
Supplementary Material for Manipulate-Anything

Anonymous Author(s)
Affiliation
Address
email

Abstract: This is the supplementary material for MANIPULATE-ANYTHINGİt1

comprises the detailed implementation of MANIPULATE-ANYTHING prompts,2

simulation benchmark, and also the real-world experiments setup details. For3

more detailed videos on both simulation and real-world experiments, refer to our4

anonymous webpage: manipulate-anything.github.io.5

Keywords: Zero-shot manipulation, multimodal language models, multiview state6

verification, robot skill generation, behavior cloning, robotic manipulation7

1 MANIPULATE-ANYTHING implementations8

Action Generation Module. We generate each action using either an agent-centric or object-centric9

approach. For object-centric action generation, we utilize M2T2[1], NVIDIA’s foundational grasp10

prediction model, for pick and place actions. For 6-DoF grasping, we input a single 3D point cloud11

from either a single RGB-D camera (in the real world) or multiple cameras (in simulation). The12

model outputs a set of grasp proposals on any graspable objects, providing 6-DoF grasp candidates13

(3-DoF rotation and 3-DoF translation) and default gripper close states. For placement actions, M2T214

outputs a set of 6-DoF placement poses, indicating where the end-effector should be before executing15

a drop primitive action based on a VLM plan. The network ensures the object is stably positioned16

without collisions. We also set default values for mask_threshold and object_threshold to17

control the number of proposed grasp candidates. After proposing a list of template grasp poses, we18

use QWen-VL[2] to detect the target object by prompting the current image frame with the target19

object’s name, translated into Chinese using a machine translation model [3]. This detection is20

applied to all re-rendered viewpoints or viewpoints from different cameras. We then concatenate21

these frames into a single image, annotating each sub-image with a number at the top right corner.22

Next, we call the GPT-4V API with few-shot demonstrations and the task goal to prompt GPT-4V to23

output the selected number of viewpoints that provide the most unobstructed views for sampling the24

grasp pose to achieve the sub-goal. Using the selected viewpoint, we execute the grasp by moving25

the end-effector to the sampled grasp pose via a motion planner.26

For agent-centric action generation, we first perform the same steps of viewpoint selection. Using the27

selected viewpoint, a few demonstration examples, and the sub-goal, we prompt GPT-4V to generate28

an action function with code snippets that include the necessary code to perform a delta-action29

on the current robot pose. We then execute this by moving the end-effector based on these delta30

changes. This process is iterated until we obtain the most desirable code snippet function for the31

given sub-goals, which is then appended to a skill library for future use.32

Sub-goal Verification Module The sub-goal verification module helps with error recovery by33

ensuring all potential attempts at resolving the current step action have been tried. With the temporary34

goal state obtained by the action generation module, we use multi-viewpoints to sample the optimal35

viewpoint for answering the verification condition generated for the given sub-goal during the task36

plan generation phase. Using the same viewpoint selection method as in the Action Generation37

Module, we obtain the optimal view and then perform a two-step sequence rollout of frames: one38

from the current frame at this viewpoint and another from the previous action step. We concatenate39

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

https://manipulate-anything.github.io/


Figure 1: Sub-goal Verification Module. We used viewpoint selection similar to action generation,
to find the optimal viewpoints, and roll out the two step sequences of the previous and current frames
for prompting the verification condition.

these two frames, annotate them with numbers to indicate their temporal relation, and use this image40

to prompt GPT-4V to check if the verification condition is fulfilled as shown in Fig. 1. If the answer41

is Yes, we proceed to the next sub-goal. If the answer is No, we resample new viewpoints, generate42

new actions, and reattempt the entire sub-goal with a different seed.43

2 Simulation experiments44

Simulation Setup. All the simulated experiments use a four-camera setup as illustrated in Fig. 3.45

The cameras are positioned at the front, left shoulder, wrist, and right shoulder. All cameras are static,46

except for the wrist camera, which is mounted on the end effector. We did not modify the default47

camera poses from the original RLBench [4]. These poses maximize coverage of the entire table, and48

we use a 256 x 256 resolution for better input to the VLMs.49

Task Details. We describe in detail each of the 12 tasks for simulation evaluation, both for trained50

policies and zero-shot methods, along with their RLBench variations and success conditions. We51

have made some modifications to the original tasks to enhance the detection rate by Code-As-Policies52

and VoxPoser.53

2.1 put block54

Filename: put_block.py55

Task: Pick up the green block and place it on the red mat.56

Success Metric: The success condition on the red mat detects the target green block.57

2.2 close box58

Filename: close_box.py59

Task: Close the box.60

Success Metric: The revolute joint of the specified handle is at least 60◦ off from the starting position.61

2.3 open box62

Filename: open_box.py63

Task: Open the box.64

Success Metric: The revolute joint of the specified handle is at least 60◦ off from the starting position.65

2



2.4 play jenga66

Filename: play_jenga.py67

Task: Pull out the green jenga block.68

Success Metric: The green jenga block is out of its pre-defined location.69

2.5 open jar70

Filename: open_jar.py71

Task: Uncap the green jar.72

Success Metric: The green jar is out of its pre-defined capped location.73

2.6 pickup cup74

Filename: Filename: pickup_cup.py75

Task: Pick up the red cup.76

Success Metric: Lift up the red cup above the pre-defined location.77

2.7 take umbrella78

Filename: take_umbrella_out_of_stand.py79

Task: Pick up the umbrella out of the umbrella stand.80

Success Metric: Lift up the umbrella out of the umbrella stand.81

2.8 sort mustard82

Filename: sort_mustard.py83

Task: Pick up the yellow mustard bottle, and place it into the red container.84

Success Metric: The yellow mustard bottle inside red container.85

2.9 open wine86

Filename: open_wine.py87

Task: Uncap the wine bottle.88

Success Metric: The wine bottle cap is out of its original position.89

2.10 lamp on90

Filename: lamp_on.py91

Task: Turn on the lamp.92

Success Metric: The lamp light up.93

2.11 put knife94

Filename: put_knife_on_chopping_board.py95

Task: Pick up the knife and place it onto the chopping board.96

Success Metric: Knife placed on chopping board.97

3



Figure 2: Evaluation of visual prompting. We systematic evaluate 5 different visual prompting
techniques, and found that selected viewpoint sequence yields the highest performance.

Figure 3: Results for visual prompting techniques (Left).We reported the various results for
different visual prompting technique decision, and reported that selected viewpoint sequence yield
the best performance.Simulation scene setup (Right). We leverage 4 different camera for evaluation.

2.12 pick & lift98

Filename: pick_and_lift.py99

Task: Pick up the red cube.100

Success Metric: The red cube is lifted up.101

3 Real-world experiments102

3.1 Robot hardware setup103

The real-robot experiments use a Franka Panda manipulator with a parallel gripper. For perception,104

we use a Kinect-2 RGB-D camera mounted on a tripod, at an angle, pointing towards the tabletop.105

Kinect-2 provides RGB-D images of resolution 512 × 424 at 30Hz. The extrinsic between the camera106

and robot base-frame are calibrated with the easy hand-eye package. We use an ARUCO AR marker107

mounted on the gripper to aid the calibration process, as shown in Figure 4.108

3.2 Additional real-world everyday manipulation tasks109

Beyond the five real-world experiments used for systematically evaluating MANIPULATE-ANYTHING,110

we also have additional real-world demonstrations generated in a zero-shot manner via MANIPULATE-111

4



Figure 4: Real-world experiment setup (Left). We set up the real-world using this configuration.
Robustness and generalization evaluation. We evaluated MANIPULATE-ANYTHING against
VoxPoser for capability in generalizing to different language instructions and also object-specific
manipulation.

Figure 5: More real-world experiments.

ANYTHING. These demonstrations cover a range of tasks, from reasoning tasks to more precise112

everyday tasks. All of the tasks can be seen in Fig. 5.113

4 Additional Ablation Studies114

We conducted two main set of ablation studies, we first look at how different visual prompting works115

for sub-goal verification, and then we further evaluated MANIPULATE-ANYTHINGś robustness and116

generalization to language instructions in another set of experiments.117

5



For evaluating different visual prompts for sub-goal verification on the put_block task, we employed118

the following methods: 1) Set-of-Mark [5] on a single view, 2) Set-of-Mark with bounding box119

annotation, 3) Concatenated all viewpoints, 4) Front view only, and 5) Selected viewpoint sequence120

as shown in Fig. 2. We observed that the selected viewpoint sequences were the most effective in121

achieving correct sub-goal verification, obtaining the highest success rate as shown in Fig. 3.122

We further evaluated the generalization capabilities of our model in terms of object-specific manipu-123

lation and robustness to changes in language instructions. For language instruction variations, we124

altered the instructions for the same scene and found that MANIPULATE-ANYTHING outperforms125

VoxPoser by 60% over 25 episodes. For object-specific variations, where instructions targeted specific126

parts of objects, MANIPULATE-ANYTHING outperformed VoxPoser by 16%, as shown in Fig. 4.127

128

References129

[1] W. Yuan, A. Murali, A. Mousavian, and D. Fox. M2t2: Multi-task masked transformer for130

object-centric pick and place, 2023.131

[2] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou, and J. Zhou. Qwen-vl: A132

frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966,133

2023.134

[3] J. Tiedemann, M. Aulamo, D. Bakshandaeva, M. Boggia, S.-A. Grönroos, T. Nieminen, A. Ra-135

ganato, Y. Scherrer, R. Vazquez, and S. Virpioja. Democratizing neural machine translation with136

opus-mt. Language Resources and Evaluation, pages 1–43, 2023.137

[4] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &138

learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.139

[5] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao. Set-of-mark prompting unleashes extraordi-140

nary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441, 2023.141

6


	Manipulate-Anything implementations
	Simulation experiments
	put block
	close box
	open box
	play jenga
	open jar
	pickup cup
	take umbrella
	sort mustard
	open wine
	lamp on
	put knife
	pick & lift

	Real-world experiments
	Robot hardware setup
	Additional real-world everyday manipulation tasks

	Additional Ablation Studies

