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APPENDIX OUTLINE

A Implementing BR-DRO in practice

B Additional empirical results and other experiment details

C Omitted Proofs.

A IMPLEMENTING BR-DRO IN PRACTICE

A.1 BR-DRO ALGORITHM

If the bitrate constraint is applied via the KL term in Equation 5, we implement the adversary as a variational
information bottleneck (Alemi et al., 2016) (VIB), where the KL divergence with respect to a standard
Gaussian prior controls the bitrate of the adversary’s feature set z⇠p(z |x;✓w). Increasing �vib can be
seen as enforcing lower bitrate features i.e., reducing � in W(�) (smaller value of KL(� ||⇡) in the primal
formulation in Definition 4.1). If the constraint is applied via the l2 term we implement the adversary as a
linear layer. In some cases (e.g., Section 6.2) we use a sparsity constraint (l1 norm) on the linear adversary.

Algorithm 1: Bitrate-Constraint DRO (Online Algorithm)
Input: Adversary VIB penalty �vib; Step sizes ⌘l,⌘w; Dataset D=(xi,yi)ni=1
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A.2 BR-DRO OBJECTIVE IN EQUATION 5

When describing the actual BR-DRO objective in Equation 5, for brevity we used ✓h to denote both
the parameters of the learner and the learner itself (similarly for ✓w). Here, we describe in detail the
parameterized version of the objective in Equation 4, and clarify the modeling of the adversary.

Let us denote the learner as h(·;✓h) :X 7!Y, and the class of learners H := {h(·;✓h) : ✓h 2⇥h}. A
learner is composed of two parts: i) a feature extractor f :X 7!Rp that maps the input into a p-dimensional
feature vector and; ii) a classifier c :Rp 7!Y that maps the features into a predicted label. Similarly, in the
bitrate-constrained class W(�) each adversary is parameterized as w(·;✓w) :Rp⇥Y 7! [0,1] where with
some overloading of notation we use w(x,y) to denote w(f(x),y) i.e., the adversary only operates on the
features output by the feature extractor f(x) and the given label y4. Since the features are extracted by the
deep neural network (and frozen), the adversary is implemented as either a two layer neural network with
VIB constraint or a linear layer with l2 constraint – both of which promote low bitrate functions satisfying
our Assumption 4.2. We shall now describe each version of BR-DRO separately.

BR-DRO (VIB): For each label y, w(f(x),y) is a one hidden layer neural network with ReLU activations
(1-layer VIB). The first layer takes as input feature vector f(x) and outputs a 2d dimensional vector u. The
d dimensional latent encoding z✓w(x) (dependence on x is made explicit) is sampled from multivariate
Normal z✓w(x)⇠N (u✓w [:d],diag(u✓w [d:])) where u✓w [:d] is the mean and diag(u✓w [d:]) is a diagonal
covariance matrix, both parameterized by parameter ✓w (neural net). Following Alemi et al. (2016), an
information bottleneck constraint is applied on the latent variable z✓w(x) in the form of a KL constraint
with respect to standard Gaussian prior, with strength given by scalar �vib. Prior works (Tishby & Zaslavsky,

4Note that, constraining the output space of the adversary to be bounded ([0,1]) does not necessarily deviate from
our definition of WP, in Equation 1, since we can always re-define the output space by dividing the w2WP, by
maxx,yw(x,y),8w2WP,.
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2015; Hjelm et al., 2018) have argued why this regularization would bias the adversary to learn low bitrate
functions. If we assume the generative model for x as one defined by latent factors of variation (e.g.,
orientation, background), then presumably the group identity is a function of these factors. Finally, an
output layer with a sigmoid activation maps z✓w(x) into a weight between [0,1]. If we believe that the KL
constraint on z✓w(x) helps recover some of these factors, then learning a linear transform (with sigmoid
activation) over it would amount to learning a simple group function.

BR-DRO (l2): For each label y, w(f(x),y) is a linear layer. It takes as input feature vector f(x) and maps
it to a scalar which when passed through a sigmoid yields a weight between [0,1]. The l2 constraint over
the linear layer parameters is controlled by scalar �l2 . This corresponds to bitrate constraints under certain
priors (Polson & Sokolov, 2019). We can incorporate the above parameterizations for VIB and l2 versions
of BR-DRO into the BR-DRO objective in Equation 4 through Equation 8 and Equation 9 respectively
to yield the final objective in Equation 5. Note that as we mention in Section 4, we can switch between
the two versions of BR-DRO by setting �vib =0 (for l2) or �l2 =0 (for VIB). While we can choose to
constrain the adversary with both forms of constraints simultaneously we find that in practice picking only
one of them for a given problem instance helps with tuning the degree of constraint. Finally, while �vib,�l2
act as Lagrangian parameters for our bitrate constraint, ⌘ is the Lagrangian parameter for the constrains on
w(x,y) in the definition of W(�)P, in Equation 1.

min
h(·;✓h)2H

EP [l(h(x;✓h),y)·w⇤(f(x),y;✓⇤

w)]

s.t. w⇤= argmax
w(·;✓w)2W(�)

Ladv(✓w;✓h,�vib,�l2,⌘)

Ladv(✓w,✓h,�vib,�l2,⌘)=EP [(l(h(x;✓h),y)�⌘)·w(f(x),y;✓w)]
��vib ·Ex⇠P(x)[KL(z✓w(x) ||N (0,Id))] (8)

��l2 ·k✓wk22 (9)

A.3 CONNECTING BITRATE-CONSTRAINED W(�) TO SIMPLE GROUPS (A PRACTICAL EXAMPLE).

First, let us recall the definition of a simple group in Assumption 4.2. We defined a group G to be simple,
if the indicator function ((x,y)2G) identifying said group is containing in the bitrate-constrained class
of functions W(�). Next, we shall see what this means in terms of a specific prior ⇡ and the constraint
KL(· ||⇡)� that defines the class W(�) in Definition 4.1.

Let us assume that the adversary (✓w) is parameterized as a linear classifier in Rd where each parameter
✓w corresponds to a re-weighting function in WP, (Equation 1), and the prior ⇡ is designed to have a
higher likelihood over low norm solutions. Specifically, ⇡ takes the form:

⇡(✓w)/exp(�k✓wk22).

Now consider the class of densities:

�(⇥w):={�✓w(✓)/exp(�k✓�✓wk22): ✓w2⇥w}.

Here, it is easy to verify that:
E✓⇠�✓w [✓]=✓w.

Note, that while Definition 4.1 concerns with any �2�(W), we restrict ourselves to the subset �(⇥w)⇢
�(W) for the sake of mathematical convenience, and find that even this set is rich enough to easily violate
the bitrate-constraint as we shall see next.

Applying Definition 4.1 on the set �(⇥w) we get:

W(�)={✓w : KL(�✓w ||⇡)�}.

Further if we compute KL(�✓w ||⇡), we find that KL(�✓w ||⇡)=k✓wk22+C (for some constant C). Thus,
the bitrate constraint KL(�✓w ||⇡)� directly transfers into an l2 norm constraint on the mean parameter
✓w, and W(�) is simply the set of parameters ✓w2⇥w that have their l2 norms bounded above by some
constant ��C. The objective for the l2 version of our adversary in Equation 5 reflects this form. Hence,
this example connects norm constrained parametric adversaries to bitrate constrained simple group identity
functions.
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B ADDITIONAL EMPIRICAL RESULTS AND OTHER EXPERIMENT DETAILS

B.1 HYPER-PARAMETER TUNING METHODOLOGY

There are two ways in which we tune hyperparameters on datasets with known groups (CelebA, Waterbirds,
CivilComments): (i) on average validation performance; (ii) worst group accuracy. The former does not
use group annotations while the latter does. Similar to prior works Liu et al. (2021); Idrissi et al. (2022)
we note that using group annotations (on a small validation set) does improve performance. In Table 3
we report our study which varies the the fraction p of group labels that are available at test time. For each
setting of p, we do model selection by taking weighted (by p) mean over two entities (i) average validation
on all samples, (ii) worst group validation on a fraction p of minority samples. In the case where p=0, we
only use average validation. We report our results on CelebA and Waterbirds dataset. For the two WILDS
datasets we tune hyper-parameters on OOD Validation set.

Waterbirds CelebA
Method p=0.0 p=0.02 p=0.05 p=0.1 p=0.0 p=0.02 p=0.05 p=0.1

JTT 62.7 73.9 77.3 84.4 42.1 68.3 80.5 80.3
CVaR DRO 63.9 65.8 72.6 74.1 33.6 40.4 60.4 63.2

LfF 48.6 58.9 70.3 79.5 34.0 58.9 60.0 78.3
BR-DRO (VIB) 69.3 77.6 76.1 84.9 52.4 71.2 80.3 79.9
BR-DRO (l2) 68.9 75.2 79.4 86.1 55.8 63.5 74.6 80.4

Table 3: We check to what extent fraction of group annotations in the training data affect performance. For
each dataset and method, we tune its hyper-parameters on the average validation and worst group (only on
the small fraction p that is available). We see that while all methods consistently improve as we increase
group annotations and tune for worst group accuracy on the annotated samples, BR-DRO does do better
that prior works when tuned on just average validation (p=0.). At the same time, we note that this still
does not match the performance of BR-DRO when tuned on worst group validation (seen in Table 1).

B.2 SYNTHETIC DATASET DETAILS

We follow the explicit-memorization setup in Sagawa et al. (2020) which we summarize here briefly.
Let input x = [xcore,xspu,xnoise] where xcore | y ⇠ N (y,�2

core), xspu | a ⇠ N (a,�2
spu) and xnoise ⇠

N (0,(�2
noiseId)/d). Here a2{�1,1} refers to a spurious attribute, and label is y2{�1,1}, We set a=y

with probability P(maj) = 1�P(min). The level of correlation between a and y is controlled by P(maj).
Additionally, we flip true label with probability P(noise).

B.3 DEGREE OF CONSTRAINT

In Figure 4 we see how worst group performance varies on Waterbirds and CelebA as a function of
increasing constraint. We also plot average performance on the Camelyon dataset. We mainly note that for
either of the constraint implementations, only when we significantly increase the capacity do we actually
see the performance of BR-DRO improve. The effect is more prominent on groups shift datasets with
simple groups (Waterbirds, CelebA). Under less restrictive capacity constraints we note that its performance
is similar to CVaR DRO (see Figure 3). This is expected since CVaR DRO is the completely unconstrained
version of our objective.

Figure 4: Optimal bitrate-constraints for robustness to distributions shifts: For two versions of capacity
control: KL, l2 penalty (see Section 4) we show how worst group performance on Waterbirds, CelebA and
average performance on Camelyon test sets improves with increasing constraints under either VIB (�vib) or
linear (�l2) adversaries.
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B.4 HYPER-PARAMETER DETAILS.

For all hyper-parameters of prior methods we use the ones state in their respective prior works. The
implementation Group DRO, JTT, CVaR DRO is borrowed from the implementation made public by
authors of Liu et al. (2021). For datasets Waterbirds, CelebA and CivilComments we choose the hyper-
parameters (whenever applicable) learning rate, batch size, weight decay on learner, optimizer, early
stopping criterion, learning rate schedules used by Liu et al. (2021) for their implementation of CVaR DRO
method. For datasets FMoW and Camelyon17 we choose values for these hyper-parameters to be the ones
used by Koh et al. (2021) for the ERM baseline. Details on BR-DRO specific hyper-parameters that we
tuned are in Table 4. Also, note that we release our implementation with this submission.

Hyper-parameter Waterbirds CelebA CivilComments FMoW Camelyon17

learning rate for adversary 0.01 0.05 0.001 0.02 0.01
threshold ⌘ 0.05 0.05 0.1 0.1 0.1

�vib 0.1 0.1 0.02 0.005 0.005
�l2 0.01 0.005 0.005 0.02 0.005

Table 4: Hyperparameters for our method on different datasets (tuned on worst group validation perfor-
mance). Note, that the threshold ⌘ here is the top x% fraction.

B.5 FINE-GRAINED EVALUATION OF WORST-CASE PERFORMANCE ON CIVILCOMMENTS.

The CivilComments dataset Koh et al. (2021) is a collection of comments from online articles, where each
comment is rated for its toxicity, In addition, there is information available on 8 demographic identities:
male, female, LGBTQ, Christian, Muslim, other religions, Black and White for each comment, i.e., a
given comment may be attributed to one or more of these demographic identities Koh et al. (2021). There
are 133,782 instances in the test set. Each of the 8 identities form two groups based on the toxicity
label, for a total of 16 groups. These are the groups used in the training of methods that assume group
knowledge like Group DRO and also used in the evaluation. In Table 1 we report the accuracy over the
worst group (on the test set) for each of the methods. Here, we do a more fine-grained evaluation of the
worst-group performance. In addition to the 16 groups that methods are typically evaluated on, we evaluate
the performance over groups created by combinations of two different demographic identities and a label
(e.g., (male, christian, toxic) or (female, Black, not toxic)). Thus, the spurious attribute is no longer binary
since it is categorical.

In Table 5 we plot the worst-group performance of different methods when evaluated over these 16+2·
8C2=72 groups. Hence, this evaluation is verifying whether methods that may be robust to group shifts
defined by binary attributes, are also robust to shifts when groups are defined by combinations of binary
attributes. First, we find that the performance of every method drops, including that of the oracle Group
DRO which assumes knowledge of the 8 demographic identities. This observation is in line with some of
the findings in prior work Kearns et al. (2018). Next, similar to Table 1, we see that the performance of
BR-DRO is still significantly better than CVaR DRO where the adversary is unconstrained. Finally, this
experiment provides evidence that the bitrate-constraint does not restrict the adversary from identifying
groups defined solely by binary attributes. Our simple group shift assumption (Assumption 4.2) is still
satisfied when the spurious attribute is not binary as long as the group G corresponds to an indicator
function I(x,y2G) (e.g., an intersection of hyperplanes) that is realized in a low-bitrate class (e.g., a neural
net with a VIB constraint which is how we model the adversary in the VIB version of BR-DRO).

B.6 COMPARING BR-DRO WITH OTHER BASELINES THAT DO NOT ASSUME ACCESS TO GROUP
LABELS.

In Section 6 we compare BR-DRO with baselines JTT Liu et al. (2021), RWY Idrissi et al. (2022),
LfF Nam et al. (2020) and CVaR DRO Levy et al. (2020) with regards to their performance on datasets
that exhibit known spurious correlations (CelebA, Waterbirds and CivilComments) in Table 1 as well as
on domain generalization datasets (FMoW and Camelyon17) that present unspecified covariate shifts in
Table 2. None of the above baselines assume access to group annotations on training data. Here, we look at
two additional baselines that also do not assume group annotations on training samples: George Sohoni
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Method Worst-group accuracy
ERM 52.8 (0.8)

LfF (Nam et al., 2020) 51.7 (1.0)
RWY (Idrissi et al., 2022) 61.9 (0.8)

JTT (Liu et al., 2021) 60.5 (0.9)
CVaR DRO (Levy et al., 2020) 56.5 (0.7)

BR-DRO (VIB) (ours) 62.9 (0.8)
BR-DRO (l2) (ours) 62.5 (0.9)

Group DRO (Sagawa et al., 2019) 63.0 (0.8)

Table 5: BR-DRO is robust to group shifts defined by multiple simple attributes: On the CivilCom-
ments test set we evaluate the worst-group accuracy of BR-DRO and baselines when the groups can
comprised of at most two demographic identities and the toxicity label. In (·) we report the standard error
of the mean accuracy across five runs.

et al. (2020) and BPA Seo et al. (2022)5. Both these baselines employ a two-stage method to learn
debiased representations where the first stage involves estimating biased pseudo-attributes using a clustering
algorithm based on the observation that for a sufficiently trained model, non-target attributes tend to have
similar representations. The second stage trains an unbiased model by optimizing a re-weighted objective
where weights assigned to each cluster are updated with an exponential moving average, similar to Group
DRO. BPA also accounts for the size of each cluster when assigning the weights.

We evaluate George and BPA on Waterbirds, CelebA and the hybrid dataset FMoW. While these methods
were developed with the motivation of tackling group shifts along spurious attributes, following our
experiments in Section 6.4, we also test how they do on domain generalization kind of tasks. The
comparisons with both versions of BR-DRO are presented in Table 6. On the worst-group accuracy
metric, we find that BR-DRO outperforms George on all datasets and BPA on Waterbirds and FMoW,
while being comparable with BPA on CelebA. Since both these methods do not up-weight arbitrary
points with high losses, we can think of them as having an implicit constraint on their weighting schemes
(adversary), thus yielding solutions that are less pessimistic than CVaR DRO. At the same time, unlike the
robust set outlined in our Assumption 4.2, and the excess risk results (in Section 5), it is unclear what the
precise robust sets are for BPA and George, as well as the excess risk of their learned solutions.

Waterbirds CelebA FMoW
Method Avg WG Avg WG Avg WG

George (Sohoni et al., 2020) 94.8 (0.4) 77.3 (0.6) 92.8 (0.3) 64.9 (0.7) 50.5 (0.4) 30.6 (0.5)
BPA (Seo et al., 2022) 93.7 (0.5) 85.2 (0.4) 88.0 (0.4) 81.7 (0.5) 51.3 (0.3) 30.7 (0.3)

BR-DRO (VIB) (ours) 94.1 (0.2) 86.3 (0.3) 86.7 (0.2) 80.9 (0.4) 52.0 (0.2) 31.8 (0.2)
BR-DRO (l2) (ours) 93.8 (0.2) 86.4 (0.3) 87.7 (0.3) 80.4 (0.6) 53.1 (0.1) 32.3 (0.2)

Table 6: We compare the performance of baseline methods George (Sohoni et al., 2020) and BPA (Seo
et al., 2022) with BR-DRO on Waterbirds, CelebA and FMoW. We show both average (Avg) and worst
group (WG) accuracy. For FMoW, we show the worst-region (W-Reg) accuracy. In (·) we report the
standard error of the mean accuracy across five runs.

5For both baselines, we use the publicly available implementations from the authors of the original works.
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C OMITTED PROOFS

First we shall state some a couple of technical lemmas that we shall refer to at multiple points. Then, we
prove our theoretical claims in our analysis Section 5, in the order in which they appear. Before we get
into those we provide proof for our Corollary 3.2 and the derivation of Bitrate-Constrained CVaR DRO in
Equation 6.

Lemma C.1 (Hoeffding bound Wainwright (2019)). Let X1,...,Xn be a set of µi centered independent
sub-Gaussians, each with parameter �i. Then for all t�0, we have

P
"
1

n

nX

i=1

(Xi�µi)�t
#
exp

✓
� n

2
t
2

2
Pn

i=1�
2
i

◆
. (10)

Lemma C.2 (Lipschitz functions of Gaussians Wainwright (2019)). Let X1,...,Xn be a vector of iid
Gaussian variables and f :Rn 7!R be L-Lipschitz with respect to the Euclidean norm. Then the random
variable f(X)�E[f(X)] is sub-Gaussian with parameter at most L, thus:

P[|f(X)�E[f(X)]|�t]2·exp
✓
� t

2

2L2

◆
, 8t�0. (11)

C.1 PROOF OF COROLLARY 3.2

Let us recall the definition of a well defined group structure. For a pair of measures Q⌧P we say G(P,Q)
is well defined if given there exists a set of disjoint measurable sets GP,Q={Gk}Kk=1 such that Gk2⌃,
Q(Gk)>0, Q(G(P,Q))=1 and we have:

K=min{|{G1,...,GM}| : p(x,y |Gm)=q(x,y |Gm)>0,8(x,y)2Gm 8m2 [M ]} (12)

Now by definition K is finite. Thus if there exists two well defined group structures G1(P,Q) and G2(P,Q)
for the same pair P,Q then it must be the case that K=G1(P,Q) = G2(P,Q).

Then, there must exist G2G1(P,Q) such that Q(G)>0 and G
0
,G

002G2(P,Q) where Q(G0),Q(G00)>0
and Q(G\G0),Q(G\G00)>0.

Note that since G,G
0
,G

002⌃ that is closed under countable unions, we have that G\G0 and G\G00 are
two sets where q(x,y)>0 8(x,y)2G\G0

,G\G00.

Let (x1,y1)2(G\G0) and (x2,y2)2(G\G00). From definition we know that q(x2,y2),q(x1,y1)>0 and .
Since both (x1,y1) and (x2,y2) are in G we have that:

q(x1,y1)=
Q(G)

P(G)
·p(x1,y1)=

Q(G0)

P(G0)
·p(x1,y1) (13)

q(x2,y2)=
Q(G)

P(G)
·p(x2,y2)=

Q(G00)

P(G00)
·p(x2,y2) (14)

Thus, we can conclude that Q(G0)
P(G0) =

Q(G00)
P(G00) . This implies that G0[G00 also satisfies the following that

Q(G0[G00)>0 and q(x,y |G0[G00)=p(x,y |G0[G00).

Thus, we can construct a new G3(P,Q)={G2G2(P,Q) :G /2{G0
,G

00}}[{G0[G00}. Clearly, G3(P,Q)
satisfies all group structure properties and is smaller than G2(P,Q). Thus, we arrive at a contradiction
which proves the claim that G(P,Q) is indeed unique whenever well defined.
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C.2 DERIVATION OF BITRATE-CONSTRAINED CVAR DRO IN EQUATION 6

Recall that we define W as the set of all measurable functions w :X⇥Y 7! [0,1], since the other convex
restrictions in Equation 1 are handled by dual variable ⌘. As in Section 4, W(�) is derived from the new
W using Definition 4.1. With that let us first state the CVaR objective (Levy et al., 2020).

Lcvar(h,P):=sup
q

Z

X⇥Y

q(x,y)·l(h)

s.t. q�0, kq/pk1(1/↵0),

Z

X⇥Y

q(x,y)=1 (15)

The objective in q is linear with convex constraints, and has a strong dual (see Duchi et al. (2016); Boyd
et al. (2004) for the derivation) which is given by:

inf
⌘2R

⇢
1

↵0
EP (l(h)�⌘)++⌘

�

= inf
⌘2R

⇢
1

↵0
h(l(h)�⌘)+, iP+⌘

�

= inf
⌘2R

⇢
1

↵0
h(l(h)�⌘), (l(h)�⌘�0)iP+⌘

�
(16)

= inf
⌘2R

sup
w2W

⇢
1

↵0
h(l(h)�⌘),wiP+⌘

�
(17)

The last equality is true since the set (l(h)� ⌘ � 0) is measurable under P (based on our setup in
Section 3). Note that for any h, the objective 1

↵0
h(l(h)�⌘),wiP +⌘ is linear in w, and ⌘. If we further

assume the loss l(h) to be the l0�1 loss, it is bounded, and thus the optimization over ⌘ can be restricted
to a compact set. Next, W is also a compact set of functions since we restrict our solvers to measurable
functions that take values bounded in [0,1].

Lcvar(h,P)= inf
⌘2R

sup
w2W

⇢
1

↵0
h(l(h)�⌘),wiP+⌘

�
(18)

The above objective is precisely the Bitrate-Constrained CVaR DRO objective we have in Equation 6. Later
in the Appendix we shall need an equivalent form of the objective which we shall derive below.

We can now invoke the Weierstrass’ theorem in Boyd et al. (2004) to give us the following:

Lcvar(h,P)= inf
⌘2R

sup
w2W

⇢
1

↵0
h(l(h)�⌘),wiP+⌘

�

=
1

↵0
sup
w2W

⇢
inf
⌘2R
h(l(h)�⌘),wiP+⌘

�
(19)

Now, the final objective infh2HLcvar(h,P) is given by:

1

↵0
inf
h2H

sup
w2W

⇢
inf
⌘2R
h(l(h)�⌘),wiP+⌘

�
(20)

In the above equation we can now replace the unconstrained class W with our bitrate-constrained class
W(�) to get the following:

1

↵0
inf
h2H

sup
w2W(�)

⇢
inf
⌘2R
h(l(h)�⌘),wiP+⌘

�
(21)
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C.3 PROOF OF THEOREM 5.1

For convenience we shall first restate the Theorem here.
Theorem C.3 ([restated). worst-case risk generalization] With probability�1�� over sample D⇠Pn,
the worst risk for ĥ�D can be upper bounded by the following oracle inequality:

sup
w2�(W,�)

R(ĥ�
D,⌘̂�D,w)�L⇤

cvar(�) <⇠
M
↵0

s✓
�+log

✓
1
�

◆
+(d+1)log

✓
L2n
�

◆
+logn

◆
/(2n�1),

when l(·,·) is [0,M ]-bounded, L-Lipschitz and H is parameterized by convex set ⇥⇢Rd.

The overview of the proof can be split into two parts:

• For each learner, first obtain the oracle PAC-Bayes (McAllester, 1998) worst risk generalization
guarantee over the adversary’s action space �(W,�).

• Then, apply uniform convergence bounds using a union bound over a covering of the class H to
get the final result.

Intuition: The only tricky part lies in the fact that oracle PAC-Bayes inequality would not give us arbitrary
control over the generalization error for each learner, which we would typically get in Hoeffding type
bounds. Hence, we need to ensure that the the worst risk generalization rate decays faster than how the size
of the covering would increase for a ball of radius defined by the worst generalization error.

Now, we shall invoke the following PAC-Bayes generalization guarantee stated (Lemma C.4) since
R(h,⌘,w)2 [0,M/↵0].

Lemma C.4 (PAC-Bayes (Catoni, 2007; McAllester, 1998)). With probability � 1�� over choice of
dataset D of size n the following inequality is satisfied

EPEQ(l0�1(h(x),y))EP̂n
EQ(l0�1(h(x),y))+

s
D(Q||P)+log(1/�)+ 5

2 logn+8

2n�1 (22)

A direct application of this gives us that with probability at least 1�!: .

Ew⇠�R(h,⌘,w)Ew⇠�


1

↵0
hl(h)�⌘,wiP̂n

�
+⌘+

s
KL(� ||⇡)+log(1/!)+ 5

2 logn+8

2n�1

Let R̂D(h,⌘,w)=
1
↵0
hl(h)�⌘,wiP̂n

+⌘ Since the above inequality holds for any data dependent �:.

sup
�2�(W,�)

Ew⇠�R(h,⌘,w) sup
�2�(W,�)

2

4R̂D(h,⌘,w)+⌘+

s
KL(� ||⇡)+log(1/!)+ 5

2 logn+8

2n�1

3

5

Further, we make use of the fact KL(� ||⇡)�.

 sup
�12�(W,�)

h
R̂D(h,⌘,w)

i
+ sup

�22�(W,�)

2

4

s
KL(�2 ||⇡)+log(1/!)+ 5

2 logn+8

2n�1

3

5

Thus,

sup
�2�(W,�)

Ew⇠�R(h,⌘,w)� sup
�2�(W,�)

Ew⇠�R̂D(h,⌘,w)

2

4

s
�+log(1/�)+ 5

2 logn+8

2n�1

3

5

To actually apply this uniformly over h,⌘, we would first need two sided concentration which we derive
below as follows:
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Let ai=R̂D(h,⌘,�)�R(h,⌘,�), Since R(h,⌘,�)M/↵0, we can apply Hoeffding bound with t=�/n in
Lemma C.1 on ai to get:

EDexp(�·ai)exp
�
2(M/↵0)2

8n
E⇡EDexp(�·ai)E⇡exp

�
2(M/↵0)2

8n
(23)

Applying Fubini’s Theorem, followed by the Donsker Varadhan variational formulation we get:

EDE⇡[exp(�·ai)]E⇡exp
�
2(M/↵0)2

8n
(24)

=EDexp sup
�2�(W,�)

[(�·ai)�KL(� ||⇡)]exp�
2(M/↵0)2

8n
(25)

The Chernoff bound finally gives us with probability�1�!:

EP̂n
EQ((h(x),y))<⇠ EPEQ((h(x),y))+

M

↵0

r
KL(� ||⇡)+log(1/!)+logn

2n�1 (26)

Using the reverse form of the empirical PAC Bayes inequality, we can do a derivation similar to the one
following the PAC-Bayes bound in Lemma C.4 to get for any fixed ⌘2 [0,M ],h2H we get:

����� sup
�2�(W,�)

Ew⇠�R(h,⌘,w)� sup
�2�(W,�)

Ew⇠�R̂D(h,⌘,w)

�����
<⇠

M

↵0

r
KL(� ||⇡)+log(1/!)+logn

2n�1 (27)

<⇠
M

↵0

r
�+log(1/!)+logn

2n�1 (28)

Because we see that in the above bound the dependence on �, is given by a log term we are essentially
getting an ”exponential-like” concentration. So we can think about applying uniform convergence bounds
over the class H⇥[0,M ] to bounds the above with high probability 8(h,⌘) pairs.

We will now try to get uniform convergence bounds with two approaches that make different assumptions
on the class of functions l(h). The first is very generic and we will show why such a generic assumption
is not sufficient to get an upper bound on the generalization that is O(1/

p
n) in the worst case. Then, in

the second approach we show how assuming a parameterization will fetch us a rate of that form if we
additionally assume that the loss function is L-Lipschitz.

Approach 1:

Assume l(h) lies in a class of (↵,1)-Hölder continuous functions Now we shall use the following covering
number bound for (↵,1)-Hölder continuous functions to get a uniform convergence bound over H⇥[0,M ].

Lemma C.5 (Covering number (↵,1)-Hölder continuous). Let X be a bounded convex subset of Rd with
non-empty interior. Then, there exists a constant K depending only on ↵ and d such that

logN (✏,C↵
1 (X ),k·k1)K�(X 1)

✓
1

✏

◆d/↵

(29)

for every ✏>0, where �(X 1) is the Lebesgue measure of the set {x : kx�Xk1}. Here, C↵
1 (X ) refers to

the class of (↵,1)-Hölder continuous functions.

We assume that l(h) is (↵,1)-Hölder continuous. And therefore by definition, of R(h,⌘,·), the function
is (↵,1)-Hölder continuous in (l(h),⌘). Similat argument applies for sup�2�(W,�)Ew⇠�R(h,⌘,w) since
taking a pointwise supremum for a linear function over a convex set�(W,�)would retain Hölder continuity
for some value of ↵. Applying the above we get:
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logN (✏, sup
�2�(W,�)

Ew⇠�R(·,·,w),k·k1)<⇠

 
M

↵0

r
�+log(1/!)+logn

2n�1

!�(d/↵)

(30)

Now, we can show that with probability at least 1��, 8h2H we get:

����� sup
�2�(W,�)

Ew⇠�R(h,⌘,w)� sup
�2�(W,�)

Ew⇠�R̂D(h,⌘,w)

����� (31)

<⇠
M

↵0

r
�+log(N (✏,R(·,·,w),k·k1)/�)+logn

2n�1 (32)

<⇠
M

↵0

vuuuut
�+

 ✓
M
↵0

q
�+log(1/�)+logn

2n�1

◆�(d/↵)
!
+log(1/�)+logn

2n�1 (33)

Note that in the above bound we cannot see if this upper bound shrinks as n!1, without assuming
something very strong about ↵. Thus, we need covering number bounds that do not grow exponentially
with the input dimension. And for this we turn to parameterized classes, which is the next approach we
take. It is more for the convenience of analysis that we introduce the following parameterization.

Approach 2:

Let l(·,·) be a [0,M ] bounded L-Lipschitz function in k·k2 over ⇥ where H be parameterized by a convex
subset ⇥⇢Rd. Thus we need to get a covering of the loss function sup�Ew⇠�R(✓,⌘,w) in k·k1 norm,
for a radius ✏. A standard practice is to bound this with a covering N (⇥,

✏
L ,k·k2), where k·k2 is Euclidean

norm defined on ⇥⇢Rd.

Lemma C.6 (Covering number for N (⇥⇥ [0,M ], ✏L ,k ·k2) Wainwright (2019)). Let ⇥ be a bounded
convex subset of Rd with .

N (✏/L,⇥,k·k)<⇠

✓
1+

L

✏

◆d+1

(34)

We now re-iterate the steps we took previously:

����� sup
�2�(W,�)

Ew⇠�R(h,⌘,w)� sup
�2�(W,�)

Ew⇠�R̂D(h,⌘,w)

����� (35)

<⇠
M

↵0

r
�+log(N (✏,R(·,·,w),k·k1)/�)+logn

2n�1 (36)

<⇠
M

↵0

vuuut�+log

✓
1+ Lp

�/n

◆d+1

+log(1/�)+logn

2n�1 (37)

<⇠
M

↵0

vuut�+(d+1)log
⇣
L2n
�

⌘
+log(1/�)+logn

2n�1 (38)

Note that the above holds with probability atleast 1�� and for 8h,⌘. Thus, we can apply it twice:
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����� sup
�2�(W,�)

Ew⇠�R(ĥ
�
D,⌘̂

�
D,w)� sup

�2�(W,�)
Ew⇠�R̂DR(ĥ

�
D,⌘̂

�
D,w)

����� (39)

<⇠
M

↵0

vuut�+(d+1)log
⇣
L2n
�

⌘
+log(1/�)+logn

2n�1 (40)

����� sup
�2�(W,�)

Ew⇠�R(h
⇤
,⌘

⇤
,w)� sup

�2�(W,�)
Ew⇠�R̂DR(h

⇤
,⌘

⇤
,w)

����� (41)

<⇠
M

↵0

vuut�+(d+1)log
⇣
L2n
�

⌘
+log(1/�)+logn

2n�1 (42)

where h⇤,⌘⇤ are the optimal for L⇤

cvar. Combining the two above proves the statement in Theorem 5.1.

C.4 PROOF OF THEOREM 5.2

Setup. Let us assume there exists a prior ⇧ such that W(�) in Definition 4.1 is given by an RKHS induced
by Mercer kernel k :X⇥X 7!R, s.t. the eigenvalues of the kernel operator decay polynomially:

µj <⇠ j
�2/� (43)

for (�< 2). We solve for ĥ�D,⌘̂
�
D by doing kernel ridge regression over norm bounded (kfkW(�)M)

smooth functions f . Thus, W(�) is compact.

argmax
w2W(�)),kwkW(�)R

R(h,⌘,w) = argmax
w2W(�)),kwkW(�)R

hl(h)�⌘,wiP+⌘ (44)

argmax
w2W(�),kwkW(�)R

EP ((l(h)�⌘)·w>0) (45)

We show that we can control: (i) the pessimism of the learned solution; and (ii) the generalization error
(Theorem 5.2). Formally, we refer to pessimism for estimates ĥ�D,⌘̂

�
D:

excess risk or pessimism: sup
w2W(�)

|inf
h,⌘

R(h,⌘,w)�R(ĥ�D,⌘̂
�
D,w)| (46)

Theorem C.7 ((restated for convenience) bounded RKHS). For l,H in Theorem 5.1, and for W(�)
described above 9 �0 s.t. for all sufficiently bitrate-constrained W(�) i.e., ��0, w.h.p. 1�� worst risk
generalization error is O

�
(1/n)

�
log(1/�)+(d+1)log(nR��

L
�/2)

��
and the excess risk is O(M) for

ĥ
�
D,⌘̂

�
D above.

Generalization error proof:

Note that the objective in Equation 45 is a non-parametric classification problem. We can convert this to
the following non-parametric regression problem, after replacing the expectation with plug-in P̂n.

inf
w2W(�)),kwkW(�)R

1

n

nX

i=1

(w(xi,yi)�(l(h(xi),yi)�⌘)+✏i)
2+�nkwk2W(�) (47)
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where �n!0 as n!1. Essentially, for non-parametric kernel ridge regression regression the regular-
ization can be controlled to scale with the critical radius, that would give us better estimates and tighter
localization bounds as we will see.

Note that in the above problem we add variable ✏i which represents random noise⇠N (0,�2). Let �2=1
for convenience. Since the noise is zero mean and random, any estimator maximizing the above objective
on P̂n would be consistent with the estimator that has a noise free version. We can also thing of this as a
form regularization (similar to �), if we consider the kernel ridge regression problem as the means to obtain
the Bayesian predictive posterior under a Bayesian prior that is a Gaussian Process GP(0,�2k(x,x)),
under the same kernel as defined above.

First we will show estimation error bounds for the following KRR estimate:

ŵ
�
D= argmin

w2W(�)),kwkW(�)R

1

n

nX

i=1

(w(xi,yi)�(l(h(xi),yi)�⌘)+✏i)
2+�nkwk2W(�) (48)

The estimation error would be measured in terms of P̂n norm i.e., kŵ�
D�w⇤kP̂n

where

w⇤
�(x,y)= argmin

w2W(�)),kwkW(�)R
EPE✏((l(h(x),y)�⌘)�w(x,y)+✏)2 (49)

is the best solution to the optimization objective in population.

Next steps:

• First, we get the estimation error in kŵ�
D�w⇤

�kP̂n
of P̂n.

• Then using uniform laws (Wainwright, 2019) we can extend it to L
2(P) norm i.e., kŵ�

D�w⇤kp.
• Then we shall prove that if we convert the ŵ�

D and w
⇤ into prediction rules: ŵ�

D�0 and w⇤
�,

then we can get the estimation error of prdedictor ŵ�
D�0 with respect to the optimal decision

rule w⇤
��0 in class W(�).

• The final step would give us an oracle inequality of the form in Theorem 5.1.

Based on the outline above, let us start with getting kŵ�
D�w⇤kP̂n

. For this we shall use concentration
inequalities from localization bounds (see Lemma C.8). Before we use that, we define the quantity �n,
which is the critical radius (see Ch. 13.4 in Wainwright (2019)). For convenience, we also state it here.
Formally, �n is the smallest value of � that satisfies the following inequality (critical condition):

Rn(�)

�
R

2
·� (50)

where,

Rn(�):=E✏

"
sup

g2(F�f⇤),kgkFR,kgkP̂n
�

�����
1

n

nX

i=1

✏ig(xi,yi)·l(h(xi)�yi)

�����

#
(51)

and ✏ is some sub-Gaussian zero mean random variable.
Lemma C.8 ( (Wainwright, 2019)). For some convex RKHS class F Let f̂ be defined as:

f̂2 argmin
f2F,kfkFR

(
1

n

nX

i=1

(yi�f(xi))2+�nkfk2F

)
(52)

then, with probability�1�c2exp
⇣
�c3 nR2�2n

�2

⌘
and when �n��2n we get:

kf̂�f⇤k22c0 inf
kFkR

kf�f⇤k2n+c1R
2(�2n+�n). (53)

Note that it is standard exercise in statistics to derive the following closed form for the problem in
Equation 48:
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ŵ
�
D(·)=K̂n(·,Z)(K̂T

n K̂n+�nI)
�1(l(h)D�✏D) (54)

where l(h)D is the loss vector and ✏D is the noise vector for dataset D and K̂n is the empirical kernel
matrix given by K̂i,j=

1
nk((xi,yi),(xj,yj)), and Z is a matrix of (x,y) pairs in dataset.

Corollary C.9. Wainwright (2019) Let µ̂j be the eigen values µ̂1�µ̂2...�µ̂n for the empirical Kernel
matrix K̂, then we have for any � satisfying

vuut2

n

 
nX

i=1

min(�2,ûj)

!
 R

4
�
2 (55)

, it is necessary that � satisfies the critical condition in Equation 50.

To show the above critical condition we shall now use the polynomial decaying property that for the specific
kernel induced by W(�), as stated in our assumption in the beginning of this section. For this we take
standard approach taken for polynomial decay kernels Zhang et al. (2013). Let 9C for some large C>0
such that µ̂jCj

�2/�. Then for some k, such that �2�ck�2/�

vuuut1

n

0

@
nX

j=1

min(�2,µ̂j)

1

A <⇠

vuut2

n

 
nX

i=1

min(�2,Cj�2/�)

!
(56)

<⇠

vuuut2

n

0

@k�2+C

nX

j=k+1

j�2/�)

1

A <⇠

vuuut2

n

0

@k�2+C

1X

j=k+1

j�2/�)

1

A (57)

<⇠

s
2

n

✓
k�2+C

Z
1

j=k+1
z�2/� dz)

◆
<⇠

r
2

n

�
k�2+Ck�2/�+1dz)

�
(58)


p
2/n
⇣p

k·�
⌘
 1p

n
·�1��/2 (59)

Now, setting the above into the critical condition equation from Corollary above:

1p
n
·�1��/2R

4
�
2 (60)

=) �
1+�/2� 1p

nR
(61)

This tells us that:

�
2
n
>⇠

 
1

nR2

2
�+2

!
(62)

is the critical radius.

We shall later plug this into the bound we have into a uniform bound over the concentration inequality in
Lemma C.8. The reason we need a uniform bound over Lemma C.8 is that in its current form, it only
bounds kŵ�

D�w
�
⇤k2P̂n

for a specific choice of ⌘,h. In order to arrive at the worst risk generalization error
of the form we have in Theorem 5.1 we need to satisfy that with high probability 1�� 8⌘,h, a critical
concentration bound of the form in Lemma C.8 but over sup⌘,hkŵ

�
D�w

�
⇤k2P̂n

.

Let ✏= c2exp
⇣
c3nR

2 �n
2

�2

⌘
. Since �

2
n needs to be large enough (see condition in Equation 62), we use

Lemma C.8 in the following bound, incorporating �n condition we derived.
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With high probability 1�✏:

kŵ�
D�w

�
⇤
k2
P̂n

<⇠ inf
w2W(�),kwkR

kw�w�
⇤
k2
P̂n

+R
2max

 ✓
1

nR2

◆�+2
�

,

✓
log(1/✏)

1

nR2

◆!
(63)

To apply uniform convergence argument on the above we would need to apply a union bound on a covering
of ⇥⇥[0,M ], so that we get the probability bound to hold for all ⌘,h.

For this we use the same technique as in the proof of Theorem 5.1. First, we shall use Lemma C.6 to get a
covering number bound for bounded convex subset ⇥ of Rd that parameterizes the learner (Theorem 5.2) .

N (�/L,⇥⇥[0,M ],k·k)<⇠

✓
1+

L

�

◆d+1

(64)

And we know that a covering of ⇥⇥[0,M ] in radius �/L, will fetch a covering for l(h)�⌘ in �, since we
assume l(·) to be Lipschitz in ✓. Thus, all we need to prove bound Equation 63 holds uniformly is to get a
covering in radius R2max

⇣�
1

nR2

� 2
�+2

,
�
log(1/✏) 1

nR2

�⌘
. Thus, a acovering in R

2
⇣�

1
nR2

� 2
�+2

⌘
. Thus, the

number of elements in cover are:

J=

0

@1+
L⇣

R2
⇣

1
nR2

2
�+2

⌘⌘

1

A
d+1

(65)

For union bound we need:

J✏/c2=exp
�
�c3nR2

�
2
n

�
(66)

=) log(
1

✏
)+logJ >⇠ c3nR

2
�
2
n (67)

=) log(
1

✏
)+(d+1)log

0

@ L⇣
R2
⇣�

1
nR2

� 2
2+�

⌘⌘

1

A>⇠ c3nR
2
�
2
n (68)

=) log(
1

✏
)+(d+1)log

✓�
LR

�2
��+2

2
nR

2

◆
>⇠ c3nR

2
�
2
n (69)

The uniform convergence bound that we get is R
2max

✓�
1

nR2

��+2
�
,
�
log(J/✏) 1

nR2

�◆
. In the above

sequence of steps we have shown that, due to the size of J, the second term would be maximum, or at least
there exists a �0, such that the second term would be higher for all ���0, for any sample size.

Thus, we get the following probabilistic uniform convergence. With probability�1�✏, 8⌘,h :

kŵ�
D�w

�
⇤
k2
P̂n

<⇠ inf
w2W(�),kwkR

kw�w�
⇤
k2
P̂n

(70)

<⇠
1

n
log(

1

✏
)+(d+1)log

✓�
LR

�2
��+2

2
nR

2

◆
(71)

<⇠
1

n
log(

1

✏
)+(d+1)log

⇣⇣
L
�/2

R
��
⌘
n

⌘
(72)

Applying the above twice, once one ŵ
�
D and another on w

�
⇤ we prove the generalization bound in

Theorem 5.2.
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Excess risk bound:

In the same setting we shall now prove the excess risk bound. Recall the definition of excess risk:

excess risk := sup
w2W(�)

|inf
h,⌘

R(h,⌘,w)�R(ĥ�D,⌘̂
�
D,w)|. (73)

Let h⇤(w),⌘⇤(w)=infh,⌘R(h,⌘,w), then:

excess risk= sup
w2W(�)

|inf
h,⌘

R(h,⌘,w)�R(ĥ�D,⌘̂
�
D,w)| (74)

 sup
w2W(�)

⇣
R(h⇤(w),⌘⇤(w),w)�R(ĥ�D,⌘̂

�
D,w)

⌘
(75)

 sup
w2W(�)

✓
1

↵0
hl(h⇤)�l(ĥ�D)�(⌘

⇤(w)�⌘̂�D),wiP
◆

(76)

M

↵0
sup

w2W(�)

�
(kwkL2(P))

�
(77)

Note, that according to our assumption kwkW(�)B i.e., the smooth functions are bounded in RKHS
norm. The following lemma relates bounds in RKHS norm to bound in L2(P) bound for kernels with
bounded operator norms:
Lemma C.10. For an RKHS Hk with norm k·kHk:

kfkL2(P)=kT
1/2
K fkHk

q
kT1/2

K kop ·kfkHk (78)

Proof:

kT1/2
K fk2

Hk
=hT1/2

K f,T
1/2
K fiHk =hf,TKfiHk (79)

=
1X

j=1

h�j,fiL2(P),h�j,TKfiL2(P)

�j
(80)

=kfk2L2(P) (81)

In the above �j are the Eigen values of the kernel and the Eigen functions �j are orthonormal and span
L
2(P)/ Thus, kfkL2(P)kT

1/2
K kop ·kfkHk . Since we assume polynomially decaying Eigen values for

our kernel, it is easy to see that kT1/2
K kop=O(1).

Applying Lemma C.10 to Equation 77, directly gives us the excess risk bound and completes the proof.

excess risk <⇠ kT
1/2
K kop ·B=O(B) (82)

C.5 PROOF OF LEMMA 5.3

First let us re-state the optimization objective which the two players: learner h2H and adversary w2W(�)
are trying to optimize via an online game (Section 5). Next, we use the fact that R(h,⌘,w) is linear in w.

L⇤

cvar(�)= inf
h2H,⌘2R

sup
w2W(�)

R(h,⌘,w)= inf
h2H,⌘2R

sup
w2�(W,�)

R(h,⌘,w)

where, R(h,⌘,w)=(1/↵0)hl(h)�⌘,wiP+⌘ (83)
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Hence, the adversary is learning a mixed strategy (probabilistic). Now, recall that l(·) is a strictly convex
objective over the space of learners H. Under the negative entropy regularizer, the objective above has a
unique saddle point since H and W(�) are compact sets (Rockafellar (1970)). This saddle point is also
exactly the Nash equilibrium of the two player game.

C.6 PROOF OF THEOREM 5.4

Setup. The algorithm is as follows: Consider a two-player zero-sum game where the learner uses a
no-regret strategy to first play h 2H,⌘ 2 R to minimize Ew⇠�R(h,⌘,w). Then, the adversary plays
follow the regularized leader (FTRL) strategy to pick distribution �2�(W,�) to maximize the same. The
regularizer used is a negative entropy regularizer. Our goal is to analyze the bitrate-constraint �’s effect on
the above algorithm’s convergence rate and the pessimistic nature of the solution found. For this, we need
to first characterize the bitrate-constraint class W(�). So we assume there exists a prior ⇧ such that W(�)
is Vapnik-Chervenokis (VC) class of dimension O(�).

Note that R(h,⌘,w) is convex in h and linear in ⌘,l. Thus, as we discuss in the derivation for Equation 6
this objective optimized over convex sets has a unique saddle point (Nash equilibrium) by Weierstrass’s
theorem. Thus, to avoid repetition we only discuss the proofs for the other two claims on convergence and
excess risk.

Convergence:

Given that W(�) is a VC class of dimension C� for some large C, we can use Sauer-Shelah Bartlett et al.
(1997) Lemma (stated) below to bound the total number of groups that can be identified by W(�) in n

points.
Lemma C.11 (Sauer’s Lemma). The Vapnik-Chervonenkis dimension of a class F , denoted as VC-dim(F),
and it is the cardinality of the largest set S shattered by F. Let d = V C � dim(F), then for all m,
C[m]=O(md)

Thus, the total number of groups that can be proposed onn points byW(�) isO(n�). A similar observation
was made in Kearns et al. (2018). Different from them, our goal is to analyze the algorithm iterates for our
solver described above and bound its pessimism.

First, for convergence rate we show that the above algorithm has a low regret—a standard exercise in online
convex optimization. Note that any distribution picked by the adversary can be seen as multinomial over
a finite set of possible groups that is let’s say K, and from discussion above we know that K=O(n�).
Further, the negative entropy regularizer is given as:

B(�):=c·
KX

i=1

�ilog�i (84)

where the sum is over total possible groups identified by W(�). Let the probability assigned to group i be
denoted as �i. The FTRL strategy for adversary is given as:

�T = argmin
�2�(W(�))

T�1X

t=1

1

↵0
hl(ht)�⌘t,�tiP̂n

+⌘+c·
KX

i=1

�ilog�i (85)

Then the regret for not having picked a single action � is given as:

REGRETT (�):=
TX

t=1

1

↵0
hl(ht)�⌘t,�t��t+1iP̂n

+B(�)�B(�1) (86)

We bound the two terms in the above bound separately. With
Pk

k=1�k=1, we get the strong dual for the
FTRL update above as:
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T�1X

t=1

1

↵0
hl(ht)�⌘t,�tiP̂n

+⌘+c·
KX

i=1

�ilog�i+�·(
KX

i=1

�i�1) (87)

Solving we get:

�t(k)=
exp
�
�1
c

�Pt�1
t=1EP̂n

1
↵0
(l(ht)�⌘t|Gk)+⌘/K

PK
k=1exp

⇣
1
↵0

�1
c

⌘Pt�1
k=1(EP̂n

1
↵0
(l(ht)�⌘t|Gk)+⌘/K)

(88)

where EP̂n
(l(ht) � ⌘t|Gk) is the expected empirical loss in group Gk and �t(k) is the adversary’s

distribution at time step t for the kth group.

Claim on stability:

1

↵0
hl(ht)�⌘t,�t��t+1iP̂n

1/c (89)

The above statement is true because,

�t+1(i)=�t(i)·exp
✓

1

↵0c
E[l(ht)�⌘t|Gi]+⌘t/K

◆
(90)

Thus, if l(ht)2 [0,M/↵0], i.e., losses are bounded then:

�t+1(i)��t(i)·e�1/c��t(i)·(1�1/c). (91)

and our stability claim is easy to see. Thus, we have bounded the first term in our regret bound above.
Further, we can to see that B(x)�B(x1)clogK. Thus, we have bounded both terms in the regret bound
above in terms of c.

REGRETT (T/c)+(clogK) (92)

Setting c=
q

T
logK , we get:

REGRETT

T

r

logK

T
(93)

Now, our VC claim gave K=O(n�). Hence,

REGRETT

T
=O

r
�logn

T
(94)

Next, we use Theorem 9 from Abernethy et al. (2018) that maps low regret O(✏) algorithms in zero-sum
convex-concave games to ✏-optimal equilibriums.

Let regret be ✏, then applying their theorem gives us:

V
⇤�✏ inf

h2H,⌘2R
RD(h,⌘,�̄T )V ⇤ sup

�2�(W(�))
RD(h̄T ,⌘̄T ,�)V ⇤+✏ (95)
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where

V
⇤=RD(h

⇤

D(�),⌘
⇤

D(�),�
⇤

D(�))= inf
h2H,⌘2R

sup
�2�(W(�))

1

↵0
hl(h)�⌘,�i+⌘ (96)

Excess risk:

For excess risk we need to bound:

1

↵0
sup

h2H,⌘2R

����� sup
�2�(W(�))

hl(h)�⌘,���⇤(�i|

����� (97)

M

↵0

1

2
TV(���⇤(�)) M

2↵0
(1�1/K)=

M

↵0
O(1�1/n�) (98)

In the above argument we used the fact that at equilibrium, �⇤(�) would be uniform over all possible
distinct group assignments. This completes our proof of Theorem 5.4.

C.7 WORST-CASE GENERALIZATION RISK FOR GROUP DRO

Recall that the BR-DRO objective in Equation 4 involves an expectation over P , which in practice is
replaced by empirical distribution P̂n. This induces errors in estimating the worst-case risk for plug-in
estimates ĥ�D,⌘̂

�
D In Theorem 5.1 we saw how the bitrate-constraint gracefully controls the worst-case

generalization guarantee for estimates ĥ�D,⌘̂
�
D through an oracle inequality. Here, we ask: “How does the

worst-case generalization for Group DRO compare with the bound in Theorem 5.1?”.

First, let us recall the objective for Group DRO (Equation 99) which assumes the knowledge of ground-truth
groups G1,G2,...,GK .

L⇤

gdro := inf
h2H

sup
k2[K]

EP [l(h(x),y) |(x,y)2Gk] (99)

Now, let us denote the plug-in estimate as ĥ
K
D which solves the above objective using the empirical

distribution P̂n. We are now ready to state Theorem C.12 which gives us the worst-risk generalization error
for Group DRO.
Theorem C.12 (worst-case risk generalization (Group DRO)). With probability�1�� over D⇠Pn, the
worst group risk for ĥKD can be upper bounded by the following oracle inequality:

sup
k2[K]

EP

h
l(ĥK

D(x),y) |(x,y)2Gk

i
<⇠ L⇤

gdro+M

s✓
log

✓
2K
�

◆
+(d+1)log(1+L2n)

◆
/(2n) ,

when l(·,·) is [0,M ]-bounded, L-Lipschitz and H is parameterized by convex set ⇥⇢Rd.

Proof Sketch.

We can use the covering number result in Lemma C.5, and plug it into the Hoeffding bound in Lemma C.1
to bound the generalization gap for a specific group Gk. This yields the following result with probability at
least 1��:

���EP [l(h(x),y) |(x,y)2Gk]�EP̂n
[l(h(x),y) |(x,y)2Gk]

��� (100)

<⇠

s
1

2n
·
✓
log

✓
2

�

◆
+(d+1)log(1+L2n)

◆
(101)

Next, we use union bound over the K groups to get the final result in Theorem C.12, with probability at
least 1��.

The main difference between the generalization analysis BR-DRO and Group DRO is the order in which
we bound the errors for the learner and the adversary (groups). For Group DRO, we begin with the learner
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since we can use traditional uniform convergence bounds to bound per group generalization risk and then
use union bound over the K groups to bound the worst-case risk. We can do this precisely since we can
use the pre-determined groups G1,G2,...,GK assumed by Group DRO. On the other hand, since we do
not assume this knowledge for BR-DRO, we first use PAC-Bayes bound (Lemma C.4) to control the
generalization error per group through the bitrate constraint �. The PAC-Bayes bound allows us to reason
about the generalization error for a specific learner h2H. Finally, to get the bound in Thorem 5.1 we
relied on a covering number argument for H parameterized as a convex subset of Rd (Section C.3).
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