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I Experimental details and additional experiments

For the experiment in Figure 1 we generated n = 10 random data points {(xj , yj)}10
j=1, and trained a

one-hidden-layer ReLU network with k = 80 neurons to fit the data. In one experiment (black) we
used a constant learning rate of η = 10−4. In a second experiment (green) we used the same step
size and initialization, but when the loss past below 0.1 for the first time, we increased the step size
by a factor of 3. In both experiments we trained the model until L(θt) ≤ 10−8.

For the experiment in Sec. 5 we generated a different dataset of n = 10 random points, and trained
a one-hidden-layer ReLU network with k = 80 neurons to fit the data using 200 step sizes in the
range [10−4, 0.5]. The step sizes were uniformly spaced in a logarithmic scale. We used the same
initial point for all training runs, and trained the model until L(θt) ≤ 10−8. To be able to converge
also with the large step sizes, we used a linear learning rate warm-up for the first 5× 105 iterations.
This learning rate warm-up was used in all training runs. We excluded solutions for which GD
converged during the warm-up period. Therefore, in all runs, the dynamics of GD upon convergence
was determined by a constant step size. In particular, out of the 200 step sizes, for 2 step sizes GD
converged during the warm-up, and for 15 step sizes the algorithm did not converge to a global
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minimum at all. Therefore, overall, Fig. 3 depicts the training of 183 different step sizes. Figures 1 and
2 present additional solutions that GD converged to and their second derivative, respectively. From
these figures we see again that GD’s solutions get smoother as the step size increases, particularly at
the center of the training data.

Figure 1: Examples of interpolating functions to which GD converged for various step sizes form
the simulation of Sec. 5. Here we see that the GD solutions get smoother as the step size increases,
particularly at the center of the training data.

Finally, to examine the effect that initialization magnitude has on the sharpness of the solutions to
which GD converges, we repeated the experiment from Sec. 5 using various initialization magnitudes.
Specifically, we used PyTorch’s standard initialization, and multiplied it by different factors. Then,
form each such initial point we trained a single-hidden-layer ReLU network using 100 step sizes
in [10−3, 1.5]. Figure 3 presents the sharpness curves for the different initialization factors. Here
we see that for large initialization, the sharpness monotonically decreases as the learning rate gets
larger. Additionally, the function gets smoother as the learning rate increases. However, for moderate
initialization this phenomenon occurs only when the learning rate is larger than some threshold. In
particular, for all step sizes below this threshold GD converges to a certain minimum that is flat
enough w.r.t. these step sizes. Yet, for step sizes above the threshold, this minimum is unstable, and
therefore GD converges to flatter minima. Hence, we see that when GD converges at the edge of
stability, a small increase in the learning rate translates to a flatter solution. However, if the entire
trajectory of GD resides in a smooth region in which the top eigenvalue of the Hessian is smaller
than 2/η, then a small increase in the learning rate will not have an effect. Having said that, we note
that (a) while our bound may be loose in the latter case, it still holds, and (b) convergence at the edge
of stability is rather the typical case [8].
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Figure 2: The second derivative of the functions shown in Fig. 1. Here we see that GD solution gets
smoother as the step size increases, particularly at the center of the training data where the weight
function g is high.

II Proof of Lemma 1

Under the assumption that SGD draws batches uniformly at random (among the
(
n
k

)
possibilities)

from the dataset, we have that for all θ ∈ Rd

E
[
L̂t(θ)

]
= L(θ). (S1)

Namely, L̂t(θ) is an unbiased estimator of the loss function. Additionally, since we assume that
the batches are statistically independent, it follow that θt (which is a function of only {Bτ}t−1

τ=1) is
independent of L̂t(θ). Therefore,

E [θt+1 − θ∗] = E
[
θt − θ∗ − η

(
∇L̂t(θ∗) +∇2L̂t(θ∗)(θt − θ∗)

)]
= E

[(
I − η∇2L̂t(θ∗)

)
(θt − θ∗)

]
− ηE

[
∇L̂t(θ∗)

]
= E

[
I − η∇2L̂t(θ∗)

]
E [θt − θ∗]− η∇E

[
L̂t(θ∗)

]
=
(
I − η∇2E

[
L̂t(θ∗)

])
E [θt − θ∗]− η∇L(θ∗)

=
(
I − η∇2L(θ∗)

)
E [θt − θ∗] , (S2)

where in the third step we used the fact that θt and L̂t(θ∗) are independent, whereas in the last step
we used the fact that∇L(θ∗) = 0. Thus, for all t ∈ N

E [θt − θ∗] =
(
I − η∇2L(θ∗)

)t
(θ0 − θ∗). (S3)

Observe that according to Jensen’s inequality,∥∥∥(I − η∇2L(θ∗)
)t

(θ0 − θ∗)
∥∥∥ = ‖E [θt − θ∗]‖ ≤ E [‖θt − θ∗‖] . (S4)
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Initialization factor: 15 Initialization factor: 10

Initialization factor: 5 Initialization factor: 3

Initialization factor: 1 Initialization factor: 0.75

Figure 3: Sharpness curves for various initialization magnitudes

Assuming that θ∗ is a linearly stable point of L, we have that

lim sup
t→∞

E [‖θt − θ∗‖] ≤ ε (S5)

for all θ0 ∈ Bε(θ∗). Using (S4) and (S5), we have that

lim sup
t→∞

∥∥∥(I − η∇2L(θ∗)
)t

(θ0 − θ∗)
∥∥∥ ≤ ε. (S6)

Let us choose θ0 such that (θ0−θ∗)/ ‖θ0 − θ∗‖ is a top eigenvector of∇2L(θ∗) and ‖θ0 − θ∗‖ = ε.
Then, we get that

lim sup
t→∞

∣∣1− ηλmax

(
∇2L(θ∗)

)∣∣t ≤ 1. (S7)

4



Therefore, ∣∣1− ηλmax

(
∇2L(θ∗)

)∣∣ ≤ 1, (S8)
which implies that

λmax

(
∇2L(θ∗)

)
≤ 2

η
. (S9)

III Proof of Lemma 2

With slight abuse of notation, we interchangeably useHθ andHm, where the meaning in the former
is thatHθ = Hm if θ ∈ Sm. Similarly, we interchangeably use ĝθ and ĝm, and λθ and λm.

Under the assumption that SGD draws batches uniformly at random from the dataset, we have that
for all θ ∈ Bε(θ∗)

E
[
Ĥ

(t)

θ

]
= Hθ. (S10)

Namely, Ĥ
(t)

θ is an unbiased estimator of the Hessian. Additionally, since we assume that the batches

are statistically independent, it follows that θt (a function of {ĝ(τ)
θτ
, Ĥ

(τ)

θτ }
t−1
τ=1 solely) is independent

of {ĝ(t)
θ , Ĥ

(t)

θ }. Let

γ = max
m∈I

E
[∣∣∣qT ĝ(t)

m

∣∣∣] . (S11)

Assume that θ∗ is a stable minimum (and therefore θt ∈ A for all t > 0). Let us look at the
conditional expectation of

∣∣qT (θt+1 − θ∗)
∣∣ given θt,

E
[∣∣qT (θt+1 − θ∗)

∣∣∣∣θt] = E
[∣∣∣qT (θt − θ∗ − η (ĝ(t)

θt
+ Ĥ

(t)

θt (θt − θ∗)
))∣∣∣∣∣∣θt]

= E
[∣∣∣qT (I − ηĤ(t)

θt

)
(θt − θ∗)− ηqT ĝ(t)

θt

∣∣∣∣∣∣θt]
≥ E

[∣∣∣qT (I − ηĤ(t)

θt

)
(θt − θ∗)

∣∣∣∣∣∣θt]− ηE [∣∣∣qT ĝ(t)
θt

∣∣∣∣∣∣θt]
≥
∣∣∣E [qT (I − ηĤ(t)

θt

)
(θt − θ∗)

∣∣∣θt]∣∣∣− ηγ
=
∣∣∣qT (I − ηE [Ĥ(t)

θt

∣∣∣θt]) (θt − θ∗)
∣∣∣− ηγ

=
∣∣qT (I − ηHθt) (θt − θ∗)

∣∣− ηγ, (S12)
where in the first inequality we used the triangle inequality, and in the second we used Jensen’s
inequality and the definition of γ in (S11). Now let λθ be the (approximate) eigenvalue associated
with the Hessian matrix at the region of θ, namely λθ = λm for all θ ∈ Sm. Under the assumption
of the lemma, ‖λθq −Hθq‖ ≤ δ for all θ ∈ A. Therefore∣∣qT (I − ηHθt) (θt − θ∗)

∣∣ =
∣∣qT (θt − θ∗)− ηqTHθt (θt − θ∗)

∣∣
=
∣∣qT (θt − θ∗)− ηλθtqT (θt − θ∗) + ηλθtq

T (θt − θ∗)− ηqTHθt (θt − θ∗)
∣∣

=
∣∣(1− ηλθt)qT (θt − θ∗) + η

(
λθtq

T − qTHθt

)
(θt − θ∗)

∣∣
≥ |1− ηλθt |

∣∣qT (θt − θ∗)
∣∣− η ∣∣(λθtqT − qTHθt

)
(θt − θ∗)

∣∣
≥ |1− ηλθt |

∣∣qT (θt − θ∗)
∣∣− η ‖λθtq −Hθtq‖ ‖θt − θ

∗‖
≥ |1− ηλθt |

∣∣qT (θt − θ∗)
∣∣− ηδ ‖θt − θ∗‖ , (S13)

where in the first inequality we used the triangle inequality, in the second we used the Cauchy-Schwarz
inequality, and in the last we used the assumption that ‖λθq −Hθq‖ ≤ δ. Hence,

E
[∣∣qT (θt+1 − θ∗)

∣∣∣∣θt] ≥ |1− ηλθt | ∣∣qT (θt − θ∗)
∣∣− ηδ ‖θt − θ∗‖ − ηγ

≥ min
θ∈A
{|1− ηλθ|}

∣∣qT (θt − θ∗)
∣∣− ηδ ‖θt − θ∗‖ − ηγ. (S14)

Therefore,
E
[∣∣qT (θt+1 − θ∗)

∣∣] = E
[
E
[∣∣qT (θt+1 − θ∗)

∣∣∣∣θt]]
≥ min
θ∈A
{|1− ηλθ|}E

[∣∣qT (θt − θ∗)
∣∣]− ηδE [‖θt − θ∗‖]− ηγ. (S15)
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Let
θ0 = εq + θ∗, (S16)

observe that ‖θ0 − θ∗‖ = ε (i.e. θ0 ∈ Bε(θ∗)). Recall that by assumption,

λθ >
2

η
+ δ +

γ

ε
(S17)

for all θ ∈ A. Since there is a finite number of modes in A, there exists some ξ > 0 such that

λθ ≥
2

η
+ δ +

γ

ε
+
ξ

η
. (S18)

Note that in particular, this implies that ηλθ > 1, so that

min
θ∈A
{|1− ηλθ|} = min

θ∈A
{ηλθ − 1} ≥ 1 + ηδ +

ηγ

ε
+ ξ. (S19)

We now use this to prove the two cases of the lemma.

III.1 Strongly stable

In this section we show that θ∗ is not strongly stable. From (S15) and (S16) we have that

E
[∣∣qT (θ1 − θ∗)

∣∣] ≥ min
θ∈A
{|1− ηλθ|} ε− ηδε− ηγ. (S20)

Note that according to (S19)

min
θ∈A
{|1− ηλθ|} ε− ηδε− ηγ ≥

(
1 + ηδ +

ηγ

ε
+ ξ
)
ε− ηδε− ηγ

= ε+ ξε. (S21)

Therefore,

E [‖θ1 − θ∗‖] ≥ E
[∣∣qT (θ1 − θ∗)

∣∣] > ε, (S22)

which means that θ∗ is not strongly stable.

III.2 Stable

In this section we show that if δ = 0 then θ∗ is not stable. Assume that δ = 0, and denote
xt = E

[∣∣qT (θt − θ∗)
∣∣]. Then from (S15) we have that

xt+1 ≥ min
θ∈A
{|1− ηλθ|}xt − ηγ. (S23)

Since minθ∈A {|1− ηλθ|} > 1 + ηγ/ε+ ξ (see (S19)), we have that

xt+1 ≥
(

1 +
ηγ

ε
+ ξ
)
xt − ηγ. (S24)

Observe that from (S16) x0 = ε. Therefore, from (S24), x1 ≥ (1 + ξ)ε > ε. Let us show that xt > ε
also for all t ≥ 1.

Proof. Proof by induction.

Base. For t = 1 we have x1 > ε.

Assumption. Assume that xt > ε holds for some t ∈ N.
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Step. Observe that

xt+1 ≥
(

1 +
ηγ

ε
+ ξ
)
xt − ηγ

=

(
1 + ξ +

ηγ

ε
− ηγ

xt

)
xt

> (1 + ξ)xt
> (1 + ξ) ε

> ε, (S25)

where the first inequality is due to (S24), and in the second and third we used the induction’s
assumption.

Since q is a unit-norm vector, we have that E[‖θt − θ∗‖] ≥ E
[∣∣qT (θt − θ∗)

∣∣] = xt > ε for all
t ≥ 1. Therefore, θ∗ is not a linearly stable minimum of L, which completes the proof.

We note that xt is not only larger than ε; it in fact diverges. Indeed, due to the third line of (S25), we
have that xt > (1 + ξ)tx0 −→

t→∞
∞.

IV Proof of Lemma 3

With slight abuse of notation, we interchangeably useHθ andHm, where the meaning in the former
is thatHθ = Hm if θ ∈ Sm. We define gm = ∇ψm(θ∗) and also occasionally use the notation gθ
to denote gθ = gm if θ ∈ Sm.

The generalized linear dynamical system of GD in this case is

θt+1 = θt − η
(
gθt +Hθt(θt − θ

∗)
)
. (S26)

The assumption that L is differentiable at θ∗ translates to gθ = 0 for all θ ∈ A. Here we assume that
λmax(Hm) ≤ 2/η for allm ∈ I . This means that for all θ ∈ Bε(θ∗) we have that λmax(Hθ) ≤ 2/η.
Thus, considering the eigenvalues of I − ηHθ, we have that

λi(I − ηHθ) = 1− ηλi(Hθ). (S27)

Since 0 ≤ ηλi(Hθ) ≤ ηλmax(Hθ) ≤ 2, then

|λi (I − ηHθ)| ≤ 1, (S28)

for all θ ∈ Bε(θ∗). Now, let θ0 ∈ Bε(θ∗), and let us demonstrate that ‖θt − θ∗‖ ≤ ε for all t > 0.

Proof. Proof by induction.

Base. For t = 0 we are given that ‖θ0 − θ∗‖ ≤ ε.

Assumption. Assume that ‖θt − θ∗‖ ≤ ε holds for some t > 0.

Step. Here we assume that θ∗ is a differentiable minimum, so that for all θ ∈ Bε(θ∗) we have that
gθ = 0, and in particular for θt. Therefore, θt+1 satisfies

θt+1 − θ∗ = (I − ηHθt) (θt − θ∗) . (S29)

Thus,

‖θt+1 − θ∗‖ = ‖(I − ηHθt) (θt − θ∗)‖
≤ ‖I − ηHθt‖op ‖θt − θ

∗‖
= max

i
|λi (I − ηHθ)| ‖θt − θ∗‖ . (S30)

Since θt ∈ Bε(θ∗), we have maxi |λi (I − ηHθ)| ≤ 1 and ‖θt − θ∗‖ ≤ ε, concluding that
‖θt+1 − θ∗‖ ≤ ε.
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V The gradient of f w.r.t. θ

Let w(1) = [w
(1)
1 , . . . , w

(1)
k ]T , b(1) = [b

(1)
1 , . . . , b

(1)
k ]T ∈ Rk be the weights and biases of the first

layer, and let w(2) = [w
(2)
1 , . . . , w

(2)
k ]T ∈ Rk, b(2) ∈ R be the weights and bias of the second layer.

Observe that the parameter vector of the network (20) can be expressed as

θ =

[(
w(1)

)T
,
(
b(1)

)T
,
(
w(2)

)T
, b(2)

]T
∈ R3k+1. (S31)

Let I : R×R3k+1 7→ {0, 1}k be the activation pattern of all neurons for input x, namely [I(x;θ)]i = 1

if w(1)
i x+ b

(1)
i > 0 and [I(x;θ)]i = 0 otherwise. Consider the representation of f in Sec. 3, then the

gradient of f w.r.t. θ is given by

∇θf(x) =


∇w(1)f(x)

∇b(1)f(x)

∇w(2)f(x)
∂

∂b(2)
f(x)

 =


xw(2) � I(x;θ)

w(2) � I(x;θ)(
xw(1) + b(1)

)
� I(x;θ)

1

 , (S32)

where � denotes the Hadamard product.

VI Proof of Lemma 4

Recall that Φ = [∇θf(x1),∇θf(x2), . . . ,∇θf(xn)]. In Appendix V we derived an explicit expres-
sion for each∇θf(xj). Using this expression, and denoting [I(xj ;θ∗)]i = Ij,i, we have that

max
u∈Sn−1

1

n
‖Φu‖2 ≥ 1

n2
‖Φ1‖2

= 1 +
1

n2

k∑
i=1


 n∑
j=1

xjIj,iw
(2)
i

2

+

 n∑
j=1

Ij,iw
(2)
i

2

+

 n∑
j=1

σ
(
w

(1)
i xj + b

(1)
i

)2


= 1 +
1

n2

k∑
i=1

(w(2)
i

)2


 n∑
j=1

xjIj,i

2

+

 n∑
j=1

Ij,i

2
+

 n∑
j=1

σ
(
w

(1)
i xj + b

(1)
i

)2


≥ 1 +
2

n2

k∑
i=1

∣∣∣w(2)
i

∣∣∣
√√√√√ n∑

j=1

xjIj,i

2

+

 n∑
j=1

Ij,i

2 ∣∣∣∣∣∣
n∑
j=1

σ
(
w

(1)
i xj + b

(1)
i

)∣∣∣∣∣∣ , (S33)

where in the first inequality we chose u = 1/
√
n, and in the last step we used α2 + β2 ≥ 2|αβ|. Let

Ci ⊆ {xj} be the set of training points for which the ith neuron is active, i.e. Ci = {xj : Ij,i = 1},
and denote ni = |Ci|, that is

ni =

n∑
j=1

Ij,i. (S34)

Then,

λmax(∇2
θL) ≥ 1 +

2

n2

k∑
i=1

∣∣∣w(2)
i

∣∣∣
√√√√(∑

x∈Ci

x

)2

+ n2
i

∣∣∣∣∣∑
x∈Ci

(
w

(1)
i x+ b

(1)
i

)∣∣∣∣∣
= 1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ (ni
n

)2

√√√√( 1

ni

∑
x∈Ci

x

)2

+ 1

∣∣∣∣∣ 1

ni

∑
x∈Ci

(
w

(1)
i x+ b

(1)
i

)∣∣∣∣∣
= 1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ (P(X ∈ Ci))2
√

(E [X|X ∈ Ci])2
+ 1

∣∣∣E [w(1)
i X + b

(1)
i

∣∣∣X ∈ Ci]∣∣∣ ,
(S35)
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where X is a random sample from the dataset under the uniform distribution. The ith summand
should be interpreted as 0 if ni = 0. Now, define

τi =

−
b
(1)
i

w
(1)
i

, w
(1)
i 6= 0,

0, w
(1)
i = 0.

(S36)

We can therefore write

1 + 2

k∑
i=1

∣∣∣w(2)
i

∣∣∣ (P(X ∈ Ci))2
√

(E [X|X ∈ Ci])2
+ 1

∣∣∣E [w(1)
i X + b

(1)
i

∣∣∣X ∈ Ci]∣∣∣ ≥
1 + 2

k∑
i=1

∣∣∣w(1)
i w

(2)
i

∣∣∣ (P(X ∈ Ci))2
√

(E [X|X ∈ Ci])2
+ 1 |E [X − τi|X ∈ Ci]| (S37)

where the inequality is due to neurons whose w(1) weight is zero. It is easy to see that {τi} are in
fact the activation thresholds of the neurons. Notice that each neuron can be open either towards the
positive direction of the x axis or the negative, therefore Ci = {X > τi} or Ci = {X < τi}. To
further bound the top eigenvalue from below, for every neuron we take the direction which minimizes
the bound. To this end, we define

g+(x) = P2 (X > x)E [X − x|X > x]

√
1 + (E[X|X > x])

2
, (S38)

for the positive direction, and

g–(x) = P2 (X < x)E [x−X|X < x]

√
1 + (E[X|X < x])

2 (S39)

for the negative direction. Therefore, for all i ∈ [k] we have

(P(X ∈ Ci))2
√

(E [X|X ∈ Ci])2
+ 1 |E [X − τi|X ∈ Ci]| ≥ min {g+(τi), g

–(τi)} . (S40)

Thus, since θ ∈ Ω(f) we have

λmax(∇2
θL) ≥ 1 + 2

k∑
i=1

∣∣∣w(1)
i w

(2)
i

∣∣∣min {g+(τi), g
–(τi)}

≥ 1 + 2

∫ xmax

xmin

|f ′′(x)|min {g+(x), g–(x)}dx, (S41)

where we used the fact that1 f ′′(x) =
∑k
i=1 w

(1)
i w

(2)
i δ(x− τi). The last inequality in (S41) is due

to scenarios in which multiple neurons become active at the same threshold. In such a case, the upper
expression adds their weights in absolute value, while the lower expression adds their signed weights
and thus cannot be greater. Overall, we reached a bound that is implementation free, i.e. does not
depend on θ, which holds for all θ ∈ Ω(f). Therefore, it also holds for the implementation of f
corresponding to the flattest minimum, namely

min
θ∈Ω(f)

λmax(∇2
θL) ≥ 1 + 2

∫ ∞
−∞
|f ′′(x)| g(x)dx. (S42)

VII Switching system formulation for single hidden layer ReLU networks

In this section we apply the switching system framework to one-hidden-layer networks trained with
quadratic loss. Before we present the loss L as resulting from a discrete set of analytic functions, let
us first present the predictor function f(x;θ) in such a way.

Note that the function implemented by the network can be written in vector form as

f(x;θ) =
(
w(2)

)T
σ
(
xw(1) + b(1)

)
+ b(2), (S43)

1δ denotes the Dirac delta function.
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where σ(·) denotes the element-wise ReLU function. Let I : R× R3k+1 7→ {0, 1}k be the activation
pattern of all neurons for input x, namely [I(x;θ)]i = 1 if w(1)

i x + b
(1)
i > 0 and [I(x;θ)]i = 0

otherwise. Then, we can also write f(x;θ) as

f(x;θ) =
(
I(x;θ)�w(2)

)T (
xw(1) + b(1)

)
+ b(2), (S44)

where � denotes the Hadamard product. Let Z = {Im}2km=1 be the set of all k-dimensional binary
patterns {0, 1}k, and define

φ(x;θ,m) =
(
Im �w(2)

)T (
xw(1) + b(1)

)
+ b(2) (S45)

so that f(x;θ) can be expressed as

f(x;θ) = φ(x;θ,m) if I(x;θ) = Im. (S46)

Observe that
φ(x;θ∗,m) = φ(x;θ∗,m′) (S47)

if Im and Im′ differ in indices at which the vector xw(1) + b(1) has zeros.

We next identify the modes of the loss. Recall that the stochastic loss function is given by

L̂t(θ) =
1

2B

∑
j∈Bt

(f(xj ;θ)− yj)2
. (S48)

Let Zn = Z × · · · ×Z (n times) be the set of 2nk possible n-tuples of k-dimensional binary vectors,
indexed by the multi-indexm = (m1, . . . ,mn), where mj ∈ {1, . . . , 2k} for every j. Define

ψ̂(t)
m (θ) =

1

2B

∑
j∈Bt

(φ(xj ;θ,mj)− yj)2
, (S49)

and
Sm =

{
θ
∣∣ I(xj ;θ) = Imj ∀j ∈ [n]

}
. (S50)

Then the loss L̂t(θ) can be expressed as

L̂t(θ) = ψ̂(t)
m (θ) if θ ∈ Sm. (S51)

Differentiating ψ̂(t)
m w.r.t. θ we have

∇θψ̂(t)
m (θ) =

1

B

∑
j∈Bt

(φ(xj ;θ,mj)− yj)∇θφ(xj ;θ,mj), (S52)

where for any x ∈ R and Im ∈ {0, 1}k the gradient of φ is given by

∇θφ(x;θ,m) =


∇w(1)φ(x;θ, Im)

∇b(1)φ(x;θ, Im)

∇w(2)φ(x;θ, Im)
∂

∂b(2)
φ(xj ;θ, Im)

 =


xw(2) � Im

w(2) � Im(
xw(1) + b(1)

)
� Im

1

 . (S53)

Let θ∗ be a global minimum of L (i.e. f(xj) = yj for all j ∈ [n]) that is not twice-differentiable. In
our case I is given by2

I =
{
m : θ∗ ∈ S̄m

}
=
{
m : [Imj ]i = [I(xj ;θ∗)]i whenever w

(1)
i xj + b

(1)
i 6= 0, ∀j ∈ [n]

}
. (S54)

2S̄m denotes the closure of Sm
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Observe that for Im
′
j = I(xj ;θ∗) we have that

φ(xj ;θ
∗,m′j) = f(x;θ∗) = yj . (S55)

Therefore according to (S47), ∀m ∈ I we have that

φ(xj ;θ
∗,mj) = φ(xj ;θ

∗,m′j) = yj (S56)

for all j ∈ [n]. Thus, from (S52), for anym ∈ I we have

ĝ(t)
m = ∇θψ̂(t)

m (θ∗) = 0. (S57)

Finally, considering full batch (Bt = [n]), the Hessian of ψm is given by

∇2
θψm(θ) =

1

n

n∑
j=1

(∇θφ(xj ;θ,mj)) (∇θφ(xj ;θ,mj))
T

+
1

n

n∑
j=1

(φ(xj ;θ,mj)− yj)∇2
θφ(xj ;θ,mj). (S58)

Calculating this Hessian at θ∗ form ∈ I we get

Hm = ∇2
θψ̂m(θ∗) =

1

n

n∑
j=1

(∇θφ(xj ;θ
∗,mj)) (∇θφ(xj ;θ

∗,mj))
T
. (S59)

Let us denote the tangent features matrix of them’th mode by

Φm = [∇θφ(x1;θ∗,m1),∇θφ(x2;θ∗,m2), . . . ,∇θφ(xn;θ∗,mn)]. (S60)

Then the Hessian at θ∗ of ψm form ∈ I can be expressed as∇2
θL = ΦmΦT

m/n.

VIII Proof of Lemma 5

In this section we use notations from Appendix VII. Observe that H = {Hm : m ∈ I}. Let
H, H̃ ∈ H with corresponding indices m, m̃ ∈ I, namely H = Hm and H̃ = Hm̃. Denote
the top eigenpair of Hm by λ ≥ 0 and q ∈ S3k. Here, we are interested in an upper bound for
‖Hm̃q − λq‖. Note that

‖Hm̃q − λq‖ = ‖Hm̃q −Hmq‖ = ‖(Hm̃ −Hm) q‖
≤ ‖Hm̃ −Hm‖op ‖q‖ = ‖Hm̃ −Hm‖op . (S61)

Let Φm and Φm̃ be the corresponding tangent matrices ofHm andHm̃, i.e.

Hm =
1

n
ΦmΦm

T and Hm̃ =
1

n
Φm̃Φm̃

T . (S62)

Then, using the submultiplicativity and subadditivity of the operator norm we have

‖Hm −Hm̃‖op =
1

n

∥∥∥ΦmΦm
T −Φm̃Φm̃

T
∥∥∥

op

=
1

n

∥∥∥(Φm −Φm̃)Φm
T −Φm̃(Φm̃ −Φm)T

∥∥∥
op

≤ 1

n

∥∥∥(Φm −Φm̃)Φm
T
∥∥∥

op
+
∥∥Φm̃(Φm̃ −Φm)T

∥∥
op

≤ 1

n

(
‖Φm −Φm̃‖op ‖Φm‖op + ‖Φm̃‖op ‖Φm̃ −Φm‖op

)
=
‖Φm −Φm̃‖op√

n

(‖Φm‖op√
n

+
‖Φm̃‖op√

n

)
=
‖Φm −Φm̃‖op√

n

(√
λmax(Hm) +

√
λmax(Hm̃)

)
. (S63)
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Let us denote by pj the number of neurons whose activation threshold coincides with xj . This means
that the total number of toggling neurons between two modes in I is at most p =

∑n
j=1 pj . We

denote the maximal number of toggling neurons for a single sample between any two modes in I as
pmax = max{pj}. Additionally, let a(i, j) = 1 if the ith neuron toggles on xj from modem to mode
m̃, and a(i, j) = 0 otherwise (mathematically, a(i, j) = |[Imj − Im̃j ]i|). Since we study zero-loss
(perfect interpolation) solutions, we assume that xi 6= xj for all i 6= j (see Sec. 3). Therefore, a
neuron can toggle on one training sample at most. Thus, in our setting we have that

k∑
i=1

a(i, j) ≤ pj , and
n∑
j=1

a(i, j) ≤ 1. (S64)

Then, using the definition of Φm (see (S60)), we have

‖Φm −Φm̃‖2op = max
u∈Sn−1

‖(Φm −Φm̃)u‖2

= max
u∈Sn−1

3k+1∑
i=1

 n∑
j=1

uj [∇θφ(xj ;θ
∗,mj)−∇θφ(xj ;θ

∗, m̃j)]i

2

≤ max
u∈Sn−1

3k+1∑
i=1

 n∑
j=1

|uj |
∣∣[∇θφ(xj ;θ

∗,mj)−∇θφ(xj ;θ
∗, m̃j)]i

∣∣2

. (S65)

Using the particular structure of∇θφ(x;θ,m) from (S53) we have that

3k+1∑
i=1

 n∑
j=1

|uj |
∣∣[∇θφ(xj ;θ

∗,mj)−∇θφ(xj ;θ
∗, m̃j)]i

∣∣2

=

k∑
i=1

2∑
m=0

 n∑
j=1

|uj |
∣∣∣[∇θφ(xj ;θ

∗,mj)−∇θφ(xj ;θ
∗, m̃j)]km+i

∣∣∣
2

≤
k∑
i=1

2∑
m=0

 n∑
j=1

|uj |Ca(i, j)

2

= 3C2
k∑
i=1

 n∑
j=1

|uj |a(i, j)

2

, (S66)

where we used the assumption that ‖φ(xj ;θ
∗,mj)‖∞ ≤ C for allm ∈ I and j ∈ [n]. Note that the

series
∑n
j=1 |uj |a(i, j) has at most one term, so that for all u ∈ Sn−1 we have

k∑
i=1

 n∑
j=1

|uj |a(i, j)

2

=

k∑
i=1

n∑
j=1

u2
ja(i, j)

=

n∑
j=1

u2
j

k∑
i=1

a(i, j)

≤
n∑
j=1

u2
jpj

≤ pmax

n∑
j=1

u2
j

= pmax, (S67)

where in the first inequality we used (S64). Thus,

‖Φm −Φm̃‖op ≤
√

3C
√
pmax. (S68)
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Substituting this bound in (S63) results in

‖Hm̃q − λq‖ ≤
√

3C
(√

λmax(Hm) +
√
λmax(Hm̃)

)√pmax

n
, (S69)

or, with a simpler notation,∥∥∥H̃q − λmax(H)q
∥∥∥ ≤ √3C

(√
λmax

(
H
)

+
√
λmax

(
H̃
))√pmax

n
, (S70)

which completes the proof.

IX Proof parts for Theorem 2

Applying Lemma 2 with γ = 0, δ = 2
√

3C
√
λupper

max

√
pmax

n and λm = λupper
max for all m ∈ I (such

that λlower = λupper
max ), we get that if θ∗ is strongly stable then

λupper
max (θ∗) ≤ 2

η
+ 2
√

3C
√
λupper

max (θ∗)

√
pmax

n
. (S71)

Let us denote ζ2 = λupper
max (θ∗) for ζ ≥ 0, α = 2

√
3C
√

pmax

n and β = 2
η . Thus (S71) becomes

ζ2 − αζ − β ≤ 0 and ζ ≥ 0. (S72)

The roots of the left hand side parabola are given by

ζ1,2 =
α±

√
α2 + 4β

2
. (S73)

Hence (S72) is equivalent to

0 ≤ ζ ≤ α+
√
α2 + 4β

2
. (S74)

Therefore,

λupper
max (θ∗) = ζ2

≤

(
α+

√
α2 + 4β

2

)2

=
1

4

(
2α2 + 4β + 2α

√
α2 + 4β

)
=

2

η
+ 3C2 pmax

n
+ C

√
3
pmax

n

(
3C2

pmax

n
+

2

η

)
. (S75)

X Generalization of Lemma 4 to global minima that are not
twice-differentiable

In Appendix VII we give explicit expressions for the Hessian matrices and gradient vectors of the
switching system corresponding to the generalized linear dynamics of SGD near global minima in
our setting. Specifically, we use a multi-index m = (m1,m2, . . . ,mn) to enumerate all modes of
the switching system. Then, for a global minimum θ∗ that is not twice differentiable, we show that
whenm ∈ I, the HessianHm = ∇2ψm(θ∗) can be expressed as ΦmΦT

m/n, with

Φm =


x1w

(2) � Im1 x2w
(2) � Im2 · · · xnw

(2) � Imn

w(2) � Im1 w(2) � Im2 · · · w(2) � Imn(
x1w

(1) + b(1)
)
� Im1

(
x2w

(1) + b(1)
)
� Im2 · · ·

(
xnw

(1) + b(1)
)
� Imn

1 1 · · · 1

 ,
(S76)
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where {Imj}nj=1 is a n-tuple of k-dimensional binary vectors. In particular, the indexm′ for which

∀j ∈ [n] Im
′
j = I(xj ;θ∗) (S77)

is also in I (see Appendix VII for details). SinceHm′ has that same structure and activation pattern
as the Hessian matrices considered in Lemma 4, the proof of Lemma 4 (see Appendix VI) applies for
Hm′ as well. Therefore,

λupper
max = max

m∈I
{λmax (Hm)} ≥ λmax (Hm′) ≥ 1 + 2

∫ ∞
−∞
|f ′′(x)| g(x)dx, (S78)

where in the last inequality we used Lemma 4. Since this lower bound is implementation independent,
we deduce that

min
θ∈Ω(f)

λupper
max (θ) ≥ 1 + 2

∫ ∞
−∞
|f ′′(x)| g(x)dx. (S79)

XI Determining the sharpness of the flattest implementation in experiments

In this section we explain how we determine the sharpness of the flattest implementation. Recall
that any solution in F can be implemented in various ways. Specifically, for each neuron, we can
multiply the weight of the first layer by some positive constant, and divide the weight of the second
layer by the same constant. This results in different implementations of the same end-to-end function.
Mathematically, let θ be a minimum of the training loss, where

θ =
[
w

(1)
1 , . . . , w

(1)
k , b

(1)
1 , . . . , b

(1)
k , w

(2)
1 , . . . , w

(2)
k , b(2)

]T
∈ R3k+1. (S80)

Then for any β = [β1, β2, . . . , βk] ∈ Rk+ we define

θ̃(β) =

[
β1w

(1)
1 , . . . , βkw

(1)
k , β1b

(1)
1 , . . . , βkb

(1)
k ,

w
(2)
1

β1
, . . . ,

w
(2)
k

βk
, b(2)

]T
∈ R3k+1. (S81)

Clearly, a network with parameters θ̃(β) implements the same end-to-end function as a network with
parameters θ. Thus, to determine the sharpness of the flattest implementation we want to solve the
optimization problem

min
β∈Rk+

λmax

(
∇2L

(
θ̃(β)

))
. (S82)

In our simulations, we found the minimum of this objective using GD.

To verify that we indeed converged to the global minimum, we used the fact that the objective can be
explicitly written as

min
β∈Rk+

max
q∈S3k

qT∇2L
(
θ̃(β)

)
q. (S83)

From the max–min inequality we know that

min
β∈Rk+

max
q∈S3k

qT∇2L
(
θ̃(β)

)
q ≥ max

q∈S3k
min
β∈Rk+

qT∇2L
(
θ̃(β)

)
q. (S84)

Therefore, for any q̃ ∈ Sn−1 and β̃ ∈ Rk+ we have that

λmax

(
∇2L

(
θ̃(β̃)

))
≥ min
β∈Rk+

λmax

(
∇2L

(
θ̃(β)

))
≥ max
q∈S3k

min
β∈Rk+

qT∇2L
(
θ̃(β)

)
q

≥ min
β∈Rk+

q̃T∇2L
(
θ̃(β)

)
q̃. (S85)

This implies that if for some β̃ and q̃ we have that λmax

(
∇2L

(
θ̃(β̃)

))
=

minβ∈Rk+ q̃
T∇2L

(
θ̃(β)

)
q̃ then it follows that

λmax

(
∇2L

(
θ̃(β̃)

))
= min
β∈Rk+

λmax

(
∇2L

(
θ̃(β)

))
= min
β∈Rk+

q̃T∇2L
(
θ̃(β)

)
q̃. (S86)
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Now, as we show below, the right hand side has a simple closed form expression. Namely, in this
case we can determine the optimal value of the optimization problem. As we mentioned before, in
our simulation we used GD to minimize the left hand side. After convergence, we computed the top
eigenvector q̃ of the Hessian matrix for the obtained β. Using (S88) below, we calculated the value
of the lower bound for q̃. If the objective equaled the lower bound, then we knew we achieved the
minimum value of the objective (S82). Interestingly, in all our simulations, this was indeed the case.

To derive a closed form expression for the right-hand side, we use notation and some derivation form
Appendix VI, to write

qT∇2L
(
θ̃(β)

)
q

=
1

n

k∑
i=1


 n∑
j=1

qjxjIj,i
w

(2)
i

βi

2

+

 n∑
j=1

qjIj,i
w

(2)
i

βi

2

+

 n∑
j=1

qjβiσ
(
w

(1)
i xj + b

(1)
i

)2
+

1

n

 n∑
j=1

qj

2

=
1

n

k∑
i=1

(w(2)
i

βi

)2

 n∑
j=1

qjxjIj,i

2

+

 n∑
j=1

qjIj,i

2
+ β2

i

 n∑
j=1

qjσ
(
w

(1)
i xj + b

(1)
i

)2


+
1

n

 n∑
j=1

qj

2

. (S87)

It is easy to calculate that the minimum of this function w.r.t. β over Rk+, is given by

min
β∈Rk+

qT∇2L
(
θ̃(β)

)
q =

2

n

k∑
i=1

∣∣∣w(2)
i

∣∣∣
√√√√√ n∑

j=1

qjxjIj,i

2

+

 n∑
j=1

qjIj,i

2 ∣∣∣∣∣∣
n∑
j=1

qjσ
(
w

(1)
i xj + b

(1)
i

)∣∣∣∣∣∣+
1

n

 n∑
j=1

qj

2

.

(S88)

We note that in general, the set of implementations over which we optimize can be strictly contained
within the set of all implementation, namely{

θ̃(β)
∣∣∣ β ∈ Rk+

}
⊆ Ω(f). (S89)

Therefore,
min
β∈Rk+

λmax

(
∇2L

(
θ̃(β)

))
≥ min
θ∈Ω(f)

λmax

(
∇2L (θ)

)
. (S90)

In other words, our approach generally provides an upper bound on the sharpness of the flattest
implementation. The true value may sometimes be smaller.
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