
A Training pseudocode423

Algorithm 1 SEQUENTIAL DEXTERITY: A bi-directional optimization framework for skill chaining
Require: sub-task MDPs M1,...,MK

1: Initialize sub-policies ⇡1
✓ ,...,⇡

K
✓ , transition feasibility function F 1

! ,...,F
K
! , ternimal state buffers

B1
I ,...,BK

I , the sum of reward buffers B1
R,...,BK

R
2: for iteration m=0,1,...,M do
3: for each subtask i=1,...,K do
4: while until convergence of ⇡i

✓ do
5: Rollout trajectories ⌧=(s0,a0,r0,...,sT) with ⇡i

✓

6: Update ⇡i
✓ by maximizing E⇡i [

PT�1
t=0 �trit]

7: end while
8: end for . Forward initialization
9: for each subtask i=K,...,1 do

10: while until convergence of ⇡i
✓ do

11: Sample s0 from environment or Bi�1
�

12: Rollout trajectories ⌧=(s0,a0,r0,...,sT) with ⇡i
✓

13: if cit>hi
t or terminate from environment then

14: Bi
T Bi

T [s[T�10:T],Bi
R Bi

R[[
PT�1

t=0 rit]
15: end if
16: Update F i with s[T�10:T]⇠Bi�1

T and [
PT�1

t=0 rt]⇠Bi
R

17: Update ⇡i
✓ by maximizing E⇡i [

PT�1
t=0 �trit]

18: end while
19: end for . Backward finetuning
20: end for

B Real-world system setups424

During real-world deployment, some observations used in the simulation are hard to accurately425

estimate (e.g., joint velocity, object velocity, etc.). We use the teacher-student policy distillation426

framework [6, 7, 49] to abstract away these observation inputs from the policy model. In each policy427

rollout, our system first uses the top-down camera view to perform a color-based segmentation to428

localize the target block piece given by the manual. Then, the robot calls motion planning API to429

move to the target location with OSC controller [50]. After that, our system uses the wrist camera430

view to track the segmentation and 6D pose of the object with a combination of color-based initial431

segmentation, Xmem segmentation tracker [51], and Densefusion pose estimator [52]. If the target432

object is deeply buried (as the case in the top left corner of Fig. 4), the transition feasibility function433

will inform the robot to execute the searching policy until the target appears. During the last insertion434

stage, the estimated 6D object pose will guide the robot policy to adjust its finger and wrist motion435

to align with the goal location as it learned in the simulation. Since simulating contact-rich insertion436

is still a research challenge in graphics, after the robot has placed the block to the target location, we437

perform a scripted pressing motion (spread out the entire hand and press down) on the target location438

to ensure a firm insert. More details about real-world system setups and results can be found in the439

Supplementary video.440

C State Space in Simulation441

C.1 Building Blocks442

Searching Table.4 gives the specific information of the state space of the searching task.443

Orienting Table.5 gives the specific information of the state space of the orienting task.444

12

Table 4: Observation space of Search task.
Index Description
0 - 23 dof position

23 - 46 dof velocity
46 - 98 fingertip pose, linear velocity, angle velocity (4 x 13)
98 - 111 hand base pose, linear velocity, angle velocity

111 - 124 object base pose, linear velocity, angle velocity
124 - 143 the actions of the last timestep
143 - 159 motor tactile
159 - 160 the number of pixels of the object exposed under the camera

Table 5: Observation space of Orient and Grasp task.
Index Description
0 - 23 dof position

23 - 46 dof velocity
46 - 98 fingertip pose, linear velocity, angle velocity (4 x 13)

98 - 111 hand base pose, linear velocity, angle velocity
111 - 124 object base pose, linear velocity, angle velocity
124 - 143 the actions of the last timestep
143 - 159 motor tactile

Grasping Table.5 gives the specific information of the state space of the grasping task.445

Inserting Table.6 gives the specific information of the state space of the inserting task.

Table 6: Observation space of Insert task.
Index Description
0 - 23 dof position

23 - 46 dof velocity
46 - 98 fingertip pose, linear velocity, angle velocity (4 x 13)

98 - 111 hand base pose, linear velocity, angle velocity
111 - 124 object base pose, linear velocity, angle velocity
124 - 143 the actions of the last timestep
143 - 159 motor tactile
159 - 166 goal pose
166 - 169 goal position - object position
169 - 173 goal rotation - object rotation

446

C.2 Tool positioning447

Grasping Table.5 gives the specific information of the state space of the grasping task.448

In-hand Orientation Table.6 gives the specific information of the state space of the in-hand orienta-449

tion task.450

D Reward functions451

D.1 Building Blocks452

Searching Denote the ⌧ is the commanded torques at each timestep, the number of pixels of the453

object exposed under the camera as P , the sum of the distance between each fingertip and the object as454

13

Table 7: Domain randomization of all the sub-tasks.
Parameter Type Distribution Initial Range

Robot
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.7, 1.3]
Joint Lower Limit Scaling loguniform [0.0, 0.01]
Joint Upper Limit Scaling loguniform [0.0, 0.01]

Joint Stiffness Scaling loguniform [0.0, 0.01]
Joint Damping Scaling loguniform [0.0, 0.01]

Object
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.5, 1.5]
Scale Scaling uniform [0.95, 1.05]

Observation
Obs Correlated. Noise Additive gaussian [0.0, 0.001]

Obs Uncorrelated. Noise Additive gaussian [0.0, 0.002]
Action
Action Correlated Noise Additive gaussian [0.0, 0.015]

Action Uncorrelated Noise Additive gaussian [0.0, 0.05]
Environment

Gravity Additive normal [0, 0.4]

P4
i=0fi, the action penalty as kak22, and the torque penalty as k⌧k22. Finally, the rewards are given by455

the following specific formula:456

r=�1⇤P+�2⇤min(
4X

i=0

fi�e0,0)+�3⇤kak22+�4⇤k⌧k22 (3)

where �1=5.0, �2=1.0, �3=�0.001, �4=�0.003, and e0=0.2.457

Orienting Denote the ⌧ is the commanded torques at each timestep, the angle of rotation of the object458

as ✓, the sum of the distance between each fingertip and the object as
P4

i=0fi, the action penalty as459

kak22, and the torque penalty as k⌧k22. Finally, the rewards are given by the following specific formula:460

r=�1⇤✓+�2⇤min(
4X

i=0

fi�e0,0)+�3⇤kak22+�4⇤k⌧k22 (4)

where �1=1.0, �2=1.0, �3=�0.001, �4=�0.003, and e0=0.6.461

Grasping Denote the ⌧ is the commanded torques at each timestep, the sum of the distance between462

each fingertip and the object as
P4

i=0fi, the action penalty as kak22, and the torque penalty as k⌧k22.463

Finally, the rewards are given by the following specific formula:464

r=�1⇤exp[↵0⇤min(
4X

i=0

fi�e0,0)]+�2⇤kak22+�3⇤k⌧k22 (5)

where �1 =1.0, �2 =�0.001, �3 =�0.003, ↵0 =�5.0, and e0 =0.1. It is worth noting that in the465

latter half of our grasping training, we force the hand to lift, so if the grip is unstable, the object will466

drop and the reward will decrease.467

Inserting Denote the ⌧ is the commanded torques at each timestep, the object and goal position as xo468

and xg, the angular position difference between the object and the goal as da, the sum of the distance469

between each fingertip and the object as
P4

i=0fi, the action penalty as kak22, and the torque penalty as470

k⌧k22. Finally, the rewards are given by the following specific formula:471

r=�1⇤exp[�(↵0⇤kxo�xgk2+↵1⇤2⇤arcsin(clamp(kdak2,0,1)))]+

�2⇤min(
4X

i=0

fi�e0,0)+�3⇤kak22+�4⇤k⌧k22
(6)

14

Block 1 Block 2 Block 3 Block 4 Block 5

Block 6 Block 7 Block 8

(a) Real world (b) Simulation

Figure 6: The block model we use in simulation and real-world. (b) is the eight blocks used in our
building blocks task. The upper Block 1-5 is the training block, and the lower Block 6-8 is the unseen
block for testing.

where �1=1.0, �2=0.0, �3=�0.001, �4=�0.003, ↵0=1.0, ↵1=20.0, and e0=0.06.472

D.2 Tool positioning473

Grasping Denote the ⌧ is the commanded torques at each timestep, the sum of the distance between474

each fingertip and the object as
P4

i=0fi, the action penalty as kak22, and the torque penalty as k⌧k22.475

Finally, the rewards are given by the following specific formula:476

r=�1⇤exp[↵0⇤min(
4X

i=0

fi�e0,0)]+�2⇤kak22+�3⇤k⌧k22 (7)

where �1 =1.0, �2 =�0.001, �3 =�0.003, ↵0 =�5.0, and e0 =0.1. It is worth noting that in the477

latter half of our grasping training, we force the hand to lift, so if the grip is unstable, the object will478

drop and the reward will decrease.479

In-hand Orientation Denote the ⌧ is the commanded torques at each timestep, the object and goal480

position as xo and xg, the angular position difference between the object and the goal as da, the sum481

of the distance between each fingertip and the object as
P4

i=0fi, the action penalty as kak22, and the482

torque penalty as k⌧k22. Finally, the rewards are given by the following specific formula:483

r=�1⇤exp[�(↵0⇤kxo�xgk2+↵1⇤2⇤arcsin(clamp(kdak2,0,1)))]+

�2⇤min(
4X

i=0

fi�e0,0)+�3⇤kak22+�4⇤k⌧k22
(8)

where �1=1.0, �2=0.0, �3=�0.001, �4=�0.003, ↵0=1.0, ↵1=20.0, and e0=0.06.484

E Domain Randomization485

Isaac Gym provides lots of domain randomization functions for RL training. We add the randomization486

for all the sub-tasks as shown in Table. 7 for each environment. we generate new randomization every487

1000 simulation steps.488

F Task Setups489

F.1 Building Blocks490

Block model. For the building blocks task, we use the same model as Mega Bloks1 as our blocks. It is491

a range of large, stackable construction blocks designed specifically for the small hands of the children.492

1https://www.megabrands.com/en-us/mega-bloks.

15

Initial State

Goal State

Hammer Spoon (Unseen) Spatula (Unseen)

Figure 7: Visualization of the three tools we use in Tool Positioning task. The Hammer is use for
training and the Spoon and Spatula is only use for testing. We also show the goal pose of the tools.

Figure 8: Snapshot of the searching task.

Figure 9: Snapshot of the orienting task.

We take eight different types of blocks (denoted as Block 1, Block 2,..., Block 8) as the models of our493

block, and carefully measured the dimensions to ensure that they were the same as in the real world.494

The block datasets is shown in Figure. 6. For all building block sub-tasks, we use Block 1-5 as the495

training object and Block 6-8 as the unseen object for testing.496

Physics in insertion between two blocks. It is difficult to simulate the realistic insertion in the497

simulator, and it is easy to explode or model penetration when the two models are in frequent contact.498

Therefore, we want the plug and slot between the two blocks can be inserted without frequent friction.499

We reduced the diameter of all block plugs and convex decomposed them via VHACD method when500

loaded into Isaac Gym. Finally, we made one block possible to insert another block through free fall to501

verify the final effect.502

F.2 Tool positioning503

For the tool positioning task, we have a total of three tools: hammer, spatula, and spoon. We use the504

hammer for training and test both in the hammer, spatula, and spoon. This long-horizon task involves505

grasp a tool and re-orient it onto a pose suitable for its use. Fig.7 shows what they look like and the506

initial and goal state of the each three tools.507

F.3 Typical frames of all sub-tasks508

For the convenience of readers, we show some typical frames of all the sub-tasks in simulation.509

16

Figure 10: Snapshot of the grasping task.

Figure 11: Snapshot of the inserting task.

Figure 12: Snapshot of the hammer positioning.

Figure 13: Snapshot of the spoon positioning.

Figure 14: Snapshot of the spatula positioning.

Trained Unseen All

Ours w/o belief state 0.40±0.08 0.16±0.07 0.29±0.06

Ours w/o tactile 0.43±0.04 0.33±0.00 0.37±0.02

Ours w/o both 0.26±0.05 0.02±0.01 0.14±0.02

Ours 0.43±0.04 0.36±0.04 0.38±0.04

Table 8: Ablation study on the system choices in single-step Orient task.

F.3.1 Building Blocks510

F.3.2 Tool Positioning511

G Motor tactile and belief state.512

We found that motor tactile and belief state are beneficial for dexterous in-hand manipulation. Tab. 8513

is the ablation study of the design choices of our input state space. We modify the goal of the Orient514

sub-task in the building blocks task to a pre-defined goal orientation and train each ablation method515

17

only on this sub-policy. We find the belief state pose estimator has the highest improvement (9% in task516

success rate), which highlights its effects on in-hand manipulation.517

G.1 Hyperparameters of the PPO518

G.1.1 Building Blocks519

Table 9: Hyperparameters of PPO in Building Blocks.
Hyperparameters Searching Orienting Grasping & Inserting
Num mini-batches 4 4 8
Num opt-epochs 5 10 2

Num episode-length 8 20 8
Hidden size [1024, 1024, 512] [1024, 1024, 512] [1024, 1024, 512]
Clip range 0.2 0.2 0.2

Max grad norm 1 1 1
Learning rate 3.e-4 3.e-4 3.e-4
Discount (�) 0.96 0.96 0.9

GAE lambda (�) 0.95 0.95 0.95
Init noise std 0.8 0.8 0.8
Desired kl 0.016 0.016 0.016
Ent-coef 0 0 0

G.1.2 Tool Positioning520

Table 10: Hyperparameters of PPO in Tool Positioning.
Hyperparameters Grasping In-hand Orienting
Num mini-batches 4 4
Num opt-epochs 5 10

Num episode-length 8 20
Hidden size [1024, 1024, 512] [1024, 1024, 512]
Clip range 0.2 0.2

Max grad norm 1 1
Learning rate 3.e-4 3.e-4
Discount (�) 0.96 0.96

GAE lambda (�) 0.95 0.95
Init noise std 0.8 0.8
Desired kl 0.016 0.016
Ent-coef 0 0

18

	Introduction
	Related Work
	Problem Setups
	Sequential Dexterity
	Learning dexterous sub-policies
	Policy chaining with transition feasibility function
	Policy switching with transition feasibility function
	Implementation details

	Experiments
	Experiment setups
	Results

	Conclusion
	Training pseudocode
	Real-world system setups
	State Space in Simulation
	Building Blocks
	Tool positioning

	Reward functions
	Building Blocks
	Tool positioning

	Domain Randomization
	Task Setups
	Building Blocks
	Tool positioning
	Typical frames of all sub-tasks
	Building Blocks
	Tool Positioning

	Motor tactile and belief state.
	Hyperparameters of the PPO
	Building Blocks
	Tool Positioning

