
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

A PRELIMINARIES

A.1 MAXIMUM FLOW

Definition A.1 (Network Flow). Given a network G = (V,E, s, t,u), where s and t are the source and
target nodes respectively and uij is the capacity for the edge (i, j)∈E, a flow is characterized as a function
f : E → R≥0 s.t.

fij ≤ uij ∀(i, j)∈E (capacity constraints)∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = 0, ∀i ∈ V, i ̸= s, t (flow conservation constraints) (17)

We define |fout(i)| to be the total outflow value of a node i and |fin(i)| to be the total inflow value of a node i.
For a given set K ⊆ V of nodes, we define |f(K)| =

∑
i∈K |fout(i)| for every flow f . The value of a flow in

a given network G = (V,E, s, t,u) is denoted as |f | =
∑

v:(s,v) fsv −
∑

v:(v,s) fvs = |fout(s)| − |fin(s)|,
and a maximum flow is identified as a feasible flow with the highest attainable value.

A.2 MULTI-COMMODITY MAXIMUM FLOW

The multi-commodity flow problem is an important variant of the maximum flow problem. This problem
involves multiple source-sink pairs, unlike the standard maximum flow problem, which only considers one
source and one sink. The goal is to find multiple optimal flows, denoted by f1(·, ·), . . . , fr(·, ·), where each
fk(·, ·) represents a feasible flow from the source sk to the sink tk. The objective is to ensure that all capacity
constraints are satisfied, which are represented by the equation:

r∑
k=1

fk(i, j) ≤ u(i, j) ∀(i, j)∈E (18)

Such a flow is known as a "multi-commodity" flow. A multi-commodity maximum flow problem is to
maximize the function

∑r
k=1

∑
v:(v,sk)

fk(sk, v).

To solve the problem of multi-commodity maximum flow, we can simplify it by transforming it into a standard
maximum flow problem. This can be achieved by introducing two new nodes, a "super-source" node ss and a
"super-target" node st. The "super-source" node ss should be connected to all the original sources si through
edges of finite capacities, while the "super-target" node st should be connected to all the original sinks ti with
edges of finite capacities:

• Each outgoing edge from the "super-source" node ss to each source node si gets assigned a capacity
that is equal to the total capacity of the outgoing edges from the source node si.

• Each incoming edge from an original "super-target" node st to each sink node ti gets assigned a
capacity that is equal to the total capacity of the incoming edges to the sink node ti.

It is easy to demonstrate that the maximum flow from ss to st is equivalent to the maximum sum of flows in a
feasible multi-commodity flow in the original network.

A.3 SHAPLEY VALUES

The Shapley value, introduced by Shapley (1952), concerns the cooperative game in the coalitional form
(N,ϑ), where N is a set of n players and ϑ : 2N → R with ϑ(∅) = 0 is the characteristic (payoff)
function. In the game, the marginal contribution of the player i to any coalition S with i /∈S is considered as

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

ϑ(S ∪ i)− ϑ(S). These Shapley values are the only constructs that jointly satisfy the efficiency, symmetry,
nullity, and additivity axioms (Shapley, 1952; Young, 1985):

Efficiency: The Shapley values must add up to the total value of the game, which means
∑

i∈N ϕi(ϑ) = ϑ(N).

Symmetry: If two players are equal in their contributions to any coalition, they should receive the same
Shapley value. Mathematically, if ϑ(S ∪ {i}) = ϑ(S ∪ {j}) for all S ⊆ N\{i, j}, then ϕi(ϑ) = ϕj(ϑ).

Nullity (Dummy): If a player has no impact on any coalition, their Shapley value should be zero. Mathemati-
cally, if ϑ(S ∪ {i}) = ϑ(S) for all S ⊆ N\{i}, then ϕi(ϑ) = 0.

Linearity: If the game ϑ(·) is a linear combination of two games ϑ1(·), ϑ2(·) for all S ⊆ N , i.e. ϑ(S) =
ϑ1(S) + ϑ2(S) and (c · ϑ)(S) = c · ϑ(S),∀c ∈ R, then the Shapley value in the game ϑ is also a linear
combination of that in the games ϑ1 and ϑ2, i.e. ∀i∈N,ϕi(ϑ1) = ϕi(ϑ1) + ϕi(ϑ2) and ϕi(c · ϑ) = c · ϕi(ϑ).
Considering these axioms, the attribution of a player j is uniquely given by (Shapley, 1952; Young, 1985):

ϕj(ϑ) =
∑

S⊆N\{j}

|S|!(n− |S| − 1)!

n!
(ϑ(S ∪ {j})− ϑ(S)) (19)

where the difference ϑ(S ∪ {j})− ϑ(S) represents the i-th feature’s contribution to the subset S, and the
summation represents a weighted average across all subsets that do not include i.

Initially, a payoff function based on model accuracy was suggested (Lundberg & Lee, 2017). Since then,
various alternative coalition functions have been proposed (Jethani et al., 2022; Sundararajan & Najmi, 2020),
each resulting in a different feature importance score. Many of these alternative approaches are widely used
and have been shown to outperform the basic SHAP method (Lundberg & Lee, 2017) in empirical studies.

(a) Network flow with multiple sources and targets. (b) Network flow including super-source and super-target.

(c) Network flow defined for MCC problem.

Figure 2: Initial network flow to be used in our proposed method, the multi-commodity flow with multiple sources and
targets, and the network flow for MCC problems.
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B NETWORK FLOW GENERATION

Fig. 2 will detail the process of defining a graph network and its parameters using Algorithm 1 for use in
our proposed method. It is worth noting that the same method can be used for Algorithm 2. To solve the
maximum flow or MCC problem within this graph network, we must compute network flow with multiple
sources and targets, assigning all nodes in the first and last layers of transformers as sources and targets,
respectively (Fig. 2a).

To solve this problem, we leverage the concept of multi-commodity flow (multiple-sources multiple-targets
maximum flow) by introducing a super-source node ss and a super-target node st (Fig. 2b). To define
the upper-bound and lower-bound capacities of this new graph network, we utilize the procedure defined
in Sec. 3.2. In the last step, we add a new edge from the super-target node st to the super-source node
ss and define the cost vector, upper-bound capacities, and lower-band capacities according to Fig. 2c.
Subsequently, we can input all derived parameters into eq. 12, solve the optimization problem, and evaluate
feature attributions.

C NON-UNIQUENESS OF MAXIMUM FLOW

Fig. 3 visually describes our proposed approach for computing feature attributions. Using maximum flow to
derive these attributions produces a convex set containing all optimal flows, which makes it unsuitable as
a feature attribution technique. In contrast, our proposed approach, which utilizes the log barrier method,
generate a unique optimal flow and provides an interpretable set of feature attributions.

Figure 3: Overview of how the proposed method evaluates the unique optimal flow computed using the log barrier method,
attention weights, and their gradients in Transformers.

Fig. 4 shows the capacities and optimal flows obtained by solving maximum flows on the network, constructed
with the synthetic information tensor Ā∈R4×3×3 as input, using Algorithm 1 and Algorithm 2. While the
maximum flows are the same for both algorithms, their optimal flows differ. Notably, significant differences in
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flows between node pairs {v4,v8} and {v3,v5} are visible in Fig. 4c and Fig. 4d. Additionally, we evaluated
the maximum flow and its optimal flow generated by both algorithms across various combinations of token
numbers t and Transformer layers l. Our findings indicate that the optimal flows from the two algorithms do
not coincide in any scenario.
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(a) Network flow created via Algorithm 1
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(b) Network flow created via Algorithm 2
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(c) Maximum flow in the graph created from Algorithm 1
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(d) Maximum flow in the graph created from Algorithm 2

Figure 4: Network flow, maximum flow, and residual flow created by Algorithm 1 and Algorithm 2. The optimal flows
and residual flows evaluated using Algorithm 1 and Algorithm 2 are different.

Fig. 5a and Fig. 5b display the normalized feature attributions evaluated across three information tensors
introduced in Sec. 3.1 for sentiment analysis of the sentence "although this dog is not cute, it is very smart."
employing both Algorithm 1 and Algorithm 2. Across each of the three information tensors, the resulting
optimal flows and their corresponding normalized attributions differ depending on whether Algorithm 1 or
Algorithm 2 is used.

The layer-wise normalized feature attributions, obtained through the same process, are displayed in Fig. 6.
For each information tensor type and layer, the resulting optimal flows and their normalized attributions differ
based on whether Algorithm 1 or Algorithm 2 is utilized. We also computed the optimal flow and its feature
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attributions for various input sentences using both algorithms for each of the information tensors AF, GF,
and AGF. Our findings reveal that the optimal flows and corresponding feature attributions generated by
Algorithm 1 and Algorithm 2 differ for all sentences.

although this dog is not cute , it is very smart .

GF

AGF

AF

(a) Normalized feature attributions for Transformer’s input layer evaluated by Algorithm 1 for different information tensors.

although this dog is not cute , it is very smart .

GF

AGF

AF

(b) Normalized feature attributions for Transformer’s input layer evaluated by Algorithm 2 different information tensors.

Figure 5: Normalized feature attributions for Transformer’s input layer and different information tensors.
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(a) AF method:Algorithm 1
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(b) AF method:Algorithm 2.
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(c) GF method:Algorithm 1.
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(d) GF method:Algorithm 2.
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Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

(e) AGF method:Algorithm 1.
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(f) AGF method:Algorithm 2.

Figure 6: Normalized feature attributions for all Transformer layers evaluated by Algorithm 1 and Algorithm 2.
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D RESULTS

D.1 QUALITATIVE VISUALIZATIONS

This section visually examines the feature attributions derived from our proposed methods, applied to
information tensors as defined in Sec. 3.1. Fig. 7 illustrates feature attributions obtained from our proposed
methods applied to two graphs generated by either Algorithm 1 or Algorithm 2. Remarkably, our approaches
consistently yield identical results for both graphs. The outcomes vividly demonstrate the superiority of AGF
over AF and GF, offering more insightful and reasonable feature attributions. Specifically, both AGF and GF
effectively highlight the importance of tokens like ’smart’ and ’cute’, while assigning lower values to less
significant tokens such as ’this’, ’it’, and ’and’. In contrast, AF fails to capture the expected feature attribution
of ’smart’ and tends to produce an almost uniform distribution for feature attributions.

although this dog is not cute , it is very smart .

GF

AGF

AF

Figure 7: Visualizations of the feature attributions generated by running our proposed method on the three introduced
information tensors on the showcase example.

D.2 ADDITIONAL RESULTS

Fig. 8 presents a detailed comparison of the performance dynamics of various feature attribution methods
under different corruption rates across three distinct datasets: IMDB, Amazon, and Yelp. The efficacy of
these methods is evaluated using two key metrics, AOPC and LOdds, which measure how well each method
identifies important tokens that influence model predictions. Notably, our proposed AGF method consistently
outperforms the other techniques, maintaining the highest average AOPC and LOdds scores across a range of
corruption levels, particularly for both the IMDB and Amazon datasets. This consistent superiority highlights
the robustness of AGF in pinpointing the most important tokens, which significantly affect the model’s
decision-making process.

We also evaluated various explanation methods by analyzing their performance on classification metrics,
with results summarized in Tab. 3, which details the average Accuracy, F1, Precision, and Recall scores
across multiple k values. On the SST2 dataset, our proposed methods AGF and GD, in conjunction with
KernelShap, achieved the highest overall performance. For the IMDB dataset, AGF and GF, along with
Integrated Gradients (IG), showed significant improvement over other methods. In the Amazon dataset,
AGF and GF, when combined with TransAtt, outperformed all competitors. For the AG News dataset, AGF
and AF, paired with AttGrads, demonstrated superior performance. The consistently strong performance of
AGF across diverse datasets and evaluation metrics highlight its versatility and effectiveness in accurately
identifying important tokens, reinforcing its reliability as a feature attribution method in NLP models.

However, the Yelp dataset poses a distinct challenge where our proposed methods, including AGF, do not
consistently achieve optimal results across all evaluation metrics. This performance discrepancy is likely due
to the unique characteristics inherent to the Yelp dataset, which frequently contains a higher concentration
of informal language, colloquialisms, and typographical errors. The prevalence of such linguistic noise in
Yelp reviews is notably higher compared to other datasets like IMDB or Amazon. These textual irregularities
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introduce complexity that AGF, with its current configuration, may be less equipped to handle effectively.
Consequently, AGF’s performance suffers, as it appears to have a lower tolerance for handling noisy or
non-standard text inputs, which compromise its ability to accurately attribute features and identify the most
influential tokens within these reviews.

Fig. 9 compare the feature attribution methods evaluated on the aforementioned sentence using a model
trained on SST2. In all instances, the feature attribution methods predict positive sentiment for the showcased
example. Our methods, AGF and GF, effectively capture the most important tokens, such as ’cute’ and ’smart’
(indicated in dark orange shading), which significantly contribute to the positive sentiment prediction. Some
other methods, including Grads, LIME, RawAtt, and PartialLRP, also exhibit some capability in identifying
important tokens. However, certain methods like AF, AttCAT, CAT, Rollout, KernelShap, and IG struggle to
correctly identify important tokens.

Table 3: The average of F1, Accuracy, Precision, and Recall scores of all methods in explaining the Transformer-based
model on each dataset when we mask top k% tokens. Lower scores are desirable for all metrics (indicated by ↓),
indicating a strong ability to mark important tokens.

Methods SST2 IMDB Yelp Amazon AG News

F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓ F1↓ Acc↓ Prec↓ Rec↓
RawAtt 0.75 0.75 0.72 0.79 0.69 0.67 0.70 0.69 0.68 0.72 0.74 0.63 0.67 0.68 0.67 0.66 0.65 0.68 0.68 0.68
Rollout 0.81 0.82 0.80 0.82 0.74 0.67 0.65 0.84 0.80 0.83 0.88 0.74 0.71 0.73 0.71 0.72 0.61 0.63 0.64 0.63
Grads 0.78 0.75 0.72 0.79 0.69 0.67 0.70 0.69 0.68 0.72 0.74 0.63 0.67 0.68 0.67 0.66 0.65 0.68 0.68 0.68
AttGrads 0.78 0.78 0.75 0.82 0.76 0.75 0.78 0.76 0.91 0.91 0.89 0.93 0.79 0.82 0.80 0.78 0.58 0.61 0.60 0.60
CAT 0.68 0.65 0.61 0.76 0.56 0.49 0.51 0.65 0.70 0.70 0.68 0.73 0.68 0.64 0.67 0.70 0.63 0.64 0.64 0.64
AttCAT 0.68 0.65 0.62 0.76 0.57 0.48 0.50 0.64 0.67 0.66 0.65 0.70 0.67 0.62 0.66 0.68 0.64 0.64 0.65 0.64
PartialLRP 0.75 0.75 0.71 0.78 0.66 0.65 0.67 0.67 0.65 0.70 0.71 0.61 0.65 0.66 0.65 0.64 0.65 0.68 0.68 0.68
TransAtt 0.73 0.72 0.69 0.76 0.61 0.58 0.60 0.62 0.62 0.66 0.66 0.60 0.62 0.63 0.63 0.61 0.63 0.66 0.66 0.66
LIME 0.61 0.63 0.62 0.63 0.55 0.55 0.55 0.55 0.72 0.73 0.72 0.73 0.72 0.73 0.72 0.73 0.67 0.67 0.68 0.67
KernelShap 0.53 0.52 0.53 0.53 0.67 0.69 0.68 0.69 0.77 0.78 0.77 0.78 0.67 0.68 0.67 0.68 0.74 0.74 0.75 0.74
IG 0.56 0.57 0.56 0.57 0.48 0.50 0.48 0.50 0.72 0.72 0.72 0.72 0.73 0.74 0.73 0.74 0.67 0.68 0.67 0.67
AF 0.72 0.72 0.71 0.71 0.65 0.68 0.70 0.68 0.71 0.71 0.71 0.70 0.69 0.71 0.71 0.71 0.64 0.62 0.65 0.64
GF 0.56 0.57 0.56 0.56 0.45 .0.48 0.45 0.48 0.70 0.71 0.70 0.71 0.65 0.67 0.66 0.67 0.67 0.68 0.67 0.67
AGF 0.54 0.52 0.54 0.54 0.46 0.47 0.47 0.47 0.70 0.72 0.70 0.70 0.67 0.67 0.67 0.67 0.64 0.63 0.65 0.64

D.3 STATISTICAL SIGNIFICANCE TEST

To implement a statistical significance test, we employ the ASO (Almost Stochastic Order) method (Ulmer
et al., 2022; Dror et al., 2019; del Barrio et al., 2017), which compares the cumulative distribution functions
(CDFs) of two score distributions to determine stochastic dominance. Notably, ASO imposes no assumptions
about score distributions, making it applicable to any metric where higher scores indicate better performance.

When comparing model A with model B using the ASO method, we obtain the value ϵmin, which is an upper
bound on the violation of stochastic order. If ϵmin ≤ τ (with τ ≤ 0.5), model A is considered stochastically
dominant over model B, implying superiority. This value can also be interpreted as a confidence score; a
lower ϵmin suggests greater confidence in model A’s superiority. The null hypothesis for ASO is defined as:

H0 : ϵmin ≥ τ (20)

where the significance level α is an input parameter that influences ϵmin.

In this study, we conduct 500 independent runs per method to perform comprehensive statistical tests,
comparing the AOPC and LOdds metrics between our best-performing proposed method, AGF, and the top
benchmark methods outlined in Tab. 1 and Tab. 2, using τ = 0.5. As illustrated in Tab. 4 and Tab. 5, the AGF
method stochastically dominates the performance of these benchmark methods across all datasets, with the
exception of the Yelp dataset.
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(a) AOPC score for IMDB dataset
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(b) LOdds score for IMDB dataset
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(c) AOPC score for Amazon dataset
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(d) LOdds score for Amazon dataset
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(e) AOPC score for Yelp dataset
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(f) LOdds score for Yelp dataset

Figure 8: AOPC and LOdds scores of different methods in explaining BERT across the varying corruption rates k on
IMDB, Amazon, and Yelp datasets. The x-axis illustrates masking the k% of the tokens in an order of decreasing saliency.
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Figure 9: Visualizations of the normalized feature attributions generated by the selected methods on the binary classifica-
tion task.

Table 4: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.054 0.039 0.078 0.061 0.813 0.924 0.053 0.043 0.091 0.076

Table 5: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.348 -0.973 0.329 -1.393 0.383 -1.985 0.353 -1.593 0.301 -1.105

E PROOFS

Corollary 3.1. While Shapley values are inherently unique, our findings in Sec. 3.3 and App. C expose a
critical inconsistency. We demonstrate that the optimal solution of the maximum flow problems defined
in eq. 8 is not necessarily unique, thereby disproving the claim that the feature attributions proposed by
Ethayarajh & Jurafsky (2021) are Shapley values.

The non-uniqueness of these attributions, as evidenced by our proof, fundamentally conflicts with the defining
properties of Shapley values. If these attributions defined by Ethayarajh & Jurafsky (2021) were indeed
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Figure 9: Visualizations of the normalized feature attributions generated by the methods on the binary classification task.

Table 4: ASO test to compare AGF method with the best benchmark method when we mask top k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.054 0.039 0.078 0.061 0.813 0.924 0.053 0.043 0.091 0.076

Table 5: ASO test to compare AGF method with the best benchmark method when we mask bottom k% tokens.

Dataset SST2 IMDB Yelp Amazon AG News

AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds
ϵmin 0.049 0.037 0.113 0.085 0.913 0.824 0.062 0.053 0.091 0.067

E PROOFS

Corollary 3.1. While Shapley values are inherently unique, our findings in Sec. 3.3 and App. C expose a
critical inconsistency. We demonstrate that the optimal solution of the maximum flow problems defined
in eq. 8 is not necessarily unique, thereby disproving the claim that the feature attributions proposed by
Ethayarajh & Jurafsky (2021) are Shapley values.

The non-uniqueness of these attributions, as evidenced by our proof, fundamentally conflicts with the defining
properties of Shapley values. If these attributions defined by Ethayarajh & Jurafsky (2021) were indeed
Shapley values, they would necessarily be unique. However, our observations demonstrate that since the
optimal solution of the maximum flow problem is not necessarily unique, for each optimal solution of the
maximum flow problem, we can derive corresponding feature attributions that differ from one another.
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Theorem 3.1. Since the optimal flow f∗ is computed once for the entire graph and not for each potential
subgraph, and the players (tokens) are all disjoint without any connections in S, blocking the flow through
one player does not impact the outflow of any other players. Therefore, for every S ⊆ N where i /∈S, we
have |fout(i)| = v(S ∪ {i})− v(S). Utilizing the definition of Shapley values in eq. 14, we obtain:

ϕi(ϑ) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (ϑ(S ∪ {i})− ϑ(S))

=
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (|fout(i)|)

= |fout(i)|
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

= |fout(i)|

It is also evident that the defined function meets all four fairness-based axioms of efficiency, symmetry,
linearity, and additivity.

Figure 10: Visualizations of the procedure to define the cooperative game (N,ϑ) using the solution of barrier-regularized
maximum flow or its corresponding MCC problem.

F IMPLEMENTATION DETAILS

F.1 DATASETS

Tab. 6 illustrates comprehensive statistics of the datasets utilized for the classification task. We randomly
extracted 5, 000 sentences from each test section of the datasets, except for those with a test size less than
5, 000, where we retained all samples. Furthermore, we prioritized diversity in our sampling process by
incorporating sentences of varying lengths, with an equal distribution between those shorter and longer than
the mode size of the test dataset.
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Table 6: Statistical information and the pre-trained models employed for each dataset.

Datasets # Test Samples # Classes ℓmode ℓmin ℓmax ℓavg Pre-trained Model
SST2 1,821 2 108 5 256 103.3 textattack/bert-base-uncased-SST-2

Amazon 5,000 2 127 15 1009 404.9 fabriceyhc/bert-base-uncased-amazon_polarity

IMDB 5,000 2 670 32 12988 1293.8 fabriceyhc/bert-base-uncased-imdb

Yelp 5,000 2 313 4 5107 723.8 fabriceyhc/bert-base-uncased-yelp_polarity

AG News 5,000 4 238 100 892 235.3 fabriceyhc/bert-base-uncased-ag_news

F.2 TIME COMPLEXITY OF PROPOSED METHODS

In the minimum-cost circulation problem, we are given a directed graph G = (V,E) with |V | = n vertices
and |E| = m edges, upper and lower edge capacities u, l ∈ Rm, and edge costs c ∈ Rm. Our objective is to
find a circulation f ∈ Rm satisfying:

argmin
B⊤f=0
l≤f≤u

c⊤f

where B ∈ Rm×n is the edge-vertex incidence matrix.

To compare running times, we assume that l̃, ũ, c̃ represent the integral versions of l,u, c obtained from
either Algorithm 1 or Algorithm 2, and define U = ∥ũ∥∞ and C = ∥c̃∥∞. Tab. 7 compares the latest iterative
algorithms for solving the maximum flow and minimum-cost circulation problems. While the most efficient
algorithm achieves nearly linear running time relative to the number of edges m, the runtime can still be
significant with long input sequences. To solve the minimum-cost circulation problem, we implemented the
algorithm by (Lee & Sidford, 2014) using CVXPY (Agrawal et al., 2018; Diamond & Boyd, 2016).

Table 7: Overview of recent iterative algorithms for maximum flow and minimum-cost circulation problems.

Year MCC Bound Max-Flow Bound Author

2014 O
(
m

√
n polylog(n) log2(U)

)
O

(
m

√
n polylog(n) log2(U)

)
Lee & Sidford (2014)

2022 O
(
m

3
2
− 1

762 polylog(n) log(U + C)
)

O
(
m

10
7 polylog(n)U

1
7

)
Axiotis et al. (2022)

2023 O
(
m

3
2
− 1

58 polylog(n) log2(U)
)

O
(
m

3
2
− 1

58 polylog(n) log2(U)
)

van den Brand et al. (2023)

2023 O
(
m1+o(1) log(U) log(C)

)
O

(
m1+o(1) log(U) log(C)

)
Chen et al. (2023a)

Table 8: Runtime of all methods
for the showcase example.

Methods Runtime (seconds)
RawAtt 0.123
Rollout 0.154
Grads 1.554
AttGrads 1.571
CAT 1.684
AttCAT 1.660
PartialLRP 1.571
TransAtt 1.620
LIME 1.462
KernelShap 2.342
IG 2.701
AF 2.301
GF 2.305
AGF 2.306

Experiments were conducted on a computing device running Ubuntu 20.04.4
LTS, equipped with an Intel(R) Xeon(R) Platinum 8368 CPU at 2.40GHz,
featuring 12 cores and 24 threads for parallel processing. Graphics processing
was handled by an NVIDIA RTX 3090 Ti with 40GB of dedicated memory.
The device also had 230GB of system memory, ensuring ample computational
resources for efficient and effective experimentation.

Tab. 8 compares the runtime of benchmark methods for analyzing the sentence
"although this dog is not cute, it is very smart." Methods like RawAtt and
Rollout, which rely on raw attention weights, have the shortest runtime. In
contrast, methods requiring complex post-processing to evaluate feature at-
tributions have longer runtime. Our proposed methods’ runtime is comparable
to others in this latter group.
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