Appendix

A Training Details

For the standard deep neural network architectures used in our investigation, their implementation
comes from PyTorch’s forchvision.models package. We use standard hyperparameters found in the
WILDS and PyTorch’s official GitHub repositories (for training models on iWildCam-WILDS and
ImageNet respectively), which match the hyperparameters described in and [22]. Pre-training on
different data sources all uses 90 epochs in total, and then models are fine-tuned on iWildCam for 12
epochs.

B Dataset Details

iWildCam-WILDS The iWildCam dataset consists of images of 182 animal species, which
are captured through the use of camera traps. We use the iWildCam version 2.0 released in 2021 as a
correction to the iWildCam 2020 competition dataset [2] to prevent test set leakage. To construct a
natural distribution shift, we follow the split proposed by Koh et al. [22], which results in 2 test sets
for evaluation: ID test data consists of images taken by the same camera traps as the training set, but
on different days from the training and validation (ID) images, while OOD test data contains images
taken by a disjoint set of camera traps from training and validation (ID) images. The train set consists
of 129,809 images. The distribution of animal categories over these images is long-tailed (see 22).
The ID test set consists of 8,154 images and the OOD test set consists of 42,791 images, also not
class balanced. Examples of train set images can be seen in Figure

Figure 13: (left) Random images from the in-distribution test set of iWildCam-WILDS [22]. (right)
Random examples from the out-of-distribution test set. This split is based on the geolocations of the
camera traps.
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Figure 14: Random examples from the iWildCam-WILDS train set [22].

ImageNet We use ImageNet-1k from the ILSVRC 2012 challenge. It contains 1,000 diverse
categories of animals and objects, with ~1.2 million training images. The train set is roughly class
balanced with ~1.2 thousand images per category. The validation set contains 50,000 images and is
exactly class balanced, with 50 images per class. Figure[I5]shows examples of train set images.

Figure 15: Random examples from the ImageNet ILSVRC 2012 challenge train set [37)[11].

iNaturalist We use the version of iNaturalist from the 2017 challenge, with 579,194 training
images across 5,089 diverse natural organism categories. The full training set is notably not class
balanced, exhibiting a long-tailed distribution (see Figure . The validation set contains 95,986

14



images and is also not class balanced, with between 4 and 44 images per category. Refer to Figure
for examples of iNaturalist data.
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Figure 16: Histogram of class size distribution for the iNaturalist dataset.

Figure 17: Random examples from the iNaturalist 2017 challenge train set [46].

C Additional Experiment Results

C.1 Image Diversity

More diverse data or more data per class? As described earlier in Section|4.4.1| we vary image
diversity by randomly selecting pre-training images from a subset of classes in ImageNet, while
keeping the total data budget fixed at 300K. Similar to the findings reported in Section in Figure
we find that varying the number of classes used does not have an effect on the effective robustness
of fine-tuned models.
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Superclass Category  Counts

Protozoa 308
Chromista 398
Actinopterygii 1982
Arachnida 4873
Animalia 5228
Fungi 5826
Mollusca 7536
Amphibia 15318
Mammalia 29333
Reptilia 35201
Insecta 100479
Plantae 158407
Aves 214295

Table 2: Superclass data counts for the iNaturalist [46] train set. We use the 7 largest classes for
our iNaturalist experiment in Section so that we could select a uniform number of images per
superclass while still having 80K images in total, to match the corresponding ImageNet experiment.
Note that some superclass categories are in fact semantic superclasses of other categories (e.g. Aves,
Reptilia, and Mammalia are all subclasses of Animalia) but are labeled disjointly. Given that we only
use the last 7 categories, our superclass selection avoids this problem.
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Figure 18: We repeat the experiment in Figure with a higher data regime. With a total data budget
of 300K images, we vary the number of classes randomly selected from the original 1000 ImageNet
classes and adjust the number of images sampled from each class correspondingly. We observe
that having 4 x more classes, or 4 x more images per class, induces the same level of robustness in
fine-tuned models.

Per-class diversity. For experiments with the BREEDS [39] subset of ImageNet, we select 16
superclasses, each having 12 subclasses. The mapping can be found in Table We choose overlapping
subsets when modifying our diversity ratio (e.g., the 4 subclasses per superclass chosen when p = 0.33
are also part of the 8 subclasses per superclass chosen when p = 0.66).

For iNaturalist experiments, as mentioned in Section we choose the 7 largest classes so that
we could select a uniform number of images per superclass while keeping the total data budget at
80K, matching the setup for ImageNet. When modulating our diversity ratio, we randomly select
a subset of subclasses from each superclass and uniformly sample images with replacement from
these subclasses. As in the ImageNet experiment, subsets of subclasses chosen per superclass are
overlapping at increasing diversity ratios.

16



Superclass Subclasses

garment trench coat, abaya, gown, poncho, military uniform, jersey, cloak, bikini,
miniskirt, swimming trunks, lab coat, brassiere

bird African grey, bee eater, coucal, American coot, indigo bunting, king
penguin, spoonbill, limpkin, quail, kite, prairie chicken, red-breasted
merganser

reptile, reptilian Gila monster, agama, triceratops, African chameleon, thunder snake, In-
dian cobra, green snake, mud turtle, water snake, loggerhead, sidewinder,
leatherback turtle

arthropod rock crab, black and gold garden spider, tiger beetle, black widow, barn
spider, leathopper, ground beetle, fiddler crab, bee, walking stick, cab-
bage butterfly, admiral

mammal, mammalian Siamese cat, ibex, tiger, hippopotamus, Norwegian elkhound, dugong,
colobus, Samoyed, Persian cat, Irish wolthound, English setter, llama
fish sturgeon, stingray, coho, great white shark, lionfish, gar, goldfish, ham-

merhead, rock beauty, anemone fish, barracouta, electric ray

accessory, accoutrement, | shower cap, stole, wig, Windsor tie, bib, necklace, bow tie, gasmask,

accouterment umbrella, cowboy boot, Christmas stocking, bathing cap

appliance espresso maker, sewing machine, stove, waffle iron, rotisserie, lawn
mower, electric fan, dishwasher, iron, microwave, vacuum, space heater

craft gondola, schooner, liner, airship, speedboat, airliner, canoe, trimaran,
balloon, lifeboat, yawl, submarine

equipment photocopier, mouse, dumbbell, iPod, home theater, projector, cassette

player, hand-held computer, tennis ball, tape player, snorkel, monitor

furniture, piece of furni- | bookcase, throne, barber chair, four-poster, desk, medicine chest, crib,
ture, article of furniture chest, sliding door, toilet seat, rocking chair, wardrobe

instrument chime, wine bottle, ladle, reel, wall clock, hammer, wok, abacus, assault
rifle, projectile, safety pin, corkscrew

man-made structure, con- | lumbermill, scoreboard, monastery, church, tobacco shop, drilling plat-

struction form, dam, fountain, bell cote, yurt, bookshop, prison

wheeled vehicle convertible, oxcart, electric locomotive, tricycle, fire engine, bicycle-
built-for-two, moving van, golfcart, steam locomotive, jinrikisha, tractor,
ambulance

cooked food, prepared | consomme, burrito, meat loaf, bagel, ice cream, French loaf, ice lolly,

food hot pot, cheeseburger, potpie, trifle, mashed potato

produce, green goods, | broccoli, cauliflower, mushroom, artichoke, acorn, head cabbage,
green groceries, garden | spaghetti squash, jackfruit, cucumber, orange, hip, banana
truck

Table 3: Subclass-superclass mapping for the subset of ImageNet that we use to control per-class
diversity, constructed based on the BREEDS hierarchy [39].

C.2 CLIP Fine-tuning Details

We investigate how the effective robustness obtained from ImageNet pre-training would change at a
much larger pre-training data regime. To do so, we fine-tune CLIP [32] models that have been trained
on different data distributions on iWildCam-WILDS. We use the same finetuning hyperparameters
from [22] with the AdamW optimizer [26]. The training datasets for CLIP are often large corpora
of image-text pairs scraped from the internet. Models from the original CLIP paper [32] are trained
with 400M data points, and we analyze specifically those that use ViT [12] as the image encoder
architecture. We also include the results from CLIP ResNet50 models trained on YFCC-15M [45]
and LAION-15M [40] separately, to show the effects of pre-training with different data scales and
data sources. The results of these experiments can be found in Figure We find that the linear
trend of ImageNet pre-trained models is still predictive of the effective robustness obtained from
these CLIP models. Note that along with utilizing significantly more data, CLIP also undergoes a
different pre-training mechanism (i.e., contrastive versus supervised learning). This demonstrates the
widespread applicability of existing effective robustness trends in analyzing generalization properties
of pre-trained models.
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Figure 19: We experiment with pre-training on an ImageNet-scale synthetic dataset (i.e., 1.2M
images) generated using Stable Diffusion, and find that it yields less robustness after fine-tuning
compared to pre-training on natural data of similar quantities (i.e., ImageNet, iNaturalist). However,
the natural-looking synthetic data in Diffusion 1.2M is still much more effective as a pre-training
source compared to the synthetic fractal data in FractalDB-1k.

C.3 Pre-training on ImageNet-scale Diffusion Data

As described in Section we explore the effect of pre-training on images from different data
distributions, both synthetic and natural. At 150K data regime (Figure , our earlier findings
demonstrate that the transfer robustness obtained from pre-training on natural-looking synthetic data
could rival that of pre-training on ImageNet or iNaturalist. Now, we increase the number of synthetic
images generated using Stable Diffusion to 1.2M, matching the full ImageNet class distribution. At
this data regime, we find that natural-looking synthetic data (i.e., Diffusion 1.2M) is slightly less
effective than natural data (i.e., iNaturalist and ImageNet) at improving the effective robustness of
fine-tuned models (Figure[I9). However, Diffusion 1.2M still offers much more robustness gain
compared to pre-training on synthetic fractal data (i.e., FractalDB-1k).

We hypothesize that the additional image diversity obtained from using more synthetic data saturates
after certain data quantity, as the objects generated by Stable Diffusion appear to be relatively more
centered and less cluttered, compared to ImageNet data (Figure @ Further study into alternative
prompting templates/ techniques is needed to increase the variety of the images obtained from Stable
Diffusion.

D Investigating the effects of model size on robustness

We also examine how model size affects robustness, an important potential confounding variable
which could change our analysis. One might suspect that larger models need more data to gain the
same degree of robustness as smaller models. To do so, for the architectures that we experiment with,
we plot model parameter sizes by their differences from effective robustness trends (points). If it was
the case that models with more parameters needed more data to be robust, then we would expect the
average of these residuals (lines) to be downward sloping. However, in Figure|20} we observe no
such trend, and the average residuals are close to 0, demonstrating that model size has a negligible
effect on robustness trends.
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Figure 20: Investigating the bias of model size on robustness. We show the relationship between
the parameter count of each architecture studied in Figure(left) of our paper and their deviation
from the overall effective robustness trend-line. We find that across both parameter count and amount
of pre-training data, the average residual (line) remains consistent.

E Experiments with Contrastive Pre-training

We attempt to apply our interventions to the constrastive learning regime, done on image-text pairs
scraped from the web. In this set of experiments, we construct different pre-training distributions from
LAION-5B [40], and evaluate the resulting models zero-shot on ImageNet and two ImageNet-derived
distribution shifts: ImageNet-V2 [33] and ImageNet-Sketch [47]. We experiment with pre-training
CLIP ViT-B/32 on 10M, 50M and 100M samples separately, for 128M steps in total with batch size
4096 per GPU, learning rate 0.0005 and 500 warmup steps. In Figure[2] varying pre-training set
size by 10x from 10M to 100M doesn’t significantly alter the robustness linear trends on either
distribution shift, despite offering substantial boost in robustness compared to training models from
scratch on ImageNet (yellow line, obtained from [27]). We hypothesize that much larger scale
differences are needed to test the effect of data quantity in this case. This additional investigation is
not the focus of this work, however we believe adapting our interventions to massive pre-training
webdatasets to be an interesting direction for future exploration.
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Figure 21: We experiment with pre-training with different data quantities sampled from LAION-5B
[40], and find that 10M, 50M and 100M dataset sizes do not change downstream robustness when
evaluated zero-shot on ImageNet-derived distribution shifts. However, pre-training still yields much
more robustness compared to training from scratch (linear trend obtained from [27]), especially on
the ImageNet to ImageNet-Sketch shift.
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Figure 22: ViT and self-supervised experiments. (left) We show results of pre-training a ViT-B/32
on various quantities of ImageNet and (right) We compare ViT-B/32 pre-trained in a supervised
manner on the full ImageNet dataset compared with a ViT-B/32 pre-trained with SimCLR on all of
ImageNet. We do not show linear trends in this case because we only study one architecture here.
We observe that vision transformers generally have lower effective robustness compared to smaller
convolutional architectures for the same data quantity, but overall the finding of less pre-training
data leads to lower effective robustness still holds. We further see that SImCLR pre-training exhibits
similar robustness properties to supervised pre-training with the same data quantity (1M).

F Vision Transformers and Self-supervised Learning

In Figure(left), we reproduce the data quantity analysis previously performed on CNNs with
ViTs [12], an architecture which has become more widely used in recent years. Using the same
models, in Figure[22] (right), we include analysis comparing supervised pre-training with that of
SimCLR, a popular self-supervised training method [6]. Overall we observe that while ViTs generally
demonstrate less robustness in this data regime than CNNSs, our previous findings still hold—namely,
larger data quantity improves fine-tuning robustness. This also applies to the SIimCLR setting.

G DomainNet Experiments

For each domain provided in DomainNet [30], we compare models trained from scratch on data
from that domain, to models that have been pre-trained on ImageNet and then fine-tuned on the same
domain. We then evaluate the model performance on all other domains that have not been used for
training, which are considered OOD test sets. Figure[23|shows the resulting effective robustness for
all pairs of domains, with x axis and y axis representing ID and OOD accuracies respectively. We
find that for most pairs, ImageNet pre-training and training from scratch do not exhibit distinctive
linear trends. An exception to this can be found in the case of fine-tuning on Infograph data and
evaluating on Sketch data (middle panel of the last row). Using this setup, we proceed to evaluating
the impact of intervening on two different aspects of the ImageNet pre-training distribution that have
been found to be important in earlier experiments with iWildCam-WILDS: label granularity and data
quantity.

G.1 Label Granularity

Our setup follows a similar procedure as described previously in Section In the left plot of
Figure when we collapse the label space to 232 superclasses (depth 7), or 17 superclasses (depth
4), the effective robustness obtained from ImageNet pre-training is reduced to about the same level
as training from scratch. This suggests that the Infograph-Sketch distribution shift is much more
sensitive to label granularity, compared to the iWildCam-WILDS shift.

G.2 Data Quantity

We repeat the experiment with pre-training data quantity described in Section As seen from
the right plot of Figure using 25K, 50K, 100K and 150K subsets of ImageNet for pre-training
results in a similar level of effective robustness after fine-tuning, which is a lot less than using the full
ImageNet dataset, but still an improvement compared to training from scratch. As a sanity check, we
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Figure 23: We compare effective robustness of models pre-trained on ImageNet and those trained
from scratch on each domain (see each row), using the data from the same domain as ID test set,
and data from every other domain as the OOD test set (see each column). In most cases, ImageNet
pre-training and training from scratch yield similar downstream robustness, except for the Infograph
& Sketch pair where we observe a sufficiently large gap in effective robustness.
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Figure 24: (left) Effect of label granularity. (right) Effect of data quantity. We perform the same
interventions described earlier in Sections and 4.2 on these two aspects of the ImageNet pre-
training distribution that have been shown to be influential to downstream robustness. The ID and
OOD data comes from Infograph and Sketch domains respectively. We again find that using more
coarse labels and smaller data quantity during pre-training lowers the effective robustness of fine-
tuned models significantly.

find that using only 5K ImageNet images for pre-training leads to no robustness gain compared to
training from scratch on Infograph dataset itself.
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