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In this appendix, we discuss the prior distribution selection, motivation of the Stage 2, and evaluation
division of difficulty in Sec and Sec respectively. In the rest of the supplementary material,
we provide the implementation details of all baselines and the proposed approach in Sec [B]followed
by the proof of Theorem In Sec[D} the overall algorithm is summarized. Additional experi-
mental results on KITTI (Sec|[E) and Waymo (Sec[F) datasets are reported and analyzed. We further
conducted supplemental experiments on parameter sensitivity (Sec [H) and visualizations (Sec [G).
In the end, we leave the related work and the associated discussion in Sec

A APPENDIX

A.1 MORE DISCUSSIONS ON PRIOR DISTRIBUTION

In mainstream 3D detection datasets, the curated test set is commonly long-tailed distributed, with
a few head classes (e.g., car) possessing a large number of samples and all the rest of the tail classes
possessing only a few samples. As such, the trained detector can be easily biased towards head
classes with massive training data, resulting in high accuracy on head classes and low accuracy on
tail classes. This suggests that for 3D detection tasks, mean average precision (mAP) can be a
fairer metric of evaluation, by taking an average of all AP values per class. When the test label is
uniformly distributed, mAP scores will be equal to the AP scores for all samples. This motivates
us to choose the uniform distribution as the prior distribution, rather than estimating the test label
distribution from the initial labeled set Dy,. In this case, the trained model tends to be more robust
and resilient to the imbalanced training data, achieving higher mAP scores.

To justify the effectiveness of choosing the uniform distribution, we provide more comparisons with
the SOTA active learning methods in Table2]and Table[T] which do not take the uniform distribution
as an assumption. We clearly observe that such AL methods perform poorly on tail classes (e.g.,
pedestrian and cyclist), confirming that the yielded models are biased towards learning car samples.

Table 1: Performance gap (%) between different AL methods and fully supervised backbone when
acquiring approximately 1% queried bounding boxes on KITTI. Gaps are calculated by subtracting
the performance of a fully supervised backbone from the performance of AL methods.

Car () Pedestrian (]) Cyclist () Average ()
Method EAsy Mob. HARD EASy MobD. HARD Easy Mob. HARD EASy MobD. HARD
LrAL 2.61 5.71 7.16 7.92 6.80 5.94 13.33 11.60 11.42 7.81 8.04 8.18

CORESET  4.79 6.63 9.53 16.99 14.70 13.72 715 1223 11.14 949 11.18 11.47
BADGE 2.60 8.58 11.94 1232 1043 10.93  4.77 9.66 8.66 6.41 9.55  10.51
CRB 1.58 5.34 8.44 0.09 1.87 1.09 1.92 4.50 3.22 1.05 3.18 4.25

A.2 MORE DISCUSSIONS ON EVALUATION DIVISION OF DIFFICULTY

On the KITTT dataset, the evaluation difficulty is set based on the visual look{ﬂ of the images, which
is supposed to be unavailable for our LiDAR-based detection task. On the other hand, the Waymo
dataset leverages a more reasonable and general setting of difficulty evaluation, with LEVEL 1
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Table 2: Performance comparisons on KITTI val set with different SOTA AL methods when ac-
quiring approximately 1% queried bounding boxes. Results are reported with 3D AP with 40 recall
positions. T indicates the reported performance of the backbone trained with the full labeled set
(100%).

Car Pedestrian Cyclist Average
Method EAsy Mobp. HARD EAasy Mob. HARD EAsy MobD. HARD EASY MobD. HARD
LLAL 89.95 78.65 7532 56.34 49.87 4597 7555 60.35 55.36 73.94 6295 58.88

CORESET  87.77 7773 7295 47.27 4197 3819 81.73 59.72 55.64 72.26 59.81  55.59
BADGE 89.96 75.78 70.54 51.94 46.24 40.98 84.11 62.29 58.12 7534 61.44  56.55
CRB 9098 79.02 74.04 64.17 5480 50.82 8696 6745 63.56 80.70 67.81 62.81

Pv-RCNNT 92,56 84.36 8248 64.26 56.67 51.91 88.88 71.95 66.78 81.75 70.99 67.06

and LEVEL 2 difficulties indicating “more than five points” and ““at least one point” inside labeled
bounding boxes, respectively. This aligns with the design of the balance criterion (Stage 3), as
the sparse point clouds or dense point clouds can be equally learned. In Table [3] we report the
performance of the proposed approach with a small portion of point clouds and the fully supervised
baseline reported in (Zhang et al., 2022), on the Waymo dataset. From Table 3| we can observe that
the performance gap between the detectors trained with active learning (approx. SOK bounding box
annotations) and fully supervised learning (approx. 8 million bounding box annotations) is smaller
in LEVEL 2 (7.18% in LEVEL 2 vs 8.08% in LEVEL 1), which aligns with the balance criteria in
the proposed CRB framework.

A.3 MORE DISCUSSIONS ON THE MOTIVATION OF THE STAGE 2

Our main objective of Stage 2, i.e., Representative Prototype Selection is to determine a subset
Dy, from the pre-selected set Sy in the last stage, by minimizing the set discrepancy in the latent
feature space. However, the test features are not observable during the training phase, and it is hard
to guarantee that the feature distribution can be comprehensively captured. As stated in Remark
section, we focus on the features that are not learned well from the training set due to the zero
training error assumption and reconsider the feature matching problem from a gradient perspective.
In particular, we split the test set into two group In the gradient space: (1) seen test samples that
can be easily recognized will cluster near the origin, (2) while the novel test samples will diversely
distribute in the subspace. As the first group of samples have been sufficiently covered by the
initiated, in this stage, we focus on finding matching with the latter group. By assuming the prior
distribution of gradients follows a Gaussian distribution, finding the K-metroids is naturally a choice
to mitigate the gap between mean and variance. K-metroids algorithm breaks the dataset up into
groups and attempts to minimize the distance between points labeled to be in a cluster and a point
designated as the center of that cluster (i.e., prototype). By selecting the prototypes in the second
stage, we implicitly bridge the gap between the selected set and the test set at a latent feature level.

B IMPLEMENTATION DETAILS

B.1 EVALUATION METRICS.

To fairly evaluate baselines and the proposed method on Table 3: Comparing the performance
KITTI dataset (Geiger et al., 2012)), we follow the work of detectors with active learning (AL)
of (Shi et al.,[2020): we utilize Average Precision (AP) for by CRB and fully supervised learning
3D and bird eye view (BEV) detection, and the task dif- (FSL) on Waymo val set. Results (mAP
ficulty is categorized to EASY, MODERATE, and HARD, %) are calculated by Waymo official
with a rotated IoU threshold of 0.7 for cars and 0.5 for evaluation metric.

pedestrian and cyclists. The results evaluated on the val-

idation split are calculated with 40 recall positions. To Method mAP Level 1 mAP Level 2
evaluate on Waymo dataset (Sun et al., 2020), we adopt

. 2.
the officially published evaluation tool for performance ggf gggg gggg
comparisons, which utilizes AP and the average precision
weighted by heading (APH). The respective IoU thresh- _ 98P (1) —8.08 —7.18
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olds for vehicles, pedestrians, and cyclists are set to 0.7,

0.5, and 0.5. Regarding detection difficulty, the Waymo test set is further divided into two levels.
LEVEL 1 (and LEVEL 2) indicates there are more than five inside points (at least one point) in the
ground-truth objects.

B.2 IMPLEMENTATION DETAILS OF TRAINING

To ensure the reproducibility of the baselines and the proposed approach, we develop a PyTorch-
based active 3D detection toolbox (attached in the supplemental material) that implements main-
stream AL approaches and can accommodate most of the public benchmark datasets. For fair com-
parison, all active learning methods are constructed from the Pv-RCNN (Shi et al., 2020) backbone.
All experiments are conducted on a GPU cluster with three V100 GPUs. The runtime for an ex-
periment on KITTI and Waymo is around 11 hours and 100 hours, respectively. Note that, training
Pv-RCNNon the full set typically requires 40 GPU hours for KITTI and 800 GPU hours for Waymo.

Parameter Settings. The batch sizes for training and evaluation are fixed to 6 and 16 on both
datasets. The Adam optimizer is adopted with a learning rate initiated as 0.01, and scheduled by one
cycle scheduler. The number of MC-DROPOUT stochastic passes is set to 5 for all methods.

Active Learning Protocols. As our work is the first comprehensive study on active 3D detection
task, the active training protocol for all AL baselines and the proposed method is empirically defined.
For all experiments, we first randomly select m fully labeled point clouds from the training set as the
initial Dr,. With the annotated data, the 3D detector is trained with F epochs, which is then freezed
to select V,. candidates from Dy; for label acquisition. We set the m and N,. to 2.5 3% point clouds
(i.e., N, = m =100 for KITTI, N,, = m =400 for Waymo) to trade-off between reliable model
training and high computational costs.The aforementioned training and selection steps will alternate
for R rounds. Empirically, we set £ = 30, R = 6 for KITTIL and fix £ = 40, R = 5 for Waymo.

B.3 IMPLEMENTATION DETAILS OF BASELINES AND CRB

In this section, we introduce more implementation details of both baselines and the proposed CRB.

CRB. In comparison with baselines as reported in Figure 2, the K and Ky are empirically set to
300, 200 for KITTI and 2, 000 and 1, 200 for Waymo. The gradient maps used for RPS are extracted
from the second convolutional layer in the shared block of PV-RCNN. Three dropout layers in Pv-
RCNN are enabled during the MC-DROPOUT and the dropout rate is fixed to 0.3 for both datasets.
The number of MC-DROPOUT stochastic passes are set to 5 for all methods. In the GPCB stage,
we measure the KL-divergence between the KDE PDF of the selected set and the uniform prior
distribution of the point cloud density for each class. The goal of conducting a greedy search is
to find the optimal subset that can achieve the minimum sum of KL divergence for all classes.
Considering the high variance of KL divergence across different classes, we unify the scale of KL-
divergence to d. by applying the following function,

2
d. = — arctan zdc,
T 2

where d. denotes the KL-divergence for the c-th class. To this end, the ultimate objective for greedy
search is arg minp_ ~p 5 Zce[c] d.. The normalized measurement can avoid dominance by any

single class.

CORESET (Sener & Savarese, 2018). The embeddings extracted for both labeled and unlabeled
data are the output from the shared block, with the dimension of 128 by 256. The CORESET adopts
the furthest-first traversal for k-Center clustering strategy, which computes the Euclidean distance
between each embedding pair.

LLAL (Yoo & Kweon, |2019). For implementing the loss prediction module in LLAL, we construct
a two-block module that connects to two layers of the PV-RCNN, which takes multi-level knowledge
into consideration for loss prediction. Particularly, each block consists of a convolutional layer with
a channel size of 265 and a kernel size of 1, a batchnorm layer, and a relu activation layer. The
outputs are then concatenated and fed to a fully connected layer and map to a loss score. All real
loss for each training data point is saved and serves as the ground-truth to train the loss prediction
module.
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BADGE. According to (Ash et al.l [2020), hypothetical labels for the classifier are determined by
the classes with the highest predicted probabilities. The gradient matrix with the dimension 256 by
256 for each unlabeled point cloud is extracted from the last convolutional layer of the PV-RCNN’s
classification head and then fed into the BADGE algorithm.

C PROOF OF THEOREM 2.1

Theorem C.1. Let H be a hypothesis space of Vapnik-Chervonenkis (VC) dimension d, with f

and g being the classification and regression branches, respectively. The Dg and Dr represent the
empirical distribution induced by samples drawn from the acquired subset Dg and the test set Dr,
and ! the loss function bounded by J. It is proven that¥ 6 € (0,1), and V' f, g € H, with probability
at least 1 — § the following inequality holds,

1 PO
Rrll(f, g;w)] < Rsll(f, g;w)] + §disc(Ds,DT) + A" + const,

4
where const = 3 \/log 2 \/l;gvf )+ \/leog](ve:vr/d) + \/leogl(\th/d).

Notably, \* = Rr[L(f*, g*;w™)] + Rs[€(f*, g*; w*)] denotes the joint risk of the optimal hypoth-
esis f* and g*, with w* being the model weights. N, and Ny indicate the number of samples in the
Dg and Dr. The proof can be found in the supplementary material.

Proof. For brevity, we omit the model weights w in the following proof. Based on the triangle
inequality of ¢ and the definition of the discrepancy distance disc(-, ), the following inequality
holds,

Ralt(f,9)] < Fald(*,9)] + SR llf, )] + 5B ltl, ")
<R[, 0]+ RS 97)] + 5RO )] — Rsle(f, £)]
+ 5 1Raltg,6)] - Rsll(g, 6°)]
< Rell(f*,9")]+ Rl 9] + dise(Ds, Dr)

< ReU(f*,6°)] + Rs[L(F, 9)] + Rsl((7*, 6°)] + gdise(Ds, Dr).

By defining the joint risk of the optimal hypothesis \* = R [¢(f*, g*)] + Rs[¢(f*, g*)] and the
Corollary 6 in (Mansour et al., 2009), we have,

Re[0(f. 9)] < Rsl0(f. g)] + 1disc<vs, Dy) + N

< Rl dZSC Ds,DT + A" +4¢g(Rads(H) + Radr(H))

+3J(

2N 2Nt

where IV,. and V; indicate the sample size of the selected set and the test set, respectively. ¢ stands
for the function is g-Lipschitz. As our regression loss, {"“Y is the smooth-L1 loss function and
bounded by 7, ¢ equals 1 in our case. Radg(#) and Rady (%) indicates the empirical Rademacher
complexity of a hypothesis set H whose VC dimension is d over the selected set and the test set.

Considering the Rademacher complexity is bounded by:

[2d1og(eN, d 2dlog(eN, /d
Radg(H Oge 2dlog(eNe/d) — pog. Og](\’; o/ ),
t

then we can rewrite the inequality as,

Rr[l(f, 0)] < Rsl£(f,9)] + ydisc(Ds, D) + X* + const,

where const — 3.7 \/log £ \/kz)f’vf )+ \/leog(eN ./ d) n \/2dlog(e1v,/d) O
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Algorithm 1 The algorithm of CRB for active 3D object detection

Inputs:
Dy : initially labeled point clouds
Dyr: unlabeled pool of point clouds
€2: oracle
B: total budget of active selection
e(+) : P — «: point cloud encoder of 3D detector
f(): classifier of 3D detector
g(-): regression head of 3D detector
R: total active learning rounds

Dg + 0

Pre-train 3D detector {e(-), f(+), g(-)} with Dz, until converge

Ds <+ Ds UDy,

for r € [R] do > For each round of active selection
Y « foe(Dy) > Get the predicted labels
B: ,0+ goe(Dy) > Get the predicted boxes BB and box point densities ¢

B + Hypothetical labels computed by Equation (5)
D, + CLS(Dy,Y) selects Ky samples via Equation (2),(3),(4)
~ > Stage 1: Concise Label Sampling
Dy, < Rps(Ds,,e(Ds, ), B) selects Ky samples via Equation (6),(7)
R > Stage 2: Representative Prototype Selection
D% «+ GPDB(Dg,, B, ¢) selects N, samples via Equation (8),(9)
> Stage 3: Greedy Point Cloud Density Balancing
Dt + Q(Dy) > Query labels from oracles
Ds + Ds UD}
Dy + DU\DE
Train 3D detector {e(-), f(-), g(-)} with Dg until converge
end for

D ALGORITHM DESCRIPTION

To thoroughly describe the procedure of active 3D object detection by the proposed CRB, we present
the Algorithm([I]in detail. Firstly, the 3D detector consisting of an encoder {e(+), a classifier f(-), and
regression heads g(+)} is pre-trained with a small set Dy, of labeled point clouds. During the stage
1: CLS, the pre-trained 3D detector infers all samples from the unlabeled pool Dy and obtains the
predicted bounding boxes B, predicted box labels Y, and calculated box point densities ¢ for each
point cloud. Also, the hypothetical labels B through stochastic monte-carlo sampling are computed
by Equation (5) during inference. Based on the criterion of maximizing the label entropy, the set
Dgl containing K candidates are formed via Equations (2), (3), (4). In stage 2, we set the model
to the training mode and allow the gradient back-propagation to retrieve gradients for each point
cloud. Yet, the model weights will be fixed and not updated. RPS selects the set D, of size Ko
from the previous candidate set Dgl based on the Equation (6) and (7). In stage 3, GBPS selects the

set D of size N, from set D , predicted boxes B and box point densities ¢ via Equation (8), (9).
The final set DY at this round is then annotated by an oracle €2 and merged with the selected set in
the previous round as the training data. Notably, the selected set at the O-th round is Dy. When the
training data is determined, we re-train the 3D detector with the merged selected set until the model
is converged. We iterate the above process starting with model inference for R rounds and add N,
queried samples to the selected set Dg for each round.

E MORE EXPERIMENTAL RESULTS ON KITTI

E.1 AL PERFORMANCE COMPARISONS ON EASY DIFFICULTY LEVEL

In addition to the MODERATE and HARD difficulties reported in the body text, we provide the
additional quantitative analysis w.rt. the EASY mode. Figure [1| depicts the mAP(%) variation of
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the baselines against the proposed CRB with an increasing number of selected bounding boxes. The
solid lines indicate the mean value from three running trials and the standard deviation are shown in
the shaded area. The results indicate that with increasing annotation cost, CRB consistently achieves
the highest mAP and outperforms the state-of-the-art active learning approaches on both 3D and
BEV views. Note that CRB with only 1k boxes selected for annotation reaches the comparable
performance of RAND that selects around 3k boxes. Other AL baselines share the same trend as the
ones under the difficulties of MODERATE and HARD (reported in Figure 2 of the main paper).
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Figure 1: 3D and BEV mAP (%) of CRB and AL baselines on the KITTI val split at the EASY level.

E.2 AL PERFORMANCE COMPARISONS FOR EACH CLASS

To investigate the effectiveness of AL strategies on detecting specific classes, we plot the results of
Cyclist and Pedestrian at all difficulty levels in Figure[2] (3D AP) and Figure[3|(BEV AP). We mainly
compare three aspects: performance, annotation cost and error variance. 1)Performance: the plots
in Figure 2] and Figure [3] show that the proposed CRB outperforms all state-of-the-art AL methods
by a noticeable margin, for all settings of difficulty, classes and views, except at easy cyclist. This
evidences that our proposed AL approach explores samples with more conceptual semantics cover-
ing test sets so that the detector tends to perform better on more challenging samples. 2) Annotation
cost: all the plots consistently demonstrate that the proposed CRB reaches comparable performance
while requiring very few (~1/3) annotation costs as baselines, except ENTROPY. ENTROPY takes
the minimal annotation cost, yet its result is inferior, especially for difficult classes like Cyclist. 3)
Variance: we observe that AP variance of CRB is lower than all baselines, which shows that our
method is less sensitive to randomness and more stable to produce expected results.

E.3 AL PERFORMANCE COMPARISONS FOR EACH ACTIVE SELECTION ROUND

Figure[d] compares the performance variation of the AL baselines against the proposed CRB with the
increasing percentage of queried point clouds (from 2.7% to 16.2%). The reported performance is
mAP scores (%) + the standard deviation of three trials for both 3D view (top row) and BEV view
(bottom row) and all difficulty levels. We clearly observe that our method CRB consistently outper-
forms the state-of-the-art results, irrespective of percentage of annotated point clouds and difficulty
settings. Surprisingly, when the annotation costs reaches 16.2%, RAND strategy outperforms all the
baselines at the MODERATE and HARD level. This implicitly evidences that existing uncertainty
and diversity-based AL strategies fail to select samples that are aligned with test cases.

F MORE EXPERIMENTAL RESULTS ON WAYMO

To explore the performance for different classes on the Waymo dataset, we plot the AP(%) variation
of Cyclist and Pedestrian yielded by the baselines and CRB with increasing annotated bounding
boxes in Figure 5] We present the results at two levels of difficulty officially defined by Waymo.
LEVEL 1 (and LEVEL 2) indicates there are more than five inside points (at least one point) of the
ground-truth objects. As can be observed by the AP curves in the plots, CRB achieves the superiror
recognition accuracy when the annotation cost comes to ~ 45k bounding boxes. Specifically, the
AP values of CRB are boosted by the largest margin (3.1% on LEVEL 2 Cyclist and 1.6% on LEVEL
2 Pedestrian) over the best performing baseline (RAND) that takes extra cost of Sk bounding boxes
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Figure 2: Detection results of different classes on the KITTI val set (3D view) with an increasing
number of queried bounding boxes.
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Figure 3: Detection results of different classes on the KITTI val set (BEV view) with increasing
number of queried bounding boxes.

than ours. Surprisingly, note the results on the class of Pedestrian, the AP curves of most baselines
except ENTROPY and LLAL are bounded by RAND. The AP curves of ENTROPY and LLAL are
bounded by CRB with the increasing cost to 15k ~ 20k bounding boxes. This confirms the CRB’s
superiority over compared AL baselines. Besides, the boosted margin achieved by CRB set for
LEVEL 2 Pedestrian is larger than set for LEVEL 1 Pedestrian. This indicates that the samples
selected by CRB matches well with the data at the time, covering more diverse samples that span
different difficulties.

G ADDITIONAL QUALITATIVE ANALYSIS

To intuitively demonstrate the benefits of our proposed active 3D detection strategy, Figure [6] vi-
sualizes that the 3D detection results produced by RAND (bottom left) and CRB selection (bottom
right) from the corresponding image (upper row). Both 3D detectors are trained under the budget of
1K annotated bounding boxes. False positives and corrected predictions are indicated with red and
green boxes. It is observed that, under the same condition, CRB produces more accurate and more
confident predictions than RAND. Specifically, our CRB yields accurate predictions for multiple
pedestrians on the right sidewalk, while RAND fails. Besides, note the car parked on the left that is
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Figure 4: Results on KITTI datasets with an increasing percentage of queried point clouds.
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Figure 5: Results of CRB and baselines on the Waymo val splt for different classes at Level 2.

highlighted in the orange box in Figure[6] the detector trained with RAND produces a significantly
lower confidence score (0.62) compared to our approach (0.95). This validates that the point clouds
selected by CRB are aligned more tightly with the test samples.

H ADDITIONAL RESULTS FOR PARAMETER SENSITIVITY ANALYSIS

Sensitivity to Prototype Selection. To further analyze the sensitivity of performance to different
prototype selection approaches, i.e., GMM, K-MEANS, and K-MEANS++, we show more results on
BEV views in Figure[7](right). We again run two trials for each prototype selection method and plot
the mean and the variance bars. Note that there is very little difference (1.65% in the last round) in
the mAP(%) of our approach when using different prototype selection methods. This evidences that
the more performance gains achieved by CRB than existing baselines do not depend on choosing the
prototype selection method.

Sensitivity to Bandwidth h. Figure[7]shows additional results w.r.t the BEV views of CRB with the
bandwidth h varying in {3,5,7,9}. Observing the trends of four curves, CRB with the bandwidth
of all values yields consistent results within the 1.7% variation. This demonstrates that the CRB is
insensitive to different values set for bandwidth and can produce similar mAP(%) on BEV views.

I RELATED WORK

Generic Active Learning. For a comprehensive review of classic active learning methods and their
applications, we refer readers to 2021). Most active learning approaches were tailored
for image classification task, where the uncertainty 2014} Lewis & Catlett, [1994}
Joshi et al| 2009; Roth & Small, 2006} 2022} Kim et al., 2021b;
Bhatnagar et al., 2021)) and diversity (Sener & Savaresel, 2018}, [Elhamifar et al, 2013}, |Guol 2010}
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Figure 6: Another case study of active 3D detection performance of RAND (bottom left) and CRB
(bottom right) under the budge of 1,000 annotated bounding boxes. False positive (corrected pre-
dictions) are highlighted in red (green) boxes. The orange box denotes the detection with low con-

fidence.
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Yang et al.,2015; Nguyen & Smeulders| |2004; |[Hasan & Roy-Chowdhury, 2015;|Aodha et al.,[2014)
of samples are measured as the acquisition criteria. The hybrid works (Kim et al., [2021a} |Citovsky
et al., 2021} |Ash et al., 2020; [MacKay), [1992; |Liu et al., 2021} [Kirsch et al., 2019; [Houlsby et al.,
2011) combine both paradigms such as by measuring uncertainty as to the gradient magnitude (Ash
et al., 2020) at the final layer of neural networks and selecting gradients that span a diverse set of
directions. In addition to the above two mainstream methods, (Settles et al.,|2007; Roy & McCallum),
2001} [Freytag et al., [2014; Yoo & Kweon, [2019) estimate the expected model changes or predicted
losses as the sample importance.

Active Learning for 2D Detection. Lately, the attention of AL has shifted from image classification
to the task of object detection (Siddiqui et al., [2020; |Li & Yin, 2020). Early work (Roy et al., [2018))
exploits the detection inconsistency of outputs among different convolution layers and leverages the
query by committee approach to select informative samples. Concurrent work (Kao et al., [2018])
introduces the notion of localization tightness as the regression uncertainty, which is calculated by
the overlapping area between region proposals and the final predictions of bounding boxes. Other
uncertainty-based methods attempt to aggregate pixel-level scores for each image (Aghdam et al.,
2019)), reformulate detectors by adding Bayesian inference to estimate the uncertainty (Harakeh
et al., [2020) or replace conventional detection head with the Gaussian mixture model to compute
aleatoric and epistemic uncertainty (Choi et al., 2021). A hybrid method (Wu et al., [2022) con-
siders image-level uncertainty calculated by entropy and instance-level diversity measured by the
similarity to the prototypes. Lately, AL technique is leveraged for transfer learning by selecting a
few uncertain labeled source bounding boxes with high transferability to the target domain, where
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the transferability is defined by domain discriminators (Tang et al., |2021bj |Al-Saffar et al [2021).
Inspired by neural architecture searching, Tang et al.|(2021al) adopted the ‘swap-expand’ strategy to
seek a suitable neural architecture including depth, resolution, and receptive fields at each active se-
lection round. Recently, some works augment the weakly-supervised object detection (WSOD) with
an active learning scheme. In WSOD, only image-level category labels are available during train-
ing. Some conventional AL methods such as predicted probability, probability margin are explored
in (Wang et al.,|2022), while in (Vo et al.,|2022), “box-in-box” is introduced to select images where
two predicted boxes belong to the same category and the small one is “contained” in the larger one.
Nevertheless, it is not trivial to adapt all existing AL approaches for 2D detection as the ensemble
learning and network modification leads to more model parameters to learn, which could be hardly
affordable for 3D tasks.

Active Learning for 3D Detection. Active learning for 3D object detection has been relatively
under-explored than other tasks, potentially due to its large-scale nature. Most existing works (Feng
et al.l [2019; |Schmidt et al., 2020) simply apply the off-the-shelf generic AL strategies and use
hand-crafted heuristics including Shannon entropy (Wang & Shang}, 2014)), ensemble (Beluch et al.,
2018)), localization tightness (Kao et al., 2018)) and Mc-DROPOUT (Gal & Ghahramanil, 2016) for
3D detection learning. However, the abovementioned solutions base on the cost of labelling point
clouds rather than the number of 3D bounding boxes, which inherently being biased to the point
clouds containing more objects. However, in our work, the proposed CRB greedily search for the
unique point clouds while maintaining the same marginal distribution for generalization, which
implicitly quires objects to annotate without repetition and save labeling costs.

Active Learning for 3D Semantic Segmentation. The adoption of active learning techniques has
successfully reduced the significant burden of point-by-point human labeling in large-scale point
cloud datasets. Super-point (Shi et al, 2021)) is introduced to represent a spectral clustering con-
taining points which are most likely belonging to the same category, then only super-points with
high score are labeled at each round. An improved work [Shao et al.| (2022) further encoded the
super-points with a graph neural network, where the edges denote distance between super-points,
and then projects the super-point features into the diversity space to select the most representative
super-points. Another streaming of work (Wu et al.| 2021) is to obtain point labels for uncertain
and diverse regions to prevent the high cost of labeling the entire point cloud. Although semantic
segmentation and object detection are different vision tasks, both can benefit from active learning to
substantially alleviate the manual labelling cost.

Connections to Semi-supervised Active Learning. Aiming at unifying unlabeled sample selection
and model training, the concept of semi-supervised active learning (Drugman et al., 2016; Rhee
et al.L|2017;/Sinha et al.; 2019;|Gao et al.| |2020; Liu et al.,[2021; |Kim et al.,|2021aib; Zhang & Plank]
20215 |Guo et al.| [2021}; |(Caramalau et al., 2021} |Citovsky et al., 2021} |[Elezi et al., |[2022; \Gudovskiy
et al., 2020) has been raised. (Drugman et al., [2016) combines the semi-supervised learning (SSL)
and active learning (AL) for speech understanding that leverages the confidence score obtained
from the posterior probabilities of decoded texts. (Sener & Savarese, 2018]) incorporated a Ladder
network for SSL during AL cycles, while the performance gains are marginal compared to the
supervised counterpart. (Sinha et al.,|2019) trained a variational adversarial active learning (VAAL)
model with both labeled and unlabeled data points, where the discriminator is able to estimate how
representative each sample is from the pool. (Elezi et al.l [2022) proposed a combined strategy
for training 2D object detection, which queries samples of high uncertainty and low robustness for
supervised learning and takes full advantage of easy samples via auto-labeling. As our work is under
the umbrella of the pool-based active learning, accessible unlabeled data are not used for model
training in our setting, hereby the semi-supervised active learning algorithms were not considered
in experimental comparisons.
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