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Figure 1: Our approach, PartEdit, enables a wide range of fine-grained edits, allowing users to create
highly customizable changes. The edits are seamless, precisely localized, and of high visual quality
with no leakage into unedited regions.

ABSTRACT

We present the first text-based image editing approach for object parts based on
pre-trained diffusion models. Diffusion-based image editing approaches capitalized
on the deep understanding of diffusion models of image semantics to perform a
variety of edits. However, existing diffusion models lack sufficient understanding
of many object parts, hindering fine-grained edits requested by users. To address
this, we propose to expand the knowledge of pre-trained diffusion models to
allow them to understand various object parts, enabling them to perform fine-
grained edits. We achieve this by learning special textual tokens that correspond
to different object parts through an efficient token optimization process. These
tokens are optimized to produce reliable localization masks at each inference step
to localize the editing region. Leveraging these masks, we design feature-blending
and adaptive thresholding strategies to execute the edits seamlessly. To evaluate
our approach, we establish a benchmark and an evaluation protocol for part editing.
Experiments show that our approach outperforms existing editing methods on all
metrics and is preferred by users 77− 90% of the time in conducted user studies.
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Prompt: “A red mustang car with a black hood parked by the ocean”Prompt: “A muscular man in a white shirt with a robotic head”

mustangrobotic headman hood ocean

Figure 2: A visualization for the cross-attention maps of SDXL (Podell et al., 2024) that corresponds
to different words of the textual prompt. Object parts such as “head” and “hood” are not well-
localized, indicating that the model lacks a sufficient understanding of these parts.

1 INTRODUCTION

Diffusion models (Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Podell et al., 2024;
Esser et al., 2024) have significantly advanced image generation, achieving unprecedented levels of
quality and fidelity. This progress is generally attributed to their large-scale training on the LAION-
5B dataset (Schuhmann et al., 2022) with image-text pairs, leading to a profound understanding of
images and their semantics. Recent image editing methods (Hertz et al., 2022; Brooks et al., 2023;
Brack et al., 2024; Parmar et al., 2023; Tumanyan et al., 2023; Kawar et al., 2023; Huang et al.,
2024) have capitalized on this understanding to perform a wide range of edits to enhance the creative
capabilities of artists and designers. These methods allow users to specify desired edits through text
prompts, enabling both semantic edits, such as modifying objects or their surroundings, and artistic
adjustments, like changing style and texture. Ideally, these edits must align with the requested textual
prompts while being seamlessly integrated and accurately localized in the image.

Despite the remarkable advancement in these diffusion-based image editing methods, their effective-
ness is limited by the extent to which diffusion models understand images. For instance, while a
diffusion model can manipulate objects, it might fail to perform edits on fine-grained object parts.
Figure 1 shows examples where existing editing methods fail to perform fine-grained edits. For
instance, in the first row, they exhibit poor localization of the editing region and fail to edit only the
torso of the robot. In the second row, none of the approaches were able to localize the “hood” or
apply the edit. In the final row, existing approaches suffer from entangled parts, making the man’s
face younger when instructed to change his hair to "blonde." These limitations can be attributed
to the coarse textual descriptions in the LAIOB-5B dataset that is used to train diffusion models.
Specifically, the model fails to understand various object parts as they are not explicitly described
in image descriptions. Moreover, data biases in the datasets are also captured by the model, e.g.,
associating blond hair with youth.

To validate this hypothesis, we visualized the cross-attention maps of a pre-trained diffusion model
for two textual prompts with specific object parts in Figure 2. Cross-attention computes attention
between image features and textual tokens, reflecting where each word in the textual prompt is
represented in the generated image. For the first prompt, “A muscular man in a white shirt with a
robotic head”, the generated image resembles a man with robotic arms instead of a robotic head.
The cross-attention maps show that the token “head” is activated at the arms rather than the head. A
possible explanation for this behavior is that the “head” has been entangled with the “arms” during
training due to the coarse textual annotations of the training images. For the second prompt, “A red
Mustang car with a black hood parked by the ocean”, the generated car is entirely red, including
the hood. The cross-attention map for the token ”hood” indicates that the model is uncertain about
its location. This can be attributed to the lack or scarcity of images with “hood” annotations in the
LAION-5B dataset used for training.

In this paper, we address the limitations of pre-trained diffusion models in their understanding of
object parts. By expanding their semantic knowledge, we enable fine-grained image edits, providing
creators with greater control over their images. We achieve this by training part-specific tokens
that specialize in localizing the editing region at each denoising step. Based on this localization,
we develop feature blending and adaptive thresholding strategies that ensure seamless and high-
quality editing while preserving the unedited areas. To learn the part tokens, we design a token
optimization process (Zhou et al., 2022) tailored for fine-grained editing, utilizing existing object part

∗Equal contribution
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datasets (Donadello & Serafini, 2016; He et al., 2022) or user-provided datasets. This optimization
process allows us to keep the pre-trained diffusion model frozen, thereby expanding its semantic
understanding without compromising generation quality or existing knowledge. To evaluate our
approach and to facilitate the development of future fine-grained editing approaches, we introduce
a benchmark and an evaluation protocol for part editing. Experiments show that our approach
outperforms all methods in comparison on all metrics and is preferred by users 77− 90% of the time
in conducted user studies.

2 TEXT-TO-IMAGE DIFFUSION MODELS

Diffusion models are probabilistic generative models that attempt to learn an approximation of a
data distribution p(x). This is achieved by progressively adding noise to each data sample x0 ∼ p(x)
throughout T timesteps until it converges to an isotropic Gaussian distribution as T → ∞. During
inference, a sampler such as DDIM (Song et al., 2020) is used to reverse this process starting from
Gaussian noise xT ∼ N (0, I) that is iteratively denoised until we obtain a noise-free sample x̂0

0. The
reverse process for timestep t ∈ [T, 0] is computed as:

xt−1 =
√
αt−1 x̂

t
0 +

√
1− αt−1 − σ2

t ϵtθ(xt) + σtϵt ,

x̂t
0 =

xt −
√
1− αt ϵ

t
θ(xt)√

αt
.

(1)

where αt, σt are scheduling parameters, ϵtθ is a noise prediction from the UNet, and ϵt is random
Gaussian noise. This is referred to as unconditional sampling, where the model would generate an
arbitrary image for every random initial noise xT .

To generate an image that adheres to a user-provided input, e.g., a textual prompt P , the model
can be trained conditionally. In this setting, the UNet is conditioned on the prompt P , and the
noise prediction in Equation (1) is computed as ϵtθ(xt,P). More specifically, the textual prompt
is embedded through a textual encoder, e.g., CLIP (Radford et al., 2021), to obtain an embedding
E ∈ R77×2048 (for SDXL). This textual embedding interacts with the UNet image features F within
cross-attention modules at UNet block i to compute attention as:

Ai = Softmax

(
Qi K

⊤
i√

dki

)
,

Qi = Fi WQi
, Ki =E WKi

, Vi = E WVi
.

(2)

where Fi are UNet features at layer i, and W are trainable projection matrices. The output features
are eventually recomputed as F̂i = Ai Vi. This interaction between the text embedding E and the
image features F allows cross-attention modules to capture how each word/token in the text prompt
spatially contributes to the generated image as illustrated in Figure 2. Similarly, each UNet block has
a self-attention module that computes cross-feature similarities encoding the style of the generated
image where:

Qi = Fi WQi
, Ki = Fi WKi

, Vi = Fi WVi
.

3 PARTEDIT: FINE-GRAINED IMAGE EDITING

A common approach for editing images in diffusion-based methods involves manipulating the cross-
attention maps (Hertz et al., 2022; Parmar et al., 2023; Epstein et al., 2023). If the cross-attention
maps do not accurately capture the editing context, e.g., for editing object parts, these methods are
likely to fail, as demonstrated in Figure 1. An intuitive solution to this problem is expanding the
knowledge of the pre-trained diffusion models to understand object parts. This can be accomplished
by fine-tuning the model with additional data of image/text pairs where the text is detailed. However,
this approach can be costly due to the extensive annotation required for fine-tuning the model, and
there is no guarantee that the model will automatically learn to identify object parts effectively from
text.

An alternative approach is leveraging token optimization (Zhou et al., 2022) to learn new concepts
through explicit supervision of cross-attention maps. This was proven successful in several appli-
cations (Hedlin et al., 2023; Khani et al., 2024; Marcos-Manchón et al., 2024) as it allows learning

3
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Figure 3: An overview of our proposed approach for fine-grained part editing. For an object part p,
we collect a dataset of images Ip and their corresponding part annotation masks Yp. To optimize a
textual token to localize this part, we initialize a random textual embedding Ê that initially generates
random cross-attention maps. During optimization, we invert images in Ip and optimize the part
token so that the cross-attention maps at different layers and timesteps match the part masks in Yp.
After optimizing the token, it can be used during inference to produce a localization mask at each
denoising step. These localization masks are used to perform feature bending between the source
and the edit image trajectories. Note that we visualize three instances of SDXL (Podell et al., 2024)
for illustration, but in practice, this is done with the same model in a batch of three.

new concepts while keeping the model’s weights frozen. We leverage token optimization to perform
fine-grained image editing of various object parts. We focus on optimizing tokens that can produce
reliable non-binary blending masks at each diffusion step to localize the editing region. We supervise
the optimization using either existing parts datasets such as PASCAL-Part (Donadello & Serafini,
2016), and PartImageNet (He et al., 2022) or a few user-annotated images.

3.1 LEARNING PART TOKENS

Our training pipeline for object part tokens is illustrated in Figure 3. Given an object part p, we
collect a set of images Ip = {Ip1 , I

p
2 , . . . I

p
N} and their corresponding segmentation masks of the

respective parts Yp = {Y p
1 , Y

p
2 , . . . Y

p
N}. We start by encoding images in Ip into the latent space

of a pre-trained conditional diffusion model using the VAE encoder and then add random Gaussian
noise that corresponds to timestep tstart ≤ T in the diffusion process. Instead of conditioning the
model on the embedding E of a textual prompt as explained in Section 2, we initialize a random
textual embedding Ê ∈ R2×2048 instead. This embedding Ê has two trainable tokens, where the first
is optimized for the part of interest, and the second is for everything else in the image. Initially, this
embedding will produce random cross-attention maps at different UNet blocks and timesteps.

To train a token for part p, we optimize the first token in Ê to produce cross-attention maps Âp
i,t that

corresponds to the part segmentation masks in Yp at different denoising steps t and UNet blocks i.
We employ the Binary Cross-Entropy (BCE) as a training loss for this purpose. For image Ipj ∈ Ip, a
loss is computed as:

Lp
j =

∑
t

∑
i∈L

Y p
j log(Âp

i,t) + (1− Y p
j ) log(1− Âp

i,t) (3)

where t ∈ [tstart, tend] are the diffusion timesteps that we include in the loss computation, and L is
the set of UNet layers. The loss is averaged over all pixels in Lp

j and then over all images in Ip. Note
that the groundtruth segmentation masks Y p

j are resized to the respective size of the attention maps for
loss computation. After optimizing the tokens, they are stored with the model as textual embeddings
and are referred to as <part-name>. During denoising, these optimized tokens would produce a
localization map for where the part is located in the image within the cross-attention modules.
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Figure 4: The impact of the choice of which timesteps to include in the token optimization process.
Intermediate timesteps achieve reasonable localization for both big and small parts.

3.2 CHOOSING TIMESTEPS AND UNET BLOCKS TO OPTIMIZE

Ideally, we would like to optimize over all timesteps and UNet layers. However, this is computa-
tionally and memory-expensive due to the large dimensionality of intermediate features in diffusion
models, especially SDXL (Podell et al., 2024) that we employ. Therefore, we need to select a subset
of layers and timesteps to achieve a good balance between localization accuracy and efficiency.

To determine the optimal values for tstart, tend, we analyze the reconstructions of noise-free predic-
tions x̂0 as per Equation (1) to observe the progression of image generation across different timesteps.
Figure 4 shows that when optimizing over early timesteps tstart = 50, tend = 40, the noise level is
high, making it difficult to identify different parts. For intermediate timesteps, tstart = 30, tend = 20,
most of the structure of the image is present, and optimizing on these timesteps leads to good local-
ization for big parts (e.g. the head) across most timesteps during inference. Moreover, the localization
of small parts, such as the eyes, becomes more accurate the closer the denoising gets towards t = 0.
Finally, optimizing on late timesteps, tstart = 10, tend = 0, provides reasonable localization for big
parts at intermediate timesteps but does not generalize well to early ones. Based on these observations,
we choose to optimize on intermediate timesteps for localizing larger parts due to their consistent
performance during inference time across all timesteps. For smaller parts, both intermediate and late
timesteps offer satisfactory localization.

Regarding the selection of layers L for optimization, we initially include all UNet blocks during
training and subsequently evaluate each block’s performance using the mean Intersection over Union
(mIoU) metric. Our analysis reveals that the first eight blocks of the decoder are sufficient to achieve
robust results, making them suitable for scenarios with limited computational resources. Further
details are provided in the appendix.

After learning the part tokens, the diffusion model can now understand and localize parts through our
optimized tokens. Next, we explain how we use them to perform fine-grained part edits. We start by
describing our approach for the synthetic image setup where the diffusion trajectory is known; then,
we explain how to perform real image editing.

3.3 PART EDITING

Given a source image Is that was generated with a source prompt Ps, it is desired to edit this image
according to the editing prompt Pe to produce the edited image Ie. To perform part edits, the editing
prompt shall include one of the optimized part tokens that we refer to as <part-name>. As an
example, a source prompt can be “A closeup of a man”, and the editing prompt can be “A closeup of
a man with a robotic <head>”, where <head> is a part token. To apply the edit, we perform the
denoising in three parallel paths (see Figure 3). The first path is the source path, which includes the
trajectory of the original image that originates from a synthetic image or an inverted trajectory of a
real image. The second path incorporates the part tokens that we optimized, and it provides the part
localization masks. The final path is the edit path that is influenced by the two other paths to produce
the final edited image. Since Ê has 2 tokens compared to 77 tokens in the source and the edit paths,
we pad Ê with the background token to match the size of the other two embeddings. In the appendix,
we provide more details on the choice of padding strategy.

For each timestep t and layer i, we compute the cross-attention map Âi
t for the embedding Ê to

obtain attention maps highlighting the part p. For timesteps t < T , the attention maps from the
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previous step t− 1 are aggregated across all layers in L to obtain a blending mask Mt as follows:

Mt =
∑
i∈L

RESIZE(Âi
t−1) . (4)

The mask Mt is min-max normalized in the range [0, 1]. To perform a satisfactory edit, it is desired to
edit only the part that is specified by the editing prompt, preserve the rest of the image, and seamlessly
integrate the edit into the image. Therefore, we propose an adaptive thresholding strategy that fulfills
this criterion given the aggregated mask Mt:

T (X) =


1 if X ≥ ω

x if k/2 ≤ X < ω

0, X < k/2

,

k = OTSU(X) .

(5)

where OTSU is the OTSU thresholding (Otsu et al., 1975), ω is a tunable tolerance for the transition
between the edited parts and the original object. We find that ω = 3k/2 achieves the best visual
quality, and we fix it for all experiments. This criterion ensures suppressing the background noise
and a smooth transition between the edited part and the rest of the object. Finally, we employ Mt to
blend the features between the source and the editing paths as:

F̂ e
i,t = T (Mt) F̂

e
i,t + (1− T (Mt)) F̂

s
i,t (6)

where F̂ s
i,t and F̂ e

i,t are the image features after attention layers for the source and the edited image,
respectively. We apply this blending for timesteps in the range [1, te] where te ≤ T and the choice of
te controls the locality of the edit. More specifically, a higher te indicates higher preservation of the
unedited regions, while a lower te gives the model some freedom to add relevant edits in the unedited
regions. We provide more details in Section 4.4.

3.4 REAL IMAGE EDITING

Our approach can also perform part edits on real images by incorporating a real image inversion
method, e.g., Ledits++ (Brack et al., 2024) or EF-DDPM (Huberman-Spiegelglas et al., 2024). In this
setting, the role of the inversion method is to estimate the diffusion trajectory x0 . . . xT for a given
real image. This estimated trajectory is then used as the source path in Figure 3. To obtain the source
prompt Ps of the real images, we use the image captioning approach, BLIP2 (Li et al., 2023), which
is commonly used for this purpose. Finally, the edit is applied where the localization and editing
paths are similar to the synthetic setting.

3.5 DISCUSSION

Our approach is a text-based editing approach eliminating the need for the user-provided masks to
perform fine-grained edits. Despite the fact that the token optimization process requires annotated
masks for training, it can already produce satisfactory localization based on a single annotated image
(see the Appendix). Moreover, the localization masks produced by the tokens are non-binary, leading
to a seamless blending of edits, unlike user-provided masks, which are typically binary.

Another aspect is that our approach can be used in the context of image generation in case of
complicated concepts that are difficult for diffusion models to comprehend from regular prompts.
Examples of this scenario were shown in Figure 2, where a direct generation process failed to generate
the requested concepts. In that case, and with the help of the optimized part tokens, the user can
specify different attributes for different parts of the object in the image.

4 EXPERIMENTS

In this section, we provide an evaluation of our proposed approach, a comparison against existing
text-based editing approaches, and an ablation study. To facilitate these aspects, we create a manually
annotated dataset of several object parts. For a comprehensive evaluation, we compare against both
synthetic and real image editing approaches.
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Figure 5: A qualitative comparison on synthetic images from the PartEdit dataset.

4.1 EVALUATION SETUP

Synthetic Image Editing We base our method on a pre-trained SDXL (Podell et al., 2024) 1. For
sampling, we employ the DDIM sampler (Song et al., 2020) with T = 50 denoising steps and
default scheduling parameters as (Hertz et al., 2022). For token optimization, we train on 10-20
images per token for 2000 optimization steps. We set te = T = 50 for complete preservation of the
unedited regions. We compare against two popular text-based editing approaches: Prompt-to-Prompt
(P2P) (Hertz et al., 2022) and Instruct-Pix2Pix (iP2P) (Brooks et al., 2023). We use the SDXL
implementation of P2P2, and the Diffusers implementation of iP2P3.

Real Image Editing We use Ledits++ (Brack et al., 2024) inversion method to invert the images
where the source prompt Ps is produced by BLIP2 (Li et al., 2023) as described in Section 3.4. We
compare against Ledits++ and EF-DDPM (Huberman-Spiegelglas et al., 2024)

PartEdit Dataset We create a synthetic and real dataset of 7 different object parts:
<humanoid-head>, <humanoid-torso>, <human-hair> <animal-head>,
<car-body>, <car-hood>, and <chair-seat>. For the synthetic dataset, we gener-
ate random source prompts of the objects of interest at random locations and select random edits
from pre-defined lists. We generate a total of 60 synthetic images and manually annotate the part
of interest. For the real dataset, we collect 20 images from the internet and manually annotate and
assign editing prompts to them. We denote the synthetic and real datasets as PartEdit-Synth and
PartEdit-Real, respectively. More details are provided in the Appendix.

Evaluation Metrics To evaluate the edits, we want to verify that: (1) The edit has been applied at the
correct location. (2) The unedited regions and the background have been preserved. Therefore, We
evaluate the following metrics for the foreground (the edit) and the background:

1. αClipFG: the CLIP similarity between the editing prompt and the edited image region.

2. αClipBG: the CLIP similarity between the unedited region of the source and the edited
image. We also compute PSNR and structural similarity (SSIM) for the same region.

where αClip is the masked CLIP from (Sun et al., 2024).

4.2 QUALITATIVE RESULTS

Synthetic Image Editing Figure 5 shows a qualitative comparison. Our approach excels at performing
challenging edits seamlessly while perfectly preserving the background. P2P fails in most cases to
perform the edit as it cannot localize the editing part. iP2P completely ignores the specified part
and applies the edit to the whole object in some cases and produces distorted images in other cases.

1Our code and dataset will be made publicly available.
2https://github.com/RoyiRa/prompt-to-prompt-with-sdxl
3https://huggingface.co/docs/diffusers/en/api/pipelines/pix2pix
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Figure 6: A qualitative comparison against EF-DDPM (Huberman-Spiegelglas et al., 2024) and
Ledits++ (Brack et al., 2024) on real image editing.

Remarkably, our approach succeeds in eliminating racial bias in SDXL by decoupling the hair region
from the skin color, as shown in the top-right example.

Real Image Editing Figure 6 shows a qualitative comparison of real image editing. PartEdit produces
the most seamless and localized edits, whereas other approaches fail to localize the correct editing
region accurately. Additionally, we provide a qualitative comparison against InfEdit (Xu et al., 2024)
and PnPInversion (Ju et al., 2024) in the supplementary.

4.3 QUANTITATIVE RESULTS

Synthetic Image Editing Table 1 top summarizes the quantitative metrics on PartEdit-Synth dataset.
Our approach performs the best on αClipavg and all metrics for the unedited regions. iP2P scores the
best in terms αClipFG as it tends to change the whole image to match the editing prompt, ignoring
the structure and the style of the original image (see Figure 5). We also performed two user studies
comparing our approach against P2P and iP2P on Amazon Mechanical Turk. Our approach is
preferred by the users 88.6 % and 77.0% of the time compared to P2P and iP2P, respectively. The
reported results for the user studies are based on 360 responses per study.

Mask-Based Editing To demonstrate the effectiveness of our text-based editing approach, we com-
pare it against two mask-based editing approaches, SDXL inpainting and SDXL Latent Blending
(Avrahami et al., 2023b), where the user provides the editing mask. We use the groundtruth anno-
tations to perform the edits for these two approaches, while our approach relies on the optimized
tokens. Table 1 shows that our approach is preferred by 75% and 66% of users over the mask-based
approaches. This reveals that our editing approach produces visually more appealing edits even
compared to the mask-based approaches, where the mask is provided.

Real Image Editing Table 1 shows that PartEdit outperforms Ledits++ and EF-DDPM on all metrics
and is significantly favored by users in the user study. This demonstrates the efficacy of our approach
in performing fine-grained edits. Additionally, we compare against InfEdit (Xu et al., 2024) and
PnPInversion (Ju et al., 2024).

4.4 ABLATION STUDY

Impact of te The choice of the number of timesteps to perform feature blending using Equation (6)
controls the locality of the edit, where the blending always starts at timestep one and ends at te.
Figure 7 shows two different scenarios for how to choose te based on the user desire. In the first row,
a low te causes the horse’s legs and tail to change to dragon ones, but a higher te would change only
the head and preserve everything else. The second row has another example: a lower te discards the
girl’s hair, and a higher te preserves it. Consequently, te gives the user more control over the locality
of the performed edits.
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Method Edited Region Unedited Region
αClipavg↑ Ours Pref. (%)↑

αClipFG↑ αClipBG ↑ PSNR ↑ SSIM ↑

Synthetic Image Editing

P2P 63.60 20.46 23.7 0.87 42.03 88.6
iP2P 89.31 5.55 18.0 0.74 47.43 77.0
PartEdit (Ours) 91.74 38.38 31.5 0.98 65.06 -

Mask-Based Editing

SDXL Inpainting 79.72 46.76 34.2 0.96 63.24 75.0
Latent Blending 90.09 46.45 37.5 0.98 68.27 66.1

Real Image Editing

Ledits++ 66.57 12.95 20.9 0.69 39.76 80.77
EF-DDPM 73.57 15.09 22.9 0.72 44.33 90.38
InfEdit 67.67 21.71 22.5 0.70 44.69 77.88
PnPInversion 71.71 23.59 22.6 0.73 47.65 79.81
Ours w/ Ledits++ 85.59 28.29 26.3 0.76 56.94 -

Table 1: A quantitative comparison on the task of parts editing. Ours Pref. indicates the percentage
where our approach was favored by users in the user study.
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Figure 7: The impact of changing the number of denois-
ing steps te to perform feature blending.

Threshold at 0.5 OTSU Ours

Figure 8: Comparison of an edit under differ-
ent mask binarization strategies.

Impact of Binarization To show the efficacy of our proposed thresholding strategy in Equation (5),
we show an edit under different binarization strategies in Figure 8. Standard binarization, where
the blending mask is thresholded at 0.5, leads to the least seamless edit as if a robotic mask was
placed on the man’s head. OTSU integrates some robotic elements on the neck, but they are not
smoothly blended. Finally, our thresholding strategy produces the best edit, where the robotic parts
are seamlessly integrated into the neck.

5 RELATED WORK

5.1 DIFFUSION-BASED IMAGE EDITING

In general, the image semantics are encoded within the cross-attention layers, which specify where
each word in the text prompt is located in the image (Hertz et al., 2022; Tang et al., 2023). In
addition, the style and the appearance of the image are encoded through the self-attention layers
(Tumanyan et al., 2023). Diffusion-based editing approaches exploit these facts to perform different
types of semantic or stylistic edits. On the semantic level, several approaches attempt to change the
contents of an image according to a user-provided prompt (Hertz et al., 2022; Brooks et al., 2023; Lin
et al., 2023; Kawar et al., 2023; Parmar et al., 2023). These changes include swapping an object or
altering its surroundings by manipulating the cross-attention maps either through token replacement
or attention-map tuning. For stylistic edits, several approaches (Cao et al., 2023; Tumanyan et al.,
2023; Parmar et al., 2023; Hertz et al., 2023) modify the self-attention maps to apply a specific
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style to the image while preserving the semantics. This style is either provided by the user in the
form of text or a reference image. It is worth mentioning that an orthogonal research direction
investigates image inversion to enable real image editing (Brack et al., 2024; Huberman-Spiegelglas
et al., 2024; Brooks et al., 2023). Another line of research focuses on memory-based guidance for
moving objects (dragging) (Mou et al., 2023). Methods that focus on obtaining a fine-grained mask
or editing segments of the image (Liu et al., 2024; Yu et al., 2024; Singh et al., 2023; Wei et al., 2024;
Kirillov et al., 2023). For a comprehensive review of editing techniques and applications, we refer
readers to (Huang et al., 2024). Existing text-based editing approaches struggle to apply semantic or
stylistic edits to fine-grained object parts, as demonstrated in Section 4. Our approach, PartEdit, is the
first step toward enabling fine-grained editing, which will enhance user controllability and experience,
and can potentially be integrated into existing editing pipelines.

5.2 TOKEN OPTIMIZATION

To expand the capabilities of pre-trained diffusion models or to address some of their limitations, they
either need to be re-trained or finetuned. However, these approaches are computationally expensive
due to the large scale of these models and the training datasets. An attractive alternative is token
optimization, where the pre-trained model is kept frozen, and special textual tokens are optimized
instead. Those tokens are then used alongside the input prompt to the model to perform a specific task
through explicit supervision of cross-attention maps. This has been proven successful in several tasks.
(Valevski et al., 2023; Gal et al., 2022; Avrahami et al., 2023a; Safaee et al., 2024) employed token
optimization and LoRA finetuning to extract or learn new concepts that are used for image generation.
(Hedlin et al., 2023) learned tokens to detect the most prominent points in images. (Marcos-Manchón
et al., 2024; Khani et al., 2024) optimized tokens to perform semantic segmentation. We explored
the use of token optimization to learn tokens for object parts customized with a focus on image
editing. For this purpose, we adopt SDXL (Podell et al., 2024) as a base model to obtain the best
visual editing quality in contrast to existing approaches that leverage SD 1.5 or 2.1. Our token
optimization training is also tailored to obtaining smooth cross-attention maps across all timesteps,
unlike (Marcos-Manchón et al., 2024; Khani et al., 2024) that aggregate all attention maps and apply
post-processing to obtain binary segmentation masks.

6 CONCLUDING REMARKS

Limitations Our approach is limited by the generation capability of the underlying diffusion model.
For instance, it can not perform unreasonable edits that combine irrelevant parts, e.g., editing a human
head to become a car wheel. Moreover, it can not change the style of the edited part to a different
style other than the style of the original image. This limitation stems from the internal design of
SDXL that encodes the style in self-attention and prevents mixing two different styles. We provide
examples of these scenarios in the Appendix.

Ethical Impact Our approach can help alleviate the internal racial bias of some edits, such as
correlating “Afro” hair with Africans, as we demonstrated in Figure 5. On the other hand, our
approach can produce images that might be deemed inappropriate for some users by mixing parts of
different animals or humans. Moreover, the remarkable seamless edits performed by our approach
can potentially be used for generating fake images, misinformation, or changing the identity.

Future Work Our approach can be extended to perform 3D edits similar to Instruct-Nerf2Nerf Haque
et al. (2023). An LLM can also be incorporated to parse complicated editing prompts to the correct
part token. For example, mapping “A man with a muscular upper body” to the token “<torso>”.

7 CONCLUSION

We introduced the first text-based editing approach for object parts based on a pre-trained diffusion
model. Our approach can perform appealing edits that possess high quality and are seamlessly
integrated with the parent object. Moreover, it can create concepts that the standard diffusion
models and editing approaches are incapable of generating. This helps to unleash the creativity of
creators, and we hope that our approach will establish a new line of research for fine-grained editing
approaches.
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Figure 9: The impact of the number of training samples on mIoU.

A APPENDIX

B ADDITIONAL QUALITATIVE RESULTS

We provide more qualitative results in the attached supplementary material.

C NUMBER OF TRAINING SAMPLES

To study the impact of the number of training samples used for training each individual token, we train
on varying numbers of samples from the quadruped-head training set of the PartImageNet dataset. We
then compute the mean intersection-over-union (mIoU) on 50 randomly sampled validation samples.
Figure 9 shows the mIoU over 5 runs that are optimized for 2000 steps. The figure shows that 10-20
training samples achieve a similar mIoU. The mIoU might improve further with more samples, but
we observed that this small number of samples is sufficient to attain a good localization of different
parts. This is a clear advantage of our approach compared to training a part segmentation model that
requires a large number of samples.

D CHOICE OF Ω FOR OUR ADAPTIVE THRESHOLDING

To understand how the choice of Ω in Equation 5 affects the editing, we provide an example for an
edit with different values of Ω in Figure 10. Lower values of ω make the editing regions dominated
by the editing prompt and put less emphasis on blending with the main object. This is demonstrated
by the Joker’s head, which does not follow the original head pose. By increasing the value of Ω,
the blending starts to improve, and the edit becomes more harmonious with the original object. At
Ω = 3k/2, the best trade-off between performing the edit and blending with the original object is
achieved, and we find it to be optimal for most edits. Increasing Ω further can make the original
object dominate over the edit, e.g. the hair of the man remains unedited.
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Figure 10: Applying the edit "with a Joker <head>" with different choices of hyperparameter ω.
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Figure 11: Influence of different token padding strategies during inference on the cross-attention
maps.

E CHOICE OF TOKEN PADDING STRATEGIES

During token optimization, we train a custom embedding Ê ∈ R2×2048. However, during inference,
the dimensionality of this embedding needs to match the standard SDXL embedding E ∈ R77×2048.
Therefore, our embedding needs to be padded with some tokens to match that of SDXL. Possible
choices are: padding with [2-77] tokens from E (context), zero padding, <BG> token, <SoT> from E,
or <EoT> token from E. We display the effect of these different strategies on the average extracted
attention map in Figure 11 The figure shows that padding with the <BG> or <SoT> from E attains
the cleanest attention maps, leading to the best edits in terms of blending with the main object.

F CHOICE OF UNET LAYERS FOR TOKEN OPTIMIZATION

To decide which UNet layers to include in token optimization (L in Equation 3), we compute the
mIoU for every individual layer based on their cross-attention maps. The results are shown in
Figure 12. We can observe that the first 8 layers of the Decoder with indices [24,32] achieve the best
mIoU, indicating that they are semantically rich. Those 8 layers can be used to optimize the tokens
rather than all layers in case of limited computational resources.
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mIoU

La
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Figure 12: Analysis of how each layer of the UNet performs in terms of mioU. The first eight
collected layers of the decoder achieve the best results. Note that we apply OTSU for binarization.

G DIFFERENT EDITS PER IMAGE

To show that our method performs consistently well with different edits, we provide some qualitative
examples. In Figure 13, we apply multiple identity edits to the input image. This figure showcases the
powerful versatility of our approach. Two noteworthy edits are “young” and “old”, where the identity
of the man is preserved and aged according to the edit. Moreover, our approach successfully changes
the identity of multiple celebrities of different ethnicities seamlessly at an exceptional quality.

We provide other examples in Figure 14 for real images, where different edits are applied. The figure
shows that our approach performs consistently well and can apply edits of a different nature to the
same image.

H FAILURE CASES

Figure 15 shows two examples of failure cases. The first example shows that the edits performed by
our approach are restricted to the style of the original image. More specifically, it can not change
the style from “real” to a “drawing”. This limitation stems from the internal design of SDXL that
encodes the style in self-attention and prevents mixing two different styles. The second example
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Figure 13: Applying different identity edits to the same image.
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Original Image “Batman <torso>” “Robot <torso>” “Alien <torso>”

Original Image “Bear <head>” “Dog <head>” “Zebra <head>”

Original Image “Armored <torso>” “Formal < torso >” “Batman < torso >”

Figure 14: Different edits per image on real image editing.
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Figure 15: Failure cases. Our approach can not perform an edit in a different style (left) or unreason-
able edits (right).

shows that our approach can not perform unreasonable edits, such as replacing a cat’s head with a
human head. This limitation arises from the incapability of SDXL to generate these concepts, but we
see a promising direction of disentanglement of existing concepts.

I USER STUDY DETAILS

We conducted two user studies against P2P and iP2P independently using the 2AFC technique with
a random order of methods. We used Amazon Web Turk, with the minimal rank of "masters," and
received 360 responses per study. The users were provided with the following instructions: “Y”ou are
given an original image on the left, edited using the A and B methods. Please select the method that
changes ONLY the part specified by PART and keeps the rest of the image unchanged. For example,
if the original image has a ’Cow", PART is “Head”, and EDIT is “Dragon”, choose the method that
changes the cow head to dragon head, and keeps the rest of the cow’s body as it is. A screenshot of
the user study layout is shown in Figure 16.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 16: Visualization of the user study layout that we conducted.

J GENERATING PROMPTS AND EDITS FOR EVALUATION

We provide an example of how we generate prompts and edits for evaluation of <animal-head> in
Figure 17. We follow the same strategy for all other parts.

K IMPACT OF CHOICE OF IMAGES FOR TRAINING PART TOKENS

We further validate the impact of the choice of images during training. We perform a cross-validation
experiment using SD2 with the <Quadruped head> (PartImageNet). Specifically, we utilize 100
images in a 5-fold cross-validation setup, achieving a mean IoU of 71.704 with a standard deviation
of 4.372. This highlights the stability and generalization of the model’s semantic part segmentation
with optimized tokens across different training subsets.

L HYPERPARAMETERS

We provide hyperparameters used for training the tokens and hyper parameters used during editing.

For the training process, we deploy BCE loss of initial learning rate of 30.0, with a StepLR scheduler
of 80 steps size and gamma of 0.7. For the diffusion, we use a strength of 0.25 and a guidance scale
of 7.5. During aggregation for loss computation, masks are resized to 512 for SD2.1 and 1024 for
SDXL model variants. We use 1000 or 2000 epochs during training.

During inference, as discussed in Figure 10, we use ω of 1.5. For the guidance scale, larger values
tend to increase adherence to αCLIP but at the cost of PSNR and SSIM. We investigated values
between 3.5 and 20 for the guidance scale and used 12.5 as a balance between the two for Ours +
edits real setting. For the synthetic setting, a guidance scale of 7.5 was used. During inference, we
start editing at the first step, as we utilize prior time step mask information.

M ADDITIONAL QUALITATIVE COMPARISONS

We provide additional qualitative comparisons with InfEdit and PnPInversion for the same images
as in the main paper (in addition to quantitative results in the main table), and we can observe
that our approach outperforms them. Nonetheless, InfEdit does showcase potential with the Alien
head example Figure 18. For both methods, we use the default parameter values provided in their
demo/code, with default blending words between the object and their edited instruction. (E.g., source
prompt is "A statue of an angel with wings on the ground," target prompt is "A statue with the uniform
torso of an angel with wings on the ground," and blend between "statue" and "statue with uniform
torso").

N EDITING MULTIPLE REGIONS AT ONCE

Our approach can be easily adapted to edit multiple parts simultaneously at inference time without
retraining the tokens. To achieve this, the part tokens are loaded and fed through the network to
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 { 

 "template"  :  "A <OBJECT> at a <LOCATIONS>"  , 

 "template2"  :  "A <EDIT> at a <LOCATIONS>"  , 

 "objects"  : [ 

 "cat"  , 

 "dog"  , 

 "monkey"  , 

 "bird"  , 

 "bear"  , 

 "panda"  , 

 "horse"  , 

 "cow", 

 ], 

 "locations"  : [ 

 "forest"  , 

 "city"  , 

 "farm"  , 

 "park"  , 

 "desert"  , 

 "jungle"  , 

 "house"  , 

 "restaurant"  , 

 "library"  , 

 "museum"  , 

 "theater"  , 

 "stadium"  , 

 "pool" 

 ], 

 "edits"  :{ 

 "_animal"  :[ 

 "panda"  , 

 "cat"  , 

 "dog"  , 

 "lion"  , 

 "tiger"  , 

 "cheetah"  , 

 "dragon"  , 

 "unicorn"  , 

 ], 

 } 

Figure 17: Example of configuration for random generation of the edits.

produce cross-attention maps at different layers of the UNet. We accumulate these maps across
layers and timesteps as described in Section 3.3, but the main difference is that we normalize the
attention maps for different parts jointly at each layer. We provide several examples in Figure 19 and
visualizations of the combined attention maps.

O ADDITIONAL ATTENTION MAP LOCALIZATION VISUALIZED

Here, we provide additional visualizations of images, their annotated ground truth, raw normalized
token attention maps, binarized attention maps using a 0.5 threshold, binarized attention maps using
the Otsu threshold, and our approach using Otsu threshold (ω = 1.5). One can observe that our
approach can be thought of as a relaxation of binary thresholding but a stricter version of Otsu
thresholding.
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Figure 18: InfEdit (Xu et al., 2024) and PnPInversion (Ju et al., 2024) on real image setting.

P USE OF EXISTING SEGMENTATION MODELS LIKE SAM

Segment Anything Kirillov et al. (2023), as one of the foundational models in segmentation using
conditioned inputs such as points, still struggles to segment parts that do not have a harsh border
(commonly torso and head) while it has no problems with classes such as car hood. We can observe
such failure cases in Figure 21.

Q USER INTERFACE

We provide an illustration of our user interface in Figure 22. The user specifies the editing prompt
in the form “with <edit> <part-name>”, and the corresponding token is loaded to apply the
desired edit. The user also has the option to tune the te parameter (Editing Steps) to control the
locality of the edit. We also visualize the aggregated editing mask to help the user understand the
results.
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Figure 19: Visualization of editing 2 parts at the same time.
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Figure 20: Additional visualization of obtained attention maps across all time steps of the qualitative
results under the real setting.
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Figure 21: Visualization of masks obtained from Segment Anything (huge) model across the 3 heads
for the green provided point. The target indicates what we wanted to segment by the green point.
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Figure 22: An illustration of our user interface.
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