GPUs
with power capped at 650W and memory bandwidth
limited to 2.4TB/s, Nvidia A100 GPUs with power
capped at 330W, and Nvidia A6000 GPUs.

6.2 Attention Kernel Performance.

We characterize FlexAttention kernel performance by
benchmarking across varying sequence lengths, atten-
tion variants, and numbers of heads, with kv size fixed
at 256 MiB, head dimension at 64, and data type set

FAv2 FAv3 (c1d146c) SDPA - cuDNN (v9.1.1) SDPA - mem efficient FlexAttention
noop native native native native native
causal native native native native native

alibi bias native x itemized mask itemized mask native
sliding win native native itemized mask itemized mask native
prefix lm x x itemized mask itemized mask native
soft cap native x x x native

various lengths native native jagged tensors jagged tensors native (doc mask)
neighbor attention x x x x native

Table 1. Tested Attention Variants and their Level of Support in FlashAttention, SDPA & FlexAttention

to bfloat16.

Training Performance. As shown in Figure 7, assum-
ing a causal mask, FlexAttention yields a consistent
1.00x-1.22x speedup in the forward pass and 0.86x-
1.05x speedup in the backward pass compared to FAv2
across different sequence lengths. For the 7 attention
variants we evaluated, FlexAttention achieves a 0.68x-
1.43x speedup relative to FAv2 when FAv2 supports the
variant. For the variants lacking native support, Flex-
Attention achieves a 5.49x-8.00x speedup compared to
SDPA kernels with itemized attention masks by com-

O
O

M

O
O

M

O
O

M

0

100

200

300

400

1024 2048 4096 8192 16384

Sp
ee

d
 t

er
aF

LO
Ps

/s

sequence length

H100PyTorch eager

Triton template for score_mod

+BlockMask

Figure 8. FlexAttention Ablation Study: Forward Kernel
Speed for Causal Attention on Eager PyTorch, PyTorch
with Triton template, and BlockMask

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

x x x x x x x x
0

100

200

300

400

500

600

1k 4k 16k 64k 1k 4k 16k 64k 1k 4k 16k 64k 1k 4k 16k 64k

Hq=16, Hkv=16, fwd Hq=16, Hkv=2, fwd Hq=16, Hkv=16, bwd Hq=16, Hkv=2, bwd

Sp
ee

d
 (

te
ra

FL
O

P
S)

Sequence Length

H100

math mem-efficient cudnn FAv2 FAv3 FlexAttn

x x x x x x x x x x x x x x x x x xx x x x x x x xx x x xx x x x x x x x x x x x
0

100

200

300

400

500

Hq=16, Hkv=16, fwd Hq=16, Hkv=2, fwd Hq=16, Hkv=16, bwd Hq=16, Hkv=2, bwd

Sp
ee

d
 (

te
ra

FL
O

P
S)

H100

Figure 7. Attention Kernel Speed: Forward and Backward. Top: Causal Mask on QKV Length Ranging from 1k to 64k
w/wo GQA. Bottom: Different Attention Variants on 16k-token-long QKV w/wo GQA.

0

0.5

1

1.5

2

1k 4k 16k 64k 1k 4k 16k 64k 132k

Hq=16, Hkv=16, decoding Hq=16, Hkv=2, decoding

M
em

o
ry

 T
h

ro
u

gh
p

u
t

(T
B

/s
)

Sequence Length

H100

math FAKV FlexAttn

x xx x x x x xx x x x
0

0.5

1

1.5

2

noop causal alibi softcap noop causal alibi softcap

Hq=16, Hkv=16, decoding Hq=16, Hkv=2, decoding

M
em

o
ry

 T
h

ro
u

gh
p

u
t

(T
B

/s
)

H100

math mem-efficient cudnn FAKV FlexAttn

Figure 9. Attention Kernel Speed: Decoding for 1 Query Token. Left: Classic Attention on KV Length Ranging from 1k
to 132k w/wo GQA. Right: Different Attention Variants on 16k-token-long KV cache w/wo GQA.

puting the mask from mask mod at runtime, thereby
avoiding the need to realize and load the itemized mask.

In Figure 8, we conduct an ablation study and demon-
strate that BlockMask boosts the performance of a
causal attention kernel by an average of 1.3x - 1.8x.

Inference Performance. As shown in Figure 9,
for a query length of 1, FlexAttention delivers decod-
ing performance comparable to FlashDecoding (FAKV),
achieving a 0.93x-1.45x speedup, except one outlier:
FlexAttention is 5.37x faster than FAKV when
using GQA with alibi. This is an example of the
”software lottery”, where FAKV lacks manual optimiza-
tion for GQA with alibi, and its fallback solution
provides only 1/5 of the optimal performance. In con-
trast, FlexAttention maintains consistent performance
for this combination without manual tuning. Due to
page limit, we leave Neighborhood Attention results in
Appendix A.1.

Figure 10. Root-mean-square error (RMSE) of bf16 and
fp16 attention output compared to fp64 golden result.

Numeric Accuracy. FlexAttention does not in-
troduce additional numeric errors compared to our
baselines. (Figure 10)

6.3 End-to-end Performance.

FlexAttention boosts end-to-end training performance
by over 2.4x and inference performance by up to 2.04x,
and this speedup scales well with sequence length.
We replace SDPA with FlexAttention in gpt-fast

and torchtune libraries and evaluate performance on
LLaMa3 and LLaMa3.1 models. We show that Flex-
Attention integrates well with the PyTorch framework
in gpt-fast and torchtune, enabling optimizations
such as CUDA graphs, parameter freezing, and kernel
fusion, same as SDPA.

Training Performance of torchtune. We set
up torchtune to fine-tune LLaMa3-8B on the Al-
paca (Taori et al., 2023) dataset. To efficiently process
the input sequences of different lengths, torchtune
concatenates them into jagged long sequences of fixed
length. This approach requires a document mask that
allows each input sequence to attend to itself while
ignoring its neighbors. SDPA utilizes a precomputed
boolean mask of size B × N × N , where B is batch
size and N is the sequence length. As shown in Fig-
ure 11, the cost of accessing this boolean mask grows
quadratically, leading to a 25% decrease in the training
throughput when the sequence length increases from 2k
to 8k. In contrast, FlexAttention employs a BlockMask
and a document ID tensor of size B × N and scales
effectively with sequence length.

sdpa_unpacked
sdpa_2048
sdpa_8192
flex_attn_2048
flex_attn_8192to

ke
ns

 p
er

 s
ec

on
d

pe
r G

PU

A100 80G

Figure 11. torchtune Training Throughput on llama3-8B.

Inference Performance of gpt-fast. In Figure 12,
we show that FlexAttention boosts LLaMa3.1-8B serv-
ing performance by 1.22x-2.04x, and LLaMa3.1-70B
performance by 0.99x - 1.66x compared to SDPA. The
speedup increases as context length grows and the at-

tention kernel increasingly dominates the computation
in each iteration.

0

50

100

150

Sp
ee

d
 (

to
ke

n
s/

s)

llama3.1-8b

1 x H100

0

5

10

15

20

Sp
ee

d
 (

to
ke

n
s/

s)

llama3.1-70b

4 x H100

sdpa
flex_attn

Figure 12. gpt-fast Inference Speed on LLaMa3.1-8B and
70B.

6.4 Case Study: Paged Attention

0

500

1000

1500

2000

2500

2k 4k 8k 16k 32k 2k 4k 8k 16k 32k 2k 4k 8k 16k 32k 2k 4k 8k 16k 32k

noop causal alibi softcap

R
u

n
ti

m
e

(m
s)

 t
h

e
lo

w
er

 t
h

e
b

et
te

r

Sequence Length

H100

FlexAttn FlexAttn paged FlashAttn-v2

0

100

200

300

400

500

600

1
6

3
2

6
4

1
2

8

2
5

6

1
6

3
2

6
4

1
2

8

2
5

6

1
6

3
2

6
4

1
2

8

2
5

6

1
6

3
2

6
4

1
2

8

2
5

6

noop causal alibi softcap

R
u

n
ti

m
e

(m
s)

Page Size

H100

Figure 13. Runtime w/ and w/o paged attention (the lower
the better). Top: Latency under diverse sequence length.
Bottom: Latency under diverse page size.

While paged attention stores sentence requests of vary-
ing length in a compact physical KV cache, one major
question is whether it would introduce high runtime
overhead. Figure 13(a) shows runtime latency of flex
attention with and without paged attention, as well as
FlashAttn-v2. We show runtime latency under chang-
ing sequence length, while keeping other dimension
the same with batch size of 32, head dimension of 64,
and number of heads as 16. Overall, we observe less
than 1% runtime overhead on average when using Flex-
Attention with paged attention, which is significantly
smaller than the 20–26% higher attention kernel over-
head reported in vLLM (Kwon et al., 2023b). The

reason is that we do not introduce any kernel changes
and rely on a fused indirect memory access to support
FlexAttention with paged attention. Surprisingly, we
even observe that FlexAttention with paged attention
is faster than FlashAttn-v2 without paged attention on
large sequence lengths, which demonstrates the scala-
bility of our design.

Figure 13(b) demonstrates the impact from page size
ranging from 16 to 256. Overall, we do not observe
significant performance impact from changing page
sizes. Note that we manage physical KV cache in GPU
global memory and do not swap memory to host disk,
which mitigates the disk access overhead.

7 Conclusion
In this paper, we propose FlexAttention, a program-
ming model for generating optimized attention kernels.
While researchers continue to design new attention vari-
ants, they are often limited by the lack of hand-tuned
kernels, leading to a large programmability and perfor-
mance burden. We hope that FlexAttention will allow
researchers to explore new attention variants without
being held back by what handwritten kernels support.

References
Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,

Lebrón, F., and Sanghai, S. Gqa: Training general-
ized multi-query transformer models from multi-head
checkpoints, 2023. URL https://arxiv.org/abs/
2305.13245.

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A.,
Voznesensky, M., Bao, B., Bell, P., and et al. Py-
torch 2: Faster machine learning through dynamic
python bytecode transformation and graph compila-
tion. In Proceedings of the 29th ACM International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2,
ASPLOS ’24, pp. 929–947, New York, NY, USA,
2024. Association for Computing Machinery. ISBN
9798400703850. doi: 10.1145/3620665.3640366. URL
https://doi.org/10.1145/3620665.3640366.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer:
The long-document transformer, 2020a. URL https:
//arxiv.org/abs/2004.05150.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer:
The long-document transformer, 2020b. URL https:
//arxiv.org/abs/2004.05150.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E.,
Cowan, M., Shen, H., Wang, L., Hu, Y., Ceze, L.,

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245
https://doi.org/10.1145/3620665.3640366
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150

Guestrin, C., and Krishnamurthy, A. Tvm: an au-
tomated end-to-end optimizing compiler for deep
learning. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implemen-
tation, OSDI’18, pp. 579–594, USA, 2018. USENIX
Association. ISBN 9781931971478.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. In Inter-
national Conference on Learning Representations
(ICLR), 2024.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré,
C. Flashattention: Fast and memory-efficient exact
attention with IO-awareness. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Dao, T., Haziza, D., Massa, F., and Sizov,
G. Flashdecoding for long-context inference,
2023. URL https://crfm.stanford.edu/2023/
10/12/flashdecoding.html. Accessed: 2024-09-15.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-
Dahle, A., Letman, A., and Akhil Mathur, e. a.
The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

gpt-fast maintainers and contributors. Accelerating
generative ai with pytorch ii: Gpt, fast, November
2023. URL https://github.com/pytorch-labs/
gpt-fast.

Hassani, A. and Shi, H. Dilated neighborhood attention
transformer, 2022. URL https://arxiv.org/abs/
2209.15001.

Hassani, A., Walton, S., Li, J., Li, S., and Shi, H.
Neighborhood attention transformer. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2023.

Hassani, A., Hwu, W.-M., and Shi, H. Faster neigh-
borhood attention: Reducing the o(n2) cost of self
attention at the threadblock level, 2024. URL
https://arxiv.org/abs/2403.04690.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L.,
Yu, C. H., Gonzalez, J. E., Zhang, H., and Stoica,
I. Efficient memory management for large language
model serving with pagedattention. In Proceedings
of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023a.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L.,
Yu, C. H., Gonzalez, J. E., Zhang, H., and Stoica,
I. Efficient memory management for large language
model serving with pagedattention. In Proceedings
of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023b.

Press, O., Smith, N. A., and Lewis, M. Train short,
test long: Attention with linear biases enables input
length extrapolation, 2022. URL https://arxiv.
org/abs/2108.12409.

Rabe, M. N. and Staats, C. Self-attention does not
need o(n2) memory, 2022. URL https://arxiv.
org/abs/2112.05682.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
Exploring the limits of transfer learning with a uni-
fied text-to-text transformer, 2023. URL https:
//arxiv.org/abs/1910.10683.

Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ra-
mani, P., and Dao, T. Flashattention-3: Fast and ac-
curate attention with asynchrony and low-precision,
2024. URL https://arxiv.org/abs/2407.08608.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y.,
Li, X., Guestrin, C., Liang, P., and Hashimoto,
T. B. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., and et al., T. M.
Gemma 2: Improving open language models at a
practical size, 2024. URL https://arxiv.org/abs/
2408.00118.

torchtune maintainers and contributors. torchtune:
Pytorch’s finetuning library, April 2024. URL https/
/github.com/pytorch/torchtune.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. Attention is all you need. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Gar-
nett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.
neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wang, G., Zeng, J., Xiao, X., Wu, S., Yang, J., Zheng,
L., Chen, Z., Bian, J., Yu, D., and Wang, H. Flash-
mask: Efficient and rich mask extension of flashat-
tention. arXiv preprint arXiv:2410.01359, 2024.

Wu, M., Cheng, X., Padon, O., and Jia, Z. A multi-
level superoptimizer for tensor programs, 2024. URL
https://arxiv.org/abs/2405.05751.

https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://github.com/pytorch-labs/gpt-fast
https://github.com/pytorch-labs/gpt-fast
https://arxiv.org/abs/2209.15001
https://arxiv.org/abs/2209.15001
https://arxiv.org/abs/2403.04690
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2407.08608
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https//github.com/pytorch/torchtune
https//github.com/pytorch/torchtune
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2405.05751

Ye, T., Dong, L., Xia, Y., Sun, Y., Zhu, Y., Huang, G.,
and Wei, F. Differential transformer. In The Thir-
teenth International Conference on Learning Repre-
sentations, 2025. URL https://openreview.net/
forum?id=OvoCm1gGhN.

https://openreview.net/forum?id=OvoCm1gGhN
https://openreview.net/forum?id=OvoCm1gGhN

A Appendix
A.1 Neighborhood Attention (NA)

Neighborhood Attention (NA)(Hassani & Shi, 2022)
is a local attention pattern used for 2D images, in
which each pixel attends to its nearest neighboring pix-
els. NA mask is very complicated (Figure 14 top left)
due to the 1D expansion of a 2D embedding neighbor-
hood and thereby makes NA challenging to compute.
Various advanced expansion strategies have been pro-
posed(Hassani et al., 2023; 2024) to improve its block
sparsity, but it is challenging manually to implement
these optimizations in a high-performance attention
kernel. Instead, we showcase that with FlexAttention,
the Tiled NA and Morton curve NA could be imple-
mented in less than 10 lines of PyTorch code to exploit
the sparsity of NA (Figure 14) and enjoy its perfor-
mance benefits (Figure 15). The idiomatic PyTorch
implementation archives comparable performance to
NATTEN, a dedicated CUDA implementation.

Figure 14. NA Itemized Mask and the Corresponding Block
Mask. Top: Naive NATTEN Mask. Middle: 2D-Tiled
NA Mask. Bottom: Morton Curve NA Mask.

0

20

40

60

80

100

32x32, 7x7 64x64, 13x13 128x128, 25x25 256x256, 53x53

Sp
ee

d
 t

er
aF

LO
Ps

/s

canvas_W x canvas_H, kernel_W x kernel_H

A6000

FlexAttention Tiled

NATTEN

0

50

100

150

32x32, 17x17 64x64, 25x25 128x128, 53x53 256x256, 117x117

Sp
ee

d
 (

te
ra

FL
O

P
S)

A6000

SDPA w Itemzied Mask
FlexAttn w Naïve BlockMask
FlexAttn w Tiled BlockMask

Figure 15. Neighborhood Attention Kernel Speed Top:
FlexAttention Implementation vs. NATTEN(Hassani et al.,
2024). Bottom: Different 2D Mapping.

B Artifact Evaluation
B.1 Abstract

The source code for this work is included in PyTorch,
available at https://github.com/pytorch/pytorch. The
FlexAttention kernel implementation can be found in
torch/ inductor/kernel/flex attention.py and
flex decoding.py. The kernel benchmark code to
reproduce the results in this paper can be found
at benchmark/transformer/score mod.py. The
FlexAttention implementation of attention variants
used in the experiments is included in attention-gym.
The source code for conducting end-to-end inference
and post-training using FlexAttention is included in
gpt-fast and torchtune.

These instructions focus on reproducing the GPU Flex-
Attention benchmark results (Figure 7 & 9). End-to-
end speedup results for inference and training using
FlexAttention are obtained from gpt-fast and torchtune
benchmarks. Additional instructions are included in
Section B.8.

B.2 Artifact check-list (meta-information)
• Binary: available at https://pytorch.org/

• Hardware: NVIDIA H100 / A100 GPU.

• Metrics: FlexAttention speedup compared to Py-
Torch SDPA and FlashAttention.

• How much time is needed to prepare workflow
(approximately)?: 1 hour.

• How much time is needed to complete experi-
ments (approximately)?: 1 hour.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: BSD-3

B.3 Description

B.3.1 How to access.
Source code and kernel benchmark: PyTorch
https://github.com/pytorch/pytorch

FlexAttetion mods: attention-gym
https://github.com/pytorch-labs/attention-gym

Inference using FlexAttention: gpt-fast
https://github.com/pytorch-labs/gpt-fast

Post-training using FlexAttention: torchtune
https://github.com/pytorch/torchtune

Baseline: FlashAttention
https://github.com/Dao-AILab/flash-attention

B.3.2 Hardware dependencies
• To match the configurations in this paper: NVIDIA

H100 GPU.

• Compatible with NVIDIA GPUs (Compute Capability
8.0+) and AMD GPUs (ROCm 6.2+)

B.3.3 Software dependencies
• A recent Linux distribution.

• NVIDIA kernel drivers.

• CUDA version compatible with the chosen version of
PyTorch. For PyTorch v2.6, use CUDA 12.4.

• gcc/g++ compatible with the chosen CUDA version.

• Miniconda installed
(https://www.anaconda.com/docs/main)

• pytorch v2.5+

• attention-gym

• Additional Python packages: tabulate tqdm matplotlib

• Baselines: FlashAttention (commit c1d146c) , cudnn
v9.1.1

B.4 Installation
conda create --name=flexattn python=3.11
conda activate flexattn

install PyTorch using release build (assume cuda 12.4)
pip3 install torch==2.6 torchvision==0.21 torchaudio==2.6 \
--index-url https://download.pytorch.org/whl/cu124

install dependencies used in benchmark
conda install tabulate tqdm matplotlib

Install attention-gym
git clone https://github.com/pytorch-labs/attention-gym.git
cd attention-gym
pip install .
cd ..

get benchmark script
wget https://raw.githubusercontent.com/pytorch/pytorch/

f1cbf4b1b5a299f999c11e77bfabe39c7f04efdc/benchmarks/
transformer/score_mod.py

B.5 Experiment workflow
To reproduce FlexAttention speedup over PyTorch SDPA
and FlashAttention on bfloat16, GPU, training (q len =
kv len) (Figure 7), run:
sweep sequence length
python -W ignore::UserWarning: score_mod.py -dtype bfloat16 \
-s 1024 4096 16384 65536 --kv-size 256 \
--backend cudnn efficient math fav2 fav3 \
-mods causal -d 64 --calculate-bwd --throughput

sweep attention variants
python -W ignore::UserWarning: score_mod.py -dtype bfloat16 \
-s 16384 --kv-size 256 \
--backend cudnn efficient math fav2 fav3 \
-mods noop causal alibi sliding_window document_mask \
prefix_lm softcap \
-d 64 --calculate-bwd --throughput

https://github.com/pytorch/pytorch
https://github.com/pytorch-labs/attention-gym
https://github.com/pytorch-labs/gpt-fast
https://github.com/pytorch/torchtune
https://github.com/pytorch-labs/gpt-fast
https://github.com/pytorch/torchtune
https://pytorch.org/
https://github.com/pytorch/pytorch
https://github.com/pytorch-labs/attention-gym
https://github.com/pytorch-labs/gpt-fast
https://github.com/pytorch/torchtune
https://github.com/Dao-AILab/flash-attention
https://www.anaconda.com/docs/main
https://github.com/Dao-AILab/flash-attention

To reproduce FlexAttention speedup over PyTorch SDPA
and FlashAttention on bfloat16, GPU, inference (q len =
1) (Figure 9), run:
sweep kv length
python -W ignore::UserWarning: score_mod.py -dtype bfloat16 \
-s 1024 4096 16384 65536 131072 --kv-size 256 \
--backend cudnn efficient math fakv -mods noop \
-d 64 --throughput --decoding

sweep decoding mods
python -W ignore::UserWarning: score_mod.py -dtype bfloat16 \
-s 65536 --kv-size 256 --backend cudnn efficient math fakv \
-mods noop causal alibi softcap \
-d 64 --decoding --throughput

This runs batched attention with FlexAttention, SDPA
(with math, mem-efficient, cudnn) and FlashAttention (v2
& v3) backends and computes FlexAttention speedups. If
one wants to save the results in a csv file, --save-path
should be set.

B.6 Evaluation and expected result
The score mod.py benchmark prints runtime (ms), kernel
speed (TFLOPS/s), memory throughput (TB/s), and Flex-
Attention speedup numbers for each setup. It may also
print some messages starting with [SKIP], which means
that some backends are skipped due to errors such as GPU
out-of-memory or the lack of support for certain attention
variants. Metrics for the skipped backends are reported as
nan. The kernel speed should be similar to Figure 7 and
Figure 9 reported in the paper.

B.7 Experiment customization
The above command can be customized in many ways,
including sequence length, batch size, head dimension,
mods, baseline backends, maxautotune etc. Run python
score mod.py --help for details.

B.8 Notes
FlexAttention inference speed (Figure 12) is reported by gpt-
fast benchmarks. See https://github.com/pytorch-labs/gpt-
fast#benchmarks for detailed instructions.

FlexAttention training speed (Figure 11) is reported by
torchtune maintainers in
https://gist.github.com/RdoubleA/012409f7919973d6ba7e9ca3efd5c237.
Details results of this experiment can be found at
https://wandb.ai/rafi-personal/torchtune?nw=4slh3i00evh.

Benchmark for FlexAttention implementation of paged kv
cache (Figure 13) can be found at
https://github.com/pytorch-labs/attention-
gym/blob/main/attn gym/paged attention/latency.py.

https://github.com/pytorch-labs/gpt-fast#benchmarks
https://github.com/pytorch-labs/gpt-fast#benchmarks
https://gist.github.com/RdoubleA/012409f7919973d6ba7e9ca3efd5c237
https://wandb.ai/rafi-personal/torchtune?nw=4slh3i00evh
https://github.com/pytorch-labs/attention-gym/blob/main/attn_gym/paged_attention/latency.py
https://github.com/pytorch-labs/attention-gym/blob/main/attn_gym/paged_attention/latency.py

