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ABSTRACT

Opponent modeling aims at learning the opponent’s behaviors, goals, or beliefs to
reduce the uncertainty of the competitive environment and assist decision-making.
Existing work has mostly focused on learning opponent models online, which is
impractical and inefficient in practical scenarios. To this end, we formalize an
Offline Opponent Modeling (OOM) problem with the objective of utilizing pre-
collected offline datasets to learn opponent models that characterize the opponent
from the viewpoint of the controlled agent, which aids in adapting to the un-
known fixed policies of the opponent. Drawing on the promises of the Transform-
ers for decision-making, we introduce a general approach, Transformer Against
Opponent (TAO), for OOM. Essentially, TAO tackles the problem by harnessing
the full potential of the supervised pre-trained Transformers’ in-context learning
capabilities. The foundation of TAO lies in three stages: an innovative offline pol-
icy embedding learning stage, an offline opponent-aware response policy training
stage, and a deployment stage for opponent adaptation with in-context learning.
Theoretical analysis establishes TAO’s equivalence to Bayesian posterior sam-
pling in opponent modeling and guarantees TAO’s convergence in opponent policy
recognition. Extensive experiments and ablation studies on competitive environ-
ments with sparse and dense rewards demonstrate the impressive performance of
TAO. Our approach manifests remarkable prowess for fast adaptation, especially
in the face of unseen opponent policies, confirming its in-context learning potency.

1 INTRODUCTION

A general autonomous agent must possess the ability to model complex behaviors, goals, or beliefs
of other agents in the environment to refine its decision-making, a long-standing problem often
referred to as opponent modeling in the adversarial domains (Albrecht & Stone, 2018; Nashed &
Zilberstein, 2022; Yu et al., 2022). Nevertheless, most existing work adopts the setting of learning
an opponent model online, which is prohibitively impractical and inefficient. In practical situations,
it is not always feasible to engage with the competitive environment or opponent policies to execute
the online learning process. For instance, e-commerce platforms are constrained to modeling the
behavior of specific users offline by passively accumulating their data (Li & Zhao, 2021). Even if
online learning is available, the opponent may have switched the policy across episodes, possibly
long before the current opponent’s model is learned. Then a multitude of rollouts are necessary to
acquire a new opponent model, which is exorbitantly inefficient (Albrecht & Stone, 2018).

Given the multifaceted issues in learning the opponent model online, we contemplate extending
the opponent modeling problem into the offline setting, a concept we refer to as Offline Opponent
Modeling (OOM), to make learning more accessible and enhance the sample efficiency of opponent
modeling. The underlying insight is that acquiring replay data or historical plays of a certain quality
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Figure 1: Procedures of TAO. (a) Offline stage 1: Embed the trajectories of different opponent poli-
cies into a latent space through representation learning. (b) Offline stage 2: Learn to respond to
different opponent policies based on consecutive fragments sampled from their trajectories. (c) De-
ployment stage: Deploy in a new environment and adapt to unknown opponent policies through
in-context learning. Superscript 1 denotes the terms of the controlled agent,−1 denotes the terms of
the opponent, and ∗ denotes terms generated by the approximate best response policy.

is generally straightforward (Levine et al., 2020). The acquired offline data can be used to learn the
response policy against the fixed opponent policy found in offline data rather than undertaking thou-
sands of rollouts to learn through trial and error. Numerous real-life applications echo this principle.
For instance, mastering strategies to handle certain scenarios in Go games through practicing high-
quality Go exercises; understanding the basketball playing styles and patterns of specific opponents
by analyzing replay videos of their NBA performances (Daly-Grafstein & Bornn, 2020).

Recent studies have shown that the Transformer (Vaswani et al., 2017), supervised pre-trained for
decision-making, possesses a robust in-context learning ability in meta-Reinforcement Learning
(RL) (Lee et al., 2023). This ability is exactly what is demanded in opponent modeling. Such insight
stems from the fact that when we deploy the opponent model into a new environment, we expect
to adapt to unknown opponent policies as swiftly as possible, ideally without gradient updates. We
provide the related work on opponent modeling, offline meta-RL, etc. in Appendix A.

Embracing this idea, we introduce Transformer Against Opponents (TAO), a general Transformer-
based approach dedicated to resolving the defined OOM problem. The procedures of TAO unfolds in
three stages (see Fig. 1): 1) We generatively and discriminatively embed opponent trajectories using
an Opponent Policy Encoder (OPE) to acquire an opponent policy representation that is beneficial
for the downstream learning; 2) Upon the characterization of opponent policies offered by OPE,
we adopt in-context learning-based supervised pre-training for an In-context Control Decoder
(ICD) to learn to respond reasonably according to opponent trajectories; 3) We deploy in a new
environment inhabited by unknown opponent policies and adapt with in-context learning with the
help of an Opponent Context Window (OCW), which continuously collects opponent trajectories.

Theoretically, we prove that TAO is equivalent to Bayesian posterior sampling in opponent mod-
eling. Further analysis demonstrates the convergence of TAO for opponent policy recognition. We
conduct experiments in both a sparse reward and a dense reward environment, comparing TAO with
a series of baselines for opponent modeling and offline meta-RL. Our approach demonstrates out-
standing performance under different kinds of test settings. Concurrently, ablation studies on TAO’s
components underscore their vital roles in the process. Surprisingly, when we deploy TAO into a
new environment inhabited by unknown opponent policies, it exhibits a faster and superior adap-
tation than other approaches, particularly in confronting previously unseen opponent policies. This
underlines the formidable in-context learning capability inherent in our approach.

2 PROBLEM FORMULATION

We use the Partially-Observable Stochastic Game (POSG) (Yang & Wang, 2020) for a basic formal-
ization of the competitive environment. A POSG is defined by a tuple ⟨I,S, {Oi}i∈I,A, T, {Ri}i∈I,
{Ωi}i∈I⟩, where I = {1, 2, . . . , N} is the set of agents. S is the state space. Oi is the observation
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space of agent i. A = A1 × A2 × · · · × AN is the joint action space. T : S × A × S → [0, 1]
denotes the transition dynamics, which defines the probability distribution on the next state given
the previous state and the joint action. Ri : S ×A×S → R denotes the reward function of agent i.
Ωi : S × A×Oi → [0, 1] denotes the agent i’s observation function, which defines the probability
distribution over its possible next observation given the previous state and the joint action.

In this study, we utilize 1 to denote the controlled agent and−1 to denote the opponent and focus on
modeling one opponent. We assume that the opponent’s policy originates from a set of fixed policies
Π = {π−1,k(a−1|o−1)}k=1,2,...,K , which are obtained by the scripts or RL algorithms pre-training.

2.1 OFFLINE OPPONENT MODELING

Assuming that the interaction between the controlled agent and the opponent policy π−1,k gener-
ates their respective trajectories, denoted as τ1,k = (o1,k0 , a1,k0 , r1,k0 , o1,k1 , a1,k1 , r1,k1 , . . . ) ∈ T 1,k

and τ−1,k = (o−1,k
0 , a−1,k

0 , r−1,k
0 , o−1,k

1 , a−1,k
1 , r−1,k

1 , . . . ) ∈ T −1,k. The resultant dataset is thus
denoted as Dk = {T 1,k, T −1,k}. Within the context of offline learning, we presume the availability
of the datasetDoff = {Dk}k=1,2,...,K . Specifically, T 1,k is acquired through interactions with π−1,k

while employing its approximate best response policy π1,k,∗, usually with certain noise.

The objective of OOM is to useDoff to pre-train an opponent-aware adaptive controlled agent policy
Mθ(a

1|o1;D) and deploy Mθ into a new environment with an unknown test opponent policy set
Πtest, such that the controlled agent achieves the maximum expected return (i.e., cumulative reward):

max
θ

Eπ−1∼Πtest,Doff,T,Ω

[ ∞∑
t=0

R1
t

∣∣∣∣∣ a1t ∼Mθ, π
−1

]
. (1)

D is the opponent’s information data, which is sampled from Doff during offline pre-training and is
required to be collected during deployment. See Appendix B for detailed assumptions of OOM.

2.2 RATIONALE BEHIND OOM

Why not learning online? On the one hand, online learning struggles to satisfy real-world scenarios,
given that interactions with opponent policies are not consistently accessible. On the other hand,
online learning of opponent models bears substantial complexity and inefficiency. As with many
existing algorithms, they gather copious data and undertake intricate online updating processes.

Relationship with offline meta-RL. The core objective of offline meta-RL lies in addressing task
adaptation problems using offline datasets within a single-agent environment. In contrast, OOM
mainly focuses on opponent adaptation using offline datasets within a multi-agent setting. In a
broader sense, OOM can be perceived as a specialized extension of offline meta-RL. Specifically, the
heightened challenge of OOM compared to offline meta-RL stems from the increased complexity of
environment dynamics arising due to opponent policies and the involvement of multiple agents.

Main Challenges. As implied by Eq. (1), the main challenges of OOM arise from several dimen-
sions: 1) OOM requires effective learning of high-level semantics from different opponent policies to
aid controlled agent’s decision-making; 2) OOM necessitates extraction of robust response policies
against corresponding opponent policies from Doff; 3) OOM emphasizes generalization, a crucial
aspect for transferring the garnered high-level knowledge to adapt to unseen opponent policies.

3 TRANSFORMER AGAINST OPPONENT

We propose a three-stage Transformer-based approach, TAO, to address the three challenges of
OOM mentioned above respectively. Firstly, we argue that opponent policies, compared to a naive
task, involve more complex semantics, necessitating the learning of a good representation. To
achieve this, we propose Policy Embedding Learning (PEL) to induce opponent policy embed-
dings conducive to downstream learning in Section 3.1; Secondly, to recognize and respond to
the current opponent policy using only a subset of opponent trajectories, we introduce in-context
learning-based supervised pre-training in Section 3.2. This pre-training enables predicting near-
optimal actions conditioned on D; Thirdly, we aim to generalize the knowledge acquired from the
offline dataset to respond to unknown opponent policies during deployment. Therefore, we collect
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opponent trajectories during deployment, leveraging the model’s in-context learning ability to adjust
responses to continually adapt to the current opponent policy, as described in Section 3.3; Lastly, we
theoretically analyze TAO’s convergence on opponent policy recognition in Section 3.4.

3.1 OFFLINE STAGE 1: POLICY EMBEDDING LEARNING

OPE:
Opponent Policy Encoder

fusion fusion OCW: Opponent Context Window

Cross
Attention

l-C+1 l-1 ll-C
Offline
Dataset

: 1

: -1 Average
Pooling

:  Offline Stage 1
:  Offline Stage 2
:  Deployment Stage

ICD: In-context Control Decoder

Figure 2: The overall architecture and flow of TAO.

In anticipation of attaining an
opponent policy representation
favorable to downstream learn-
ing, we propose PEL to charac-
terize the distinct behavioral pat-
terns and high-level semantics
of different opponent policies.
We aim for the resulting policy
embedding to be both genera-
tive and discriminative: 1) Gen-
erative: the policy embedding
should have the ability to emu-
late different opponent policies;

2) Discriminative: the policy embedding should be adept at distinguishing between different oppo-
nent policies. Intuitively, generative helps policy embedding implicitly recognize opponent policies,
as different policies provide different soft labels. Discriminative helps policy embedding distinguish
the opponent policies that are hard to distinguish.

Specifically, using an OPE Mθe : T −1 → Z parameterized by θe, we conduct PEL with opponent
trajectories stemming from Doff, where T −1 = {T −1,k}k=1,...,K . z−1 = (z−1

0 , z−1
1 , . . . ) ∈ Z

denotes a trajectory embedding consisting of per-timestep embedding tokens (i.e., z−1
t ). As shown

in Fig. 2, we fuse the embedding tokens of a−1, r−1, o−1 and employ Average Pooling, denoted as
function AP, to aggregate z−1 to acquire an average trajectory embedding AP(z−1) = z−1 ∈ Z for
subsequent loss calculations. The implementation of OPE is based on GPT2 (Radford et al., 2019).

Generative Loss. As we aim at acquiring the ability to emulate different opponent policies, we pro-
pose conditional imitation learning (Hussein et al., 2017) using OPE Mθe and an ancillary decoder
πϕd

: O−1 × Z → A−1, parameterized by ϕd. For a given opponent policy π−1,k, we predict its
actions a−1,k conditioned on its observations o−1,k along with the average trajectory embeddings
z−1,k obtained from its other trajectory. The corresponding generative loss is:

Lgen = − 1

K

K∑
k=1

Eτ−1,k
i ,τ−1,k

j ∼T −1,k

 ∑
⟨o,a⟩∼τ−1,k

i

log πϕd

(
a | o,AP

(
Mθe

(
τ−1,k
j

))) . (2)

Hence, by leveraging an auxiliary task that imitates the opponent’s policies, we indirectly guide the
trajectory embeddings of various opponent policies toward generative. Such generative imbues the
policy embedding with certain recognition capabilities, as the actions of different opponent policies
serve as soft labels for their respective policy types.

Discriminative Loss. As we expect the policy embedding to be adept at distinguishing between
different opponent policies, we use the labels of opponent policy type (i.e., index in offline oppo-
nent policy set Πoff) corresponding to the trajectories for an adequate distinction between them. We
employ dot product to measure the similarity between two distinct average trajectory embeddings.
Specifically, we maximize this similarity from the same opponent policy while minimizing this sim-
ilarity from different opponent policies. The corresponding discriminative loss is:

Ldis = −ET −1

 B∑
i=1

1

|Ei| − 1

∑
j∈Ei,j ̸=i

log
exp

(
z−1
i · z

−1
j /p

)∑
l∈[B],l ̸=i exp

(
z−1
i · z

−1
l /p

)
 . (3)

Here, z−1
i = AP(Mθe(τ

−1
i )), where τ−1

i ∼ T −1. B is the batch size of sampling. p denotes the
temperature factor. We define K : T −1 → [K] as an indicator function of the opponent policy type,
then Ei = {j ∈ [B] | K(τ−1

i ) = K(τ−1
j )}. Such a method drives trajectory embeddings of the same

opponent policy towards proximity, while those from different opponent policies are pushed towards
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dissimilarity. Intuitively, this could help recognize the different opponent policies, as even if the two
opponent policies are similar, their policy embeddings will be relatively separate.

The comprehensive loss function for offline stage 1 is:

Lemb = α · Lgen + λ · Ldis. (4)

Within, α and λ are weighting coefficients for generative and discriminative losses.

3.2 OFFLINE STAGE 2: OPPONENT-AWARE RESPONSE POLICY TRAINING

Given that our goal is to handle multiple opponent policies using a single model, we necessitate
a mechanism to recognize the current opponent’s policy and subsequently produce the appropriate
response actions. To this end, leveraging the characterization of the opponent policies offered by the
trained OPE, we propose in-context learning-based supervised pre-training to learn an ICD Mθd :
Z × T 1 → A1, parameterized by θd, with the same Doff. Formally, ICD autoregressively predicts
near-optimal actions a1,∗ conditioned on trajectory τ1,∗ and opponent’s trajectory embedding z−1.

Given the opponent in-context data (i.e., D in Section 2.1), we encode it using OPE to obtain a good
representation z−1. Conditioned on z−1, ICD is designed to recognize the current opponent policy
and generate an appropriate response. Intuitively, such supervised pre-training induces an opponent-
aware adaptive response policy capable of recognizing and adapting to changes in opponent polices.

Response Loss. Postulating θ={θe, θd}, in-context learning-based supervised pre-training loss is:

Lres = −
1

K

K∑
k=1

Eτ1,k∼T 1,k

 ∑
⟨yt,at⟩∼τ1,k

logMθd

(
at | yt;Mθe

(
GetOffD

(
T −1,k

))) . (5)

Here, yt = (G0, o0, a0, . . . , Gt, ot). Gt =
∑∞

t′=t Rt′ denotes Reward-To-Go (RTG). We use a fun-
tion GetOffD to sample opponent in-context data D. GetOffD begins by sampling C trajectories
from T −1,k, following which it samples H consecutive fragments {(a−1,k

h′−1, r
−1,k
h′−1, o

−1,k
h′ )}h+H−1

h′=h
from each trajectory and ultimately stitches them together. Such sampling method of opponent in-
context data stems from the intuitions that given an opponent policy, its play style might be more
pronounced over continuous timesteps (so we sample consecutive fragments), and it can showcase
different playing behaviors across various episodes (so we sample from multiple trajectories).

Fig. 2 shows the flow of offline stage 2, and we use the same causal Transformer as in Chen et al.
(2021) for the implementation of ICD. Intrinsically, we apply cross-attention to discover the associa-
tion between the opponent’s policy and the corresponding response policy. Thus, we have established
an implicit mechanism for discerning opponent policies and generating respective responses.

3.3 DEPLOYMENT STAGE: IN-CONTEXT OPPONENT ADAPTING

We expect to generalize the knowledge acquired fromDoff to respond to unknown opponent policies
during deployment. Therefore, we introduce an OCWW to collect opponent trajectories to leverage
Mθ’s in-context learning ability to continually adapt to the current opponent policy.

W retains the nearest C trajectories of the opponent {τ−1
l−C+1, . . . , τ

−1
l−1, τ

−1
l }, where l is the index of

the last episode. The OCW and the flow of deployment stage are shown in Fig. 2. While interacting
with the new environment, actions of the controlled agent are sampled using following formula:

a1t ∼Mθd

(
· | y1t ;Mθe (GetOnD (W))

)
. (6)

The function GetOnD samples H fragments from each trajectory of W and then stitches them
together. Thus, by freezing θ, we can adapt to diverse opponent policies by accumulating their
trajectory data.1 The key impetus behind our approach is: If the current opponent policy is similar
or identical to that of a prior one from Πoff, we aim to re-engage the suitable responses quickly.
Conversely, if unfamiliar, we strive to exploit it by extrapolating from the existing knowledge.

1See the pseudocode of TAO in Appendix C.
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3.4 THEORETICAL ANALYSIS

We conduct theoretical analysis from the following two aspects. 1) Theorem 3.1: We prove that
under some reasonable assumptions, TAO is equivalent to Posterior Sampling in Opponent Modeling
(PSOM), an algorithm built upon Posterior Sampling (PS), where PS guarantees convergence and
is proven to be a sample-efficient RL algorithm (Osband et al., 2013). The detailed introduction of
PSOM is in Appendix D.1; 2) Theorem 3.2: We prove the convergence of the PSOM algorithm for
opponent policy recognition and demonstrate that PSOM converges to the optimal solution if PS
converges to the optimal solution. Based on Theorem 3.1, TAO has the same guarantees as PSOM.

Theorem 3.1 (Equivalence of TAO and PSOM). Assume that the learned model Mθ is consistent
and the sampling of o−1 from T −1

pre is independent of the opponent policies, then given π̄−1 and its
W , we have P (ξ1H |W, π̄−1;PSOM) = P (ξ1H |W, π̄−1;Mθ) for all possible ξ1H .

Given any π−1 ∈ Πtrain, T −1
pre (·;π−1) denotes the probability distribution on the trajectories set

T −1 of π−1. ξH denotes history consisting of (o, a∗) with length H , where a∗ is the near-optimal
action. π̄−1 denotes the true opponent policy interacted with during deployment andW consists of
π̄−1’s in-context data. P (ξ1H |W, π̄−1;PSOM) and P (ξ1H |W, π̄−1;Mθ) denotes the same form of
probability of generating ξ1H conditioned on givenW and π̄−1 under PSOM and TAO, respectively.
We provide a detailed explanation and a complete proof of Theorem 3.1 in Appendix D.2.

Theorem 3.2. When the true opponent policy π̄−1 originates from Πoff, the PSOM algorithm using
(o−1, a−1) tuples as in-context data guarantees to converge, and it converges to the optimal solution
if the original PS using (o1, a1, o′1, r1) tuples as in-context data converges to the optimal solution.

Founded on Theorem 3.1, TAO shares the same properties. See the full proof of Theorem 3.2 in Ap-
pendix D.3. Note that the proof is built upon using (o−1, a−1) tuples as in-context data, while TAO
uses (o−1, a−1, r−1) in implementation, providing more information and assuring the guarantees.

Intuitively, when the current true opponent policy π̄−1 belongs to Πoff, if PS correctly recognizes
the π̄−1, then PSOM is guaranteed to recognize it correctly. Even if PS fails to recognize the π̄−1

correctly, PSOM still has a possibility of making a correct recognition. Based on Theorem 3.1, TAO
shares the same properties as the PSOM algorithm mentioned above.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Environments. We consider two emblematic competitive environmental benchmarks: 1) Markov
Soccer (MS) (Lanctot et al., 2019): A sparse-reward discrete soccer environment that exemplifies
a two-player zero-sum game; 2) Particleworld Adversary (PA) (Lowe et al., 2017): A
dense-reward continuous multi-particle environment that exemplifies a three-player non-zero-sum
game. See Appendix E for the environmental specifics.

Baselines. Given that most opponent modeling approaches employ online learning settings, we
draw comparisons with Embedding-based Opponent Modeling approaches - these are comparatively
straightforward to adapt to the OOM setting. To ensure an equitable comparison, we mandate all ap-
proaches to use the same neural architecture as ours (see Appendix F). The baselines include: 1)
DRON-concat (He et al., 2016a): Encode the opponent’s hand-crafted features with an auxiliary
network; 2) DRON-MoE (He et al., 2016a): Encode the opponent’s hand-crafted features using a
Mixture-of-Expert (MoE) structure; 3) LIAM (Papoudakis et al., 2021): Encode opponent informa-
tion with AutoEncoders (AE); 4) MeLIBA (Zintgraf et al., 2021): Encode opponent information
with variational AE; 5) Prompt-DT (Xu et al., 2022): A offline meta-RL approach based on DT and
prompt learning with the potential to tackle OOM; 6) TAO without PEL (abbreviated as TAO w/o
PEL): A variant of TAO without pre-training OPE via Lemb. See Appendix G for details of baselines.

Opponent policy and offline dataset. We provide the details of the opponent policies in Ap-
pendix H and the offline datasets construction procedure in Appendix I.

Test settings. We focus on testing against a non-stationary unknown opponent. Non-stationary refers
to the opponent switching its policy every E episodes, which is concealed from all approaches.
Meanwhile, unknown signifies that the type (i.e., index in Πtest) of the opponent’s policy remains
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Figure 3: (a) Average performance under different test settings. The evaluation metrics for MS and
PA are return. (b) Overall performance under the mix setting, where each point indicates the average
result of E episodes against an unknown opponent policy that the opponent switches to.
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Figure 4: Detailed performance under three settings. We use o1, . . . , o5 to denote all opponent policy
types in seen and o6, . . . , o8 to denote all those in unseen. The y-axis tick interval of PA is 50.

perpetually concealed. We adopt three kinds of test settings for Πtest, where seen is equivalent to the
offline opponent policy set Πoff, unseen contains strictly previously unseen opponent policies, and
mix is a mixture of the former two. For all testing experiments, we adopt the same specifications
as follows: 1) E is set to 50; 2) We evaluate all approaches against the non-stationary unknown
opponent over 2500 episodes; 3) We adopt the checkpoints at 2000 training steps of offline training
to perform testing for all approaches; 4) We report the average and standard error of the mean results
over 5 random seeds. See hyperparameter settings in Appendix J.

4.2 EMPIRICAL ANALYSIS

To comprehensively analyze TAO’s effect and underlying mechanisms, we ask the following ques-
tions and design corresponding experiments to answer them:

Question 1. Can TAO achieve competitive results against other approaches for the OOM problem?

In Fig. 3(a), we show the average total performance under three different online test settings. We
also provide Fig. 3(b) to show the smoothed per-opponent policy performance curve under the mix
setting. Across the three settings in MS and PA, TAO demonstrates competitive results compared to
other baselines, particularly in the unseen setting. This implies that TAO can respond reasonably
to unknown opponent policies. It’s worth noting that even without PEL, TAO still achieves results
generally not worse than other baselines, emphasizing the critical role of TAO’s design choice of
in-context learning-based training.

Under the three settings, LIAM and MeLIBA generally show better results than DRON-MoE and
DRON-concat. This could be due to the fact that reconstructing the opponent’s information is more
effective in uncovering the underlying relationship between the opponent’s and controlled agent’s
policies than direct encoding. DRON-MoE surpasses DRON-concat in general, probably because
the MoE network implicitly selects more appropriate responses than concatenating the hidden states.
Under the seen setting, Prompt-DT’s performance closely approaches that of TAO w/o PEL, suggest-
ing that return-conditioned expert demonstrations may also indicate the current opponent’s policy
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Figure 5: (a) Visualization for the dimensionality-reduced embeddings of different opponent poli-
cies with t-SNE. (b) The attention heatmap of TAO against different opponent policies. For each
opponent policy type, we visualize the attention weights over the final 20 timesteps in an episode.
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Figure 6: (a) and (b) are the ablation experiments of PEL under the same plotting settings as in Fig. 3.

to a certain extent. Whereas under the unseen and mix settings, Prompt-DT performs poorly, high-
lighting the difficulty of achieving effective generalization to unseen opponent policies when relying
solely on the controlled agent’s information without incorporating the opponent’s. This suggests that
the original offline meta-RL approaches might not be enough for tackling the OOM problem.

Fig. 4 illustrates the smoothed per-episode performance curve. Given that the Πtest settings we em-
ploy encompass opponent policies with varying strengths, the game results exhibit substantial dispar-
ities accordingly. TAO delivers stable and favorable performance in MS and PA. We notice that TAO
shows some adaptability, trying to stabilize its exploitation of the same opponent’s policy through-
out games and adjusting when the opponent’s policy switches. In the unseen and mix settings, this
adaptability of TAO becomes more pronounced in general. In contrast, other approaches always fail
to respond to unseen opponent policies reasonably, and, in certain instances, they are susceptible to
greater exploitation by the opponent.

Question 2. Does TAO learn a good policy embedding (representation) of opponent policies?

We use the OPE trained by offline stage 2 to embed all opponent trajectories inDoff and visualize the
dimensionality-reduced embeddings (denoted as z−1

reduced) in Fig. 5(a). The colors indicate the respec-
tive opponent policy type to which z−1

reduced belongs. It can be observed that z−1
reduced corresponding

to each opponent policy is roughly clustered into the same cluster. Intuitively, TAO learns a policy
embedding that distinguishes different opponent policies well, showing, to a certain extent, that our
loss design for PEL has achieved the effect we expected. This can help TAO’s downstream learning,
which is verified by the overall better results of TAO compared to TAO w/o PEL. The clustering ef-
fect in PA is more pronounced than in MS. This could be attributed to the greater divergence among
opponent policies in PA, making them easier to differentiate.

In Fig. 5(b), we show the attention heatmap of TAO. This heatmap visualizes TAO’s cross-attention
weight across different opponent policies. The x-axis represents different opponent policy types. The
y-axis represents the position in the opponent context sequence obtained by GetOnD(W), and each
position has a weight indicated by the depth of color. In MS and PA, TAO exhibits a distinctive atten-
tion pattern for different opponent policies, with a propensity to concentrate on specific timesteps.
Meanwhile, TAO maintains a relatively consistent attention distribution for a given opponent policy
across various timesteps within the same episode. This suggests that TAO has learned a representa-
tion that is helpful with discerning the different opponent policies. Moreover, it has discovered some
unique characteristics of each opponent policy’s action sequence.

Question 3. What is the contribution of each component in PEL to tackling the OOM problem?
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Table 1: Average performance on different opponent policy configurations.
Opponent Policy Configuration 1 Opponent Policy Configuration 2

seen unseen mix seen unseen mix

MS
(Avg. Return ↑)

TAO (ours) 0.51 ± 0.01 0.55 ± 0.01 0.43 ± 0.01 0.43 ± 0.01 0.65 ± 0.02 0.40 ± 0.01
TAO w/o PEL (ours) 0.46 ± 0.01 0.52 ± 0.01 0.36 ± 0.01 0.41 ± 0.00 0.42 ± 0.02 0.35 ± 0.01

DRON-concat 0.15 ± 0.02 -0.02 ± 0.05 -0.05 ± 0.03 -0.05 ± 0.01 -0.21 ± 0.01 -0.17 ± 0.01
DRON-MoE 0.15 ± 0.01 0.38 ± 0.02 0.15 ± 0.02 0.09 ± 0.01 0.31 ± 0.04 0.11 ± 0.01

LIAM 0.43 ± 0.01 0.47 ± 0.01 0.32 ± 0.01 0.23 ± 0.01 0.47 ± 0.01 0.24 ± 0.01
MeLIBA 0.38 ± 0.01 0.41 ± 0.01 0.30 ± 0.01 0.29 ± 0.01 0.42 ± 0.01 0.25 ± 0.01

Prompt-DT 0.48 ± 0.01 0.36 ± 0.01 0.33 ± 0.01 0.39 ± 0.02 0.20 ± 0.01 0.21 ± 0.02

PA
(Avg. Return ↑)

TAO (ours) 105.6 ± 3.0 109.5 ± 2.4 101.6 ± 3.4 33.5 ± 0.5 39.2 ± 0.9 35.3 ± 0.8
TAO w/o PEL (ours) 69.3 ± 2.7 81.5 ± 7.9 67.4 ± 4.4 25.9 ± 0.7 31.2 ± 1.1 29.4 ± 0.8

DRON-concat 21.4 ± 3.3 -40.0 ± 10.4 -12.7 ± 4.9 28.0 ± 0.8 21.5 ± 0.8 26.0 ± 0.4
DRON-MoE 94.2 ± 1.7 20.5 ± 0.6 60.9 ± 1.0 33.1 ± 0.6 18.5 ± 0.4 27.4 ± 0.5

LIAM 83.6 ± 5.9 60.5 ± 3.5 70.5 ± 4.3 33.5 ± 0.6 17.1 ± 0.4 27.6 ± 0.6
MeLIBA 72.4 ± 5.6 48.5 ± 3.5 58.2 ± 4.5 30.8 ± 0.7 19.3 ± 0.4 27.1 ± 0.6

Prompt-DT 66.9 ± 8.2 -10.1 ± 4.0 23.8 ± 9.9 22.5 ± 0.8 25.0 ± 0.3 25.1 ± 0.2

In Fig. 6, we show the results for ablations of PEL. TAO without Lgen sets α to 0, while TAO without
Ldis sets λ to 0. TAO w/o PEL performs the worst under all three settings, while in Question 1, we
found that TAO w/o PEL showed good results and verified the effectiveness of in-context learning-
based supervised pre-training. The improvement in results suggests that PEL further benefits the
TAO’s subsequent in-context learning-based training process as we intended. TAO without Lgen is
almost uniformly superior to TAO without Ldis, while consistently worse compared to TAO, im-
plying that discriminative learning makes a more critical contribution to the improvement of TAO’s
ability. One possible explanation is that discerning different opponent policies holds greater signifi-
cance for the controlled agent’s decision-making than simulating the opponent’s policy.

Question 4. Does TAO exhibit robustness to different opponent policy configurations?

Since Πoff is a subset of the Πtest under the mix setting, we can choose different opponent poli-
cies to put into Πoff and set up the three test settings accordingly to evaluate the robustness of all
approaches to different opponent policy configurations. Specifically, we establish two configura-
tions: For the first one, seen contains o0, o2, o3, o4, o6, unseen contains o1, o5, o7; for the second
one, seen contains o0, o2, o3, o5, o7, unseen contains o1, o4, o6. In different configurations, dispar-
ities are evident in the numerical outcomes across the board because of the varying strength of the
opponent’s policy in Πoff, greatly impacting the subsequent testing stage. Therefore, we focus on the
relative performance between different approaches.

Table 1 shows the primary outcomes, where the results in bold denote the best among all approaches.
TAO maintains its competitive performance in both environments and across different opponent pol-
icy configurations. In contrast, other approaches even fail under the new configuration. For example,
Prompt-DT performs poorly in PA under configuration 1, probably because the policies of seen and
unseen opponent are pretty different. Thus, Prompt-DT struggles to generalize knowledge from seen
opponent policies to unseen opponent policies using only controlled agent trajectory prompts. This
indicates TAO is a relatively more robust approach compared to other baselines under OOM setting.

Additional empirical analysis. We provide experimental analysis on performance in the offline
training, adaptation speed in the testing, and ablation studies of the OCW’s size C in Appendix K.

5 CONCLUDING REMARKS

In this paper, we formalize a problem, OOM, aiming to mitigate the impracticality and inefficiency
commonly associated with existing opponent modeling research. To tackle the OOM problem, we
propose a general Transformer-based approach TAO, whose procedures consist of 3 stages: 1) Of-
fline stage 1: Employ PEL to generatively and discriminatively embed opponent trajectories into la-
tent spaces; 2) Offline stage 2: Adopt supervised pre-training to generate approximate best responses
to different opponent policies; 3) Deployment stage: Accumulate information in new environments
and adapt to unknown opponent policies with in-context learning. We provide theoretical analyses
on TAO’s equivalence to PSOM and guarantee TAO’s convergence in opponent policy recognition.
Extensive empirical analysis validates TAO’s efficacy in addressing the OOM problems. Our re-
sults indicate that TAO responds reasonably to opponent policies even unseen before, showcasing
its in-context learning capabilities. We discuss limitations and future work in Appendix L.
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A RELATED WORK

Opponent modeling. Recent studies on opponent modeling based on machine learning techniques
can be broadly divided into the following categories:

1) Embedding-based Opponent Modeling: Embed the opponent’s policy into a latent space through
representation learning methods to assist the decision-making of the controlled agent. Grover et al.
(2018) employed imitation learning (Hussein et al., 2017) and contrastive learning (Jaiswal et al.,
2020) to generate policy embeddings of opponent trajectories. They then combined these embed-
dings with RL for policy optimization. Similar efforts, such as He et al. (2016a) and Hong et al.
(2018), utilized auxiliary networks for encoding hand-crafted opponent features, predicting oppo-
nent actions, and tuning the policy network for better performance. Papoudakis et al. (2021) pro-
posed using an autoencoder to utilize the observations and actions of the controlled agent to recon-
struct the observations and actions of the opponent to learn embeddings to assist decision-making. In
contrast, Papoudakis & Albrecht (2020) and Zintgraf et al. (2021) adopted Variational AutoEncoders
(VAE) (Kingma & Welling, 2013) to learn the high-dimensional distribution of opponent policies.

2) Opponent Modeling with Online Reasoning: Detect or infer the opponent’s policy online through
methods such as Bayesian and then yield responses accordingly. Bard et al. (2013) first trained the
mixture-of-expert counter-strategies against a known set of fixed opponent policies. Subsequently,
they employed a bandit algorithm during testing to select the most appropriate counter-strategy.
Based on BPR+ (Rosman et al., 2016; Hernandez-Leal et al., 2016), Zheng et al. (2018) proposed
a rectified belief model to more accurately detect opponent policies. Additionally, they introduced a
distillation policy network to achieve improved outcomes. DiGiovanni & Tewari (2021) employed
Thompson sampling (Thompson, 1933) and change detection to tackle opponent switching between
stationary policies. Fu et al. (2022) proposed using a bandit algorithm to choose greedy or conserva-
tive policies to play against non-stationary opponent. The greedy policy was trained by VAE along
with conditional RL and updated online through variational inference. The conservative policy was a
fixed, robust policy. Lv et al. (2023) proposed a similar approach to exploit non-stationary opponent.

3) Opponent Modeling with Evolving Opponents: Estimate the opponent’s policy and corresponding
impacts considering the opponent’s learning (i.e., gradient update). Foerster et al. (2018a) modeled
the update of the opponent’s policy and estimated the learning gradient of the opponent’s policy. Fo-
erster et al. (2018b) introduced an Differentiable Monte-Carlo Estimator operation to consider how
to shape the learning dynamics of other agents based on Foerster et al. (2018a)’s approach. Letcher
et al. (2019) further combined stability guarantees from LookAhead with opponent-shaping abilities
from Foerster et al. (2018a) to improve theoretically and experimentally. Al-Shedivat et al. (2018)
and Kim et al. (2021) utilized meta-learning to adapt to evolving opponent. Kim et al. (2021) also
introduced a term that closely relates to shaping the learning dynamics of other agents’ policies,
thereby considering the impacts of agent’s current policy on future opponent policies.

4) Opponent Adapting with Meta-learning: Based on meta-learning methods, train against a set
of known opponent policies to quickly adapt to unknown opponent policies at test time. While
most meta-RL methods assume the tasks in training and testing share a similar distribution, this
category explores the potential application of meta-RL to competing with unknown non-stationary
opponent. Al-Shedivat et al. (2018) presented a gradient-based meta-learning algorithm for contin-
uous adaptation in non-stationary and competitive environments, demonstrating its effectiveness in
improving adaptation efficiency. Kim et al. (2021) proposed a novel meta multi-agent policy gradi-
ent algorithm that effectively addresses the non-stationary policy dynamics inherent in multi-agent
RL. Zintgraf et al. (2021) introduced a meta-learning approach for deep interactive Bayesian RL
in multi-agent settings, which leverages approximate belief inference and policy adaptation for im-
proved opponent adapting. Wu et al. (2022) proposed a meta-learning framework, named Learning
to Exploit (L2E), for implicit opponent modeling, enabling agents to quickly adapt and exploit op-
ponent with diverse styles through a few interactions during training.

5) Theory of Mind (ToM)-based Opponent Modeling: Reason about opponent’s mental states and in-
tentions, to predict and adapt to opponent behavior by modeling their beliefs, goals, and actions. Von
Der Osten et al. (2017) proposed the multi-agent ToM model to predict opponents’ actions and in-
fer strategy sophistication in stochastic games. Upon Zheng et al. (2018)’s Bayesian online oppo-
nent modeling approach, Yang et al. (2019) introduced the ToM method, which uses higher-level
decision-making to play against the opponent who also performs opponent modeling.
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Rabinowitz et al. (2018) and Raileanu et al. (2018) also explored methodologies for modeling an
opponent’s mental state. Rabinowitz et al. (2018) employed three networks to reason about agent
actions and goals, simulating a human-like ToM. Raileanu et al. (2018) proposed using its own
policy along with the opponent’s observations and actions to learn the opponent’s goals.

6) Recursive Reasoning: Predict opponent’s actions by simulating multi-level nested beliefs, en-
abling anticipation of opponent behavior based on their expectations of the controlled agent’s rea-
soning process. Wen et al. (2019) and Wen et al. (2021) proposed performing recursive reasoning
by modeling hypothetical nested beliefs via the agent’s joint Q-function. They showed improved
adaptation in stochastic games. Dai et al. (2020) employed recursive reasoning by assuming agents
select actions based on GP-UCB acquisition functions (Srinivas et al., 2010). It achieves faster regret
convergence in repeated games. Yuan et al. (2020) proposed an algorithm using ToM-based recur-
sive reasoning and adaptive RL to enable agents to develop a pragmatic communication protocol,
allowing them to infer hidden meanings from context and improve cooperative multi-agent commu-
nication. Yu et al. (2022) introduced a model-based opponent modeling approach that uses recursive
imagination in an environment model and Bayesian mixing to adapt to diverse opponents.

Most existing work assumes that the environment and opponent policies are consistently available,
whereas our work focuses on opponent modeling under challenging scenarios where they are not.

Offline meta-RL. Offline meta-RL aims at using offline datasets to develop the agent’s understand-
ing of tasks within the training distribution and extrapolate this knowledge to novel tasks. (Li et al.,
2020; Mitchell et al., 2021; Dorfman et al., 2021; Pong et al., 2022). The key principles are meta-
learning, where the model learns to quickly adapt based on limited samples of a new task (Finn et al.,
2017), and task information inference (Rakelly et al., 2019). Algorithmically, in-context learning
stands within the domain of meta-learning and can be considered as taking a more agnostic ap-
proach by learning the learning algorithm itself (Duan et al., 2016; Wang et al., 2016; Mishra et al.,
2018; Laskin et al., 2023). Lee et al. (2023) introduced supervised pre-training to empirically and
theoretically showcase robust in-context learning abilities in decision-making. Seen through another
lens, OOM can be approximately regarded as an offline meta-RL problem. When we consider the
opponent (teammate) policy in the field of opponent modeling as a task, we can roughly regard
OOM as an offline meta-RL problem. In precise terms, OOM poses more complexity than offline
meta-RL, and we will discuss the relationship between the two in Section 2.2.

Transformers for decision-making. There has been growing interest in applying the Transformers
to decision-making by formulating the problem as sequence modeling (Yang et al., 2023a; Li et al.,
2023). Chen et al. (2021) proposed Decision Transformer (DT), which models action sequences
conditioned on returns with a causal Transformer trained on offline data. Follow-up works studied
enhancements like improved conditioning (Furuta et al., 2022; Paster et al., 2022) and architectural
innovations (Villaflor et al., 2022). Another exciting direction leverages the generality and scalabil-
ity of Transformers for multi-task learning (Lee et al., 2022; Reed et al., 2022). Transformers for
decision-making also exhibited meta-learning capabilities (Melo, 2022). Recently, Lee et al. (2023)
proposed a Transformer-based in-context learning approach that empirically and theoretically im-
proves over behaviors seen in the dataset in terms of regret where DT cannot (Brandfonbrener et al.,
2022; Yang et al., 2023b). Building upon these insights, we design a Transformer-based approach to
fully leverage its in-context learning abilities to tackle the OOM problem.

Offline multi-agent RL (MARL). Offline MARL has emerged as an important subfield of MARL
in recent years (Cui & Du, 2022; Tian et al., 2023; Wu et al., 2023; Jiang & Lu, 2023; Formanek
et al., 2023). This line of research aims to learn effective policies purely from pre-collected datasets
without any further multi-agent environmental interactions. The offline setting avoids costly or dan-
gerous online exploration, making MARL more practical for real-world applications.

A key challenge in offline MARL is handling the distribution shift between the offline dataset and
the true environment dynamics at test time (Jiang & Lu, 2021). When opponents employ policies not
seen in the offline data, the performance of policies trained purely offline can degrade significantly.
Recent works have proposed various techniques to address this issue. For example, Pan et al. (2022)
introduced Offline MARL with Actor Rectification (OMAR) that uses zeroth-order optimization to
update the actor based on the offline critic conservatively. Tseng et al. (2022) proposed distilling
knowledge from a teacher Transformer trained with global information into decentralized student
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policies to enable effective decentralized execution at test time. The Transformer architecture has
also been increasingly adopted for offline MARL. For instance, the Multi-Agent Decision Trans-
former (MADT) (Meng et al., 2023) treats MARL as a sequence modeling problem and predicts
actions in an autoregressive manner.

Offline MARL and OOM are aligned in their pursuit of extracting effective policies from offline
datasets in multi-agent settings and utilizing them in testing environments to boost efficiency and
bridge the gap with real-world scenarios. Nevertheless, most offline MARL approaches focus on
cooperative settings, while in this work, we concentrate on OOM in competitive environments. Fur-
thermore, whether explicitly or implicitly, OOM must introduce modeling of other agents in the
environment for adaptability, while offline MARL does not emphasize such a requirement.

B DETAILED ASSUMPTIONS OF OOM

Environment types to which OOM is applicable. While our paper focuses on OOM within com-
petitive settings, it’s worth mentioning that the extension of OOM to cooperative and mixed envi-
ronments where competition and cooperation are intertwined is straightforward. In cooperative and
mixed environments, the corresponding OOM problem can be formalized by instantiating the op-
ponent as other agents that are desired to be modeled. Their optimization objectives have the same
form as Eq. (1) to learn an modeled agent-aware adaptive controlled agent policy.

Number of controlled agent and opponent. According to our formalization of the OOM problem,
there is no limit on the number of controlled agent and opponent in the environment. Yet, some
assumptions of the OOM problem need to be emphasized again: 1) The trajectories of all controlled
agents in the offline dataset are generated by an approximately best response policy against a fixed
opponent policy; 2) All opponent agents adopt the same fixed opponent policy.

Availability of the environment. During offline training, we hypothesize no interaction with the
environment and the opponent. In another word, opponent policies in the offline opponent policy
set Πoff cannot be called explicitly for learning. It is only possible to sample the trajectories T −1,k

produced by each opponent policy from Doff. Yet, for comparing the learning efficacy across all
approaches, we permit a small number of interactions per set interval of checkpoints for evalua-
tion. During testing (i.e., deployment), interaction with the new environment is allowed, where the
opponent adopts policies from the test opponent policy set Πtest.

Specification of opponent policy. All opponent policies in Π are prohibited from learning, and
there is no policy switching at the granularity of a timestep. In our experiments, we employ three
distinct test settings for the opponent policy set Πtest: seen, equivalent to Πoff; unseen, encompass-
ing previously unseen opponent policies; and mix, which combines elements of both. Our study
includes diverse opponent policies that are independent of one another and possess varying degrees
of strength. See the details of the opponent policies in Appendix H.

Accessibility of opponent information. During offline training stages, only limited opponent infor-
mation can be gleaned from the provided Doff, and no extra information can be sourced. However,
during testing, collection of the opponent’s trajectory τ−1 after each episode is permissible, enabling
all approaches to adapt to unknown opponent policies based on their own mechanism.
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C PSEUDOCODE OF TAO

Algorithm 1 Transformer Against Opponent (TAO)
1: /* Offline Stage 1: Policy Embedding Learning */
2: Initialize model Mθe with parameters θe, and set the batch size B.
3: while not converged do
4: Initialize empty batches Bgen = {},Bdis = {}.
5: for k in [K] do
6: Sample B trajectory tuples (τ−1,k

i , τ−1,k
j ) ∼ T −1,k, and add these tuples into Bgen.

7: end for
8: Sample B trajectories τ−1 ∼ T −1 to form Bdis.
9: Calculate Lgen in Eq. (2) using Bgen, and calculate Ldis in Eq. (3) using Bdis.

10: Calculate Lemb in Eq. (4), and backpropagate to update θe.
11: end while
12: /* Offline Stage 2: Opponent-aware Response Policy Training */
13: Initialize model Mθd with parameters θd, and set the OCW size C.
14: while not converged do
15: Initialize empty batches Bres = {}.
16: for k in [K] do
17: Sample B trajectory tuples (τ1,k, {τ−1,k

c }c=1,...,C), where τ1,k ∼ T 1,k, {τ−1,k
c }c=1,...,C

∼ T −1,k, and add these tuples into Bres.
18: end for
19: Calculate Lres in Eq. (5) using Bres, and backpropagate to update θd.
20: end while
21: /* Deployment Stage: In-context Opponent Adapting */
22: Initialize empty OCWW = {}, and set the opponent policy switching interval E.
23: for op in max opponent number do
24: Sample unknown opponent policy π−1 ∼ Πtest.
25: for ep in [E] do
26: Deploy Mθ by sampling a1t via Eq. (6) at each timestep t in this ep, where θ = {θe, θd}.
27: Add τ−1 = (o−1

0 , a−1
0 , r−1

0 , . . . ) intoW , and clipW to contain the nearest C trajectories.
28: end for
29: end for
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D DETAILED THEORETICAL ANALYSIS

D.1 ALGORITHM OF POSTERIOR SAMPLING IN OPPONENT MODELING

We instantiate a Bayesian posterior sampling algorithm in the context of opponent modeling, re-
ferred to as Posterior Sampling in Opponent Modeling (PSOM). In the PSOM algorithm, we use
opponent trajectory consisting of consecutive (o−1, a−1) tuples as in-context data and add them to
the OCWW . Following up, we describe the PSOM algorithm in a most general way (Osband et al.,
2013; Lee et al., 2023).

Given the initial distribution of opponent policies Π0 ← Πpre, where Πpre is the probability distri-
bution on Πoff, and an empty OCWW = {}, for c ∈ [C]:

1. Sample the opponent policy π−1
c by Πc and compute the approximate best response policy

π1,∗
c for the controlled agent;

2. Interact with the true opponent policy π̄−1 using π1,∗
c and add the opponent trajectory to

theW .
3. Update the posterior distribution Πc(π

−1) = P (π−1|W).

D.2 PROOF OF THEOREM 3.1

Theorem 4.1 (Equivalence of TAO and PSOM). Assume that the learned model Mθ is consistent
and the sampling of o−1 from T −1

pre is independent of the opponent policies, then given π̄−1 and its
W , we have P (ξ1H |W, π̄−1;PSOM) = P (ξ1H |W, π̄−1;Mθ) for all possible ξ1H .

Proof. Differing from the main text, in this section, we use π−1 to denote opponent policies poste-
riorly sampled from Πpre, where Πpre is the probability distribution on Πoff, and use π̄−1 to denote
the true opponent policy interacted with during the deployment stage of TAO. For clarity and ease of
understanding, all trajectory sequences are indexed starting from 1 in this section (originally start-
ing from 0 in the main text). Define ξ1H = (o11, a

1,∗
1 , . . . , o1H , a1,∗H ) as controlled agent’s history,

where H denotes the maximum length of this history and a1,∗ is sampled from the approximate
best response policy π1,∗ against the posteriorly sampled π−1. T −1

pre (·;π−1) denotes the probability
distribution on the trajectories set T −1 of π−1 during TAO’s offline stage 2.

Let π−1 ∼ Πpre and OCW W contain sampled trajectory fragments of π−1 and let o1query ∈
O1, a1,∗ ∈ A1, ξ1H−1 ∈ (O1 × A1)H−1 and h ∈ [0, H − 1] be arbitrary, the full joint probabil-
ity distribution during TAO’s offline stage 2 can be denoted as:

Ppre(π
−1,W, ξ1H−1, h, o

1
query, a

1,∗) = Πpre(π
−1)T −1

pre (W;π−1)OH(o11:H)

(
∏

i∈[H]

π1,∗(a1i |o1i ;π−1))× Unif[0, H − 1]Oquery(o
1
query)π

1,∗(a1,∗|o1query;π
−1). (7)

Herein, OH ∈ ∆((O1)H), which is independent of the opponent policies. Oquery is set to the uniform
overO1. Moreover, we do small modifications to the original TAO by sampling h ∼ Unif[0, H − 1]
and truncating ξ1h from ξ1H−1.

We define the random sequences and subsequences of 1) the controlled agent’s observed trajectory
and 2) the controlled agent’s true trajectory under PSOM algorithm, respectively, as follows:

1) Ξ1
PSOM(h;W) = (O1,PSOM

1 , A1,PSOM
1 , . . . , O1,PSOM

h , A1,PSOM
h );

2) ΞPSOM(h;W) = (SPSOM
1 , A1,PSOM

1 , . . . , SPSOM
h , A1,PSOM

h ).

These two types of trajectories are generated in the following manner:

π−1
PSOM ∼ P (π−1|W), O1,PSOM

1 ∼ P (O1,PSOM
1 |SPSOM

1 ), SPSOM
1 ∼ ρ,

A1,PSOM
i ∼ π1,∗(·|O1,PSOM

i ;π−1
PSOM), A−1,PSOM

i ∼ π̄−1(·|O−1,PSOM
i ), i ≥ 1,

O1,PSOM
i+1 ∼ P (·|SPSOM

i+1 ), SPSOM
i+1 ∼ T (·|SPSOM

i , A1,PSOM
i , A−1,PSOM

i ), i ≥ 2.
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Within, ρ denotes the initial distribution on S. Analogously, we define the random sequences and
subsequences of 1) the controlled agent’s observed trajectory and 2) the controlled agent’s true
trajectory under TAO algorithm, respectively, as follows:

1) Ξ1
pre(h;W) = (O1,pre

1 , A1,pre
1 , . . . , O1,pre

h , A1,pre
h );

2) Ξpre(h;W) = (Spre
1 , A1,pre

1 , . . . , Spre
h , A1,pre

h ).

These two types of trajectories are generated in the following manner:

O1,pre
1 ∼ P (O1,pre

1 |Spre
1 ), Spre

1 ∼ ρ,

A1,pre
i ∼ Ppre(·|O1,pre

i ,W,Ξ1
pre(i− 1;W)), A−1,pre

i ∼ π̄−1(·|O−1,pre
i ), i ≥ 1,

O1,pre
i+1 ∼ P (·|Spre

i+1), S
pre
i+1 ∼ T (·|Spre

i , A1,pre
i , A−1,pre

i ), i ≥ 2.

To simplify matters, we will refrain from explicitly referencing W for Ξ1 and Ξ in our notations,
except when required to avoid confusion. Next, we introduce a common assumption to ensure the
neural network fits the pre-training data distribution.

Assumption D.1 (Learned model is consistent). Let Mθ denote the pre-trained model derived
by TAO. For any given (O1,pre

i ,W,Ξ1
pre(h − 1;W)), Ppre(A

1,pre
i |O1,pre

i ,W,Ξ1
pre(h − 1;W)) =

Mθ(A
1,pre
i |O1,pre

i ,W,Ξ1
pre(h− 1;W)) for all possible A1,pre

i .

Upon Assumption D.1, we will limit our attention to Ppre for the rest of the proof.

To prove that ∀ξ1H , P (ξ1H |W, π̄−1;PSOM) = P (ξ1H |W, π̄−1;Mθ) (i.e., Theorem 3.1), it is equiva-
lent to prove that

P (Ξ1
PSOM(H) = ξ1H) = P (Ξ1

pre(H) = ξ1H). (8)

We will prove that ∀h ∈ [H],

P (ΞPSOM(h) = ξ′1h ) = P (Ξpre(h) = ξ′1h ) (9)

using Mathematical Induction and then introduce two lemmas for the evidence of Eq. (8). Here,
ξ′1h is controlled agent’s true history, and it can be obtained by replacing all the o in ξ1h to s.

First, we propose a lemma to assist in proving Eq. (9) for the base case when h = 1.

Lemma D.2. If the sampling of o−1 from T −1
pre is independent of the opponent policy, then

Ppre(π
−1|W) = P (π−1

PSOM = π−1|W).

Proof. Assuming the sampling of o−1 from T −1
pre is independent of the opponent policy, we have:

P (π−1
PSOM = π−1|W) ∝ Πpre(π

−1)P (W|π−1) (10a)

∝ Πpre(π
−1)

∏
j∈[|W|]

π−1(a−1
j |o

−1
j ) (10b)

∝ Πpre(π
−1)

∏
j∈[|W|]

π−1(a−1
j |o

−1
j )T −1

pre (o−1
j ) (10c)

= Πpre(π
−1)T −1

pre (W;π−1) (10d)

∝ Ppre(π
−1|W). (10e)

∝ denotes that the two sides are equal up to multiplicative factors independent of π−1. Eq. (10a)
is derived through the Bayesian posterior probability formula. Eq. (10b) uses the fact that o−1 in
posterior sampling is independent of the opponent policies. Eq. (10c) holds because of the assump-
tion that the sampling of o−1 from T −1

pre is independent of the opponent policies. Eq. (10d) uses the
definition of T −1

pre . Eq. (10e) is derived through the Bayesian posterior probability formula.
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Now, we prove that Eq. (9) holds when h = 1:

P (ΞPSOM(1) = ξ′11 ) = P (SPSOM
1 = s1, A

1,PSOM
1 = a11) (11a)

= ρ(s1)

∫
o11

P (A1,PSOM
1 = a11|O

1,PSOM
1 = o11)P (o11|s1)do11 (11b)

= ρ(s1)

∫
π−1,o11

P (A1,PSOM
1 = a11, π

−1
PSOM = π−1|O1,PSOM

1 = o11)P (o11|s1)dπ−1do11 (11c)

= ρ(s1)

∫
π−1,o11

π1,∗(a11|o11;π−1)PPSOM(π−1
PSOM = π−1|W, O1,PSOM

1 = o11)P (o11|s1)dπ−1do11

(11d)

= ρ(s1)

∫
π−1,o11

π1,∗(a11|o11;π−1)PPSOM(π−1
PSOM = π−1|W)P (o11|s1)dπ−1do11 (11e)

= ρ(s1)

∫
π−1,o11

π1,∗(a11|o11;π−1)Ppre(π
−1|W)P (o11|s1)dπ−1do11 (11f)

= ρ(s1)

∫
o11

Ppre(a
1
1|o11,W)P (o11|s1)do11 (11g)

= P (Ξpre(1) = ξ′11 ). (11h)

Eqs. (11a) to (11d), (11g) and (11h) are derived using Bayesian Law of Total Probability and condi-
tional probability formula based on Eq. (7). Eq. (11e) holds because the sampling of o11 is indepen-
dent of π−1. Eq. (11f) is derived through Lemma D.2.

Now, we start proving Eq. (9) for the other cases when h ̸= 1. Before starting, we introduce another
lemma to help finish this proving process as well as the proof of Eq. (8).

Lemma D.3. Given any ξ′1i , if P (ΞPSOM(i) = ξ′1i ) = P (Ξpre(i) = ξ′1i ), then P (Ξ1
PSOM(i) = ξ1i ) =

P (Ξ1
pre(i) = ξ1i ).

Proof.

P (Ξ1
PSOM(i) = ξ1i ) =

∫
ξ′1i

P (ΞPSOM(i) = ξ′1i )P (ξ1i |ξ′1i )dξ′1i (12a)

=

∫
ξ′1i

P (Ξpre(i) = ξ′1i )P (ξ1i |ξ′1i )dξ′1i (12b)

= P (Ξ1
pre(i) = ξ1i ). (12c)

Based on Eq. (11), we have P (Ξ1
PSOM(1) = ξ11) = P (Ξ1

pre(1) = ξ11).

Now, we utilize the inductive hypothesis to demonstrate the validity of the entire statement. Suppose
that P (ΞPSOM(h−1) = ξ′1h−1) = P (Ξpre(h−1) = ξ′1h−1), according to Lemma D.3, we can conclude
that P (Ξ1

PSOM(h− 1) = ξ1h−1) = P (Ξ1
pre(h− 1) = ξ1h−1).

Since

P (ΞPSOM(h) = ξ′1h ) =

P (ΞPSOM(h− 1) = ξ′1h−1)P (SPSOM
h = sh, A

1,PSOM
h = a1h|ΞPSOM(h− 1) = ξ′1h−1)

and
P (Ξpre(h) = ξ′1h ) =

P (Ξpre(h− 1) = ξ′1h−1)P (Spre
h = sh, A

1,pre
h = a1h|Ξpre(h− 1) = ξ′1h−1),

to prove that P (ΞPSOM(h) = ξ′1h ) = P (Ξpre(h) = ξ′1h ), it is equivalent to prove:

P (SPSOM
h = sh, A

1,PSOM
h = a1h|ΞPSOM(h− 1) = ξ′1h−1)

= P (Spre
h = sh, A

1,pre
h = a1h|Ξpre(h− 1) = ξ′1h−1).

(13)
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By expanding the formula, we can get:

P (SPSOM
h = sh, A

1,PSOM
h = a1h|ΞPSOM(h− 1) = ξ′1h−1)

= T (sh|sh−1, a
1
h−1; π̄

−1)P (A1,PSOM
h = a1h|SPSOM

h = sh,ΞPSOM(h− 1) = ξ′1h−1) (14a)

=

∫
a−1
h−1,o

−1
h−1

T (sh|sh−1, a
1
h−1, a

−1
h−1)π̄

−1(a−1
h−1|o

−1
h−1)P (o−1

h−1|sh−1)da
−1
h−1do

−1
h−1·∫

π−1,o1h,ξ
1
h−1

P (A1,PSOM
h = a1h, π

−1
PSOM = π−1|O1,PSOM

h = o1h,Ξ
1
PSOM(h− 1) = ξ1h−1)

P (ξ1h−1|ξ′1h−1)P (o1h|sh)dπ−1do1hdξ
1
h−1. (14b)

In Eq. (14b), the first integral term is independent of the algorithm choice, while the terms in the
second integral term satisfies:

P (A1,PSOM
h = a1h, π

−1
PSOM = π−1|O1,PSOM

h = o1h,Ξ
1
PSOM(h− 1) = ξ1h−1)

= π1,∗(a1h|o1h;π−1)P (π−1
PSOM = π−1|O1,PSOM

h = o1h,Ξ
1
PSOM(h− 1) = ξ1h−1).

(15)

Based on Eq. (14) and Eq. (15), to prove that Eq. (13) holds, it is equivalent to demonstrate:

P (π−1
PSOM = π−1|O1,PSOM

h = o1h,Ξ
1
PSOM(h− 1) = ξ1h−1) = Ppre(π

−1|o1h,W, ξ1h−1). (16)

We prove that Eq. (16) holds through the following analysis:

P (π−1
PSOM = π−1|O1,PSOM

h = o1h,Ξ
1
PSOM(h− 1) = ξ1h−1)

=
P (O1,PSOM

h = o1h,Ξ
1
PSOM(h− 1) = ξ1h−1|π

−1
PSOM = π−1)P (π−1

PSOM = π−1|W)

P (O1,PSOM
h = o1h,Ξ

1
PSOM(h− 1) = ξ1h−1)

(17a)

∝ Ppre(π
−1|W)

∏
i∈[h−1]

T (o1i+1|ξ1i , π̄−1)π1,∗(a1i |o1i ;π−1) (17b)

∝ Ppre(π
−1|W)

∏
i∈[h−1]

π1,∗(a1i |o1i ;π−1) (17c)

∝ Ppre(π
−1|W)Oquery(o

1
h)Oh−1(o

1
1:h−1)

∏
i∈[h−1]

π1,∗(a1i |o1i ;π−1) (17d)

∝ Ppre(π
−1|o1h,W, ξ1h−1). (17e)

Eq. (17a) is derived through the Bayesian posterior probability formula. In Eq. (17b), we decompose
the probability of observing that sequence of observations o1 and actions a1 based on P (Ξ1

PSOM(h−
1) = ξ1h−1) = P (Ξ1

pre(h − 1) = ξ1h−1). Eqs. (17c) and (17d) use the fact that the sampling of o1 is
only related to the true opponent policy π̄−1 and is independent of π−1. Eq. (17e) is derived by the
definition of Ppre(π

−1|o1h,W, ξ1h−1).

Therefore, we finish the proof of P (ΞPSOM(h) = ξ′1h ) = P (Ξpre(h) = ξ′1h ), where

P (ΞPSOM(h) = ξ′1h )

= P (Ξpre(h− 1) = ξ′1h−1)T (sh|sh−1, a
1
h−1; π̄

−1)∫
π−1,o1h,ξ

1
h−1

π1,∗(a1h|o1h;π−1)Ppre(π
−1|o1h,W, ξ1h−1)P (ξ1h−1|ξ′1h−1)P (o1h|sh)dπ−1do1hdξ

1
h−1

(18a)

= P (Ξpre(h− 1) = ξ′1h−1)T (sh|sh−1, a
1
h−1; π̄

−1)∫
o1h,ξ

1
h−1

Ppre(a
1
h|o1h,W, ξ1h−1)P (ξ1h−1|ξ′1h−1)P (o1h|sh)do1hdξ1h−1 (18b)

= P (Ξpre(h) = ξ′1h ). (18c)
Thus, based on Mathematical Induction, Eq. (9) holds for any h ∈ [H]. According to Lemma D.3,
we can conclude ∀h ∈ [H], P (Ξ1

PSOM(h) = ξ1h) = P (Ξ1
pre(h) = ξ1h). Hence, Eq. (8) is satisfied.

This concludes the proof.
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D.3 PROOF OF THEOREM 3.2

Theorem 4.2. When the true opponent policy π̄−1 originates from Πoff, the PSOM algorithm using
(o−1, a−1) tuples as in-context data guarantees to converge, and it converges to the optimal solution
if the original PS using (o1, a1, o′1, r1) tuples as in-context data converges to the optimal solution.

Proof. In this section, we denote the OCW consisting of (o−1, a−1) tuples to contain in-context data
asW , and the OCW consisting of (o1, a1, o′1, r1) tuples to contain in-context data asW ′, where o′

is the next observation of o transitioned to. Note that we use (o−1, a−1, r−1) tuples as in-context
data in the original TAO, which provides more information than using (o−1, a−1) tuples. Thus, the
guarantees analyzed here apply to the original TAO.

To begin, we propose a lemma and its corollary to demonstrate the convergence guarantee of the
PSOM algorithm and analyze the properties of the opponent policy it converges to.

Lemma D.4. Let π−1
0 = argminπ−1∈Πtrain f(π−1;W) = argminπ−1∈Πtrain −

∫
o−1,a−1

PW(o−1, a−1) log(P (a−1|o−1, π−1))do−1da−1, then ∀f(π−1;W) ̸= f(π−1
0 ;W),

P (π−1|(o−1,a−1)1:n)

P (π−1
0 |(o−1,a−1)1:n)

P→ 0.

Proof. Here, π−1
0 denotes the equivalent class of opponent policies to which the posterior probability

converges with non-zero probability. PW is the distribution of (o−1, a−1) samples in W . n is the
length of the consecutive (o−1, a−1) sequences. To prove that P (π−1|(o−1,a−1)1:n)

P (π−1
0 |(o−1,a−1)1:n)

P→ 0 under the
given conditions, it is equivalent to prove:

Lπ−1,n = − log
P (π−1|(o−1, a−1)1:n)

P (π−1
0 |(o−1, a−1)1:n)

P→ +∞. (19)

By expanding the formula, we can get:

Lπ−1,n = − log
P (π−1|(o−1, a−1)1:n)

P (π−1
0 |(o−1, a−1)1:n)

= − log
P (π−1)

P (π−1
0 )
−

n∑
i=1

log(
P (a−1|π−1, o−1)

P (a−1|π−1
0 , o−1)

).

According to the definition of π−1
0 and the condition f(π−1;W) ̸= f(π−1

0 ;W), we have

E(o−1,a−1)∼PW [−
n∑

i=1

log(
P (a−1|π−1, o−1)

P (a−1|π−1
0 , o−1)

)] = f(π−1;W)− f(π−1
0 ;W) = C > 0.

Here, C is a positive constant. Therefore, based on Law of Large Numbers, we have limn→∞

P (|Lπ−1,n

n − C| > ϵ) = 0, where ϵ is any positive number. Hence, Eq. (19) is satisfied and the
proof ends.

Corollary D.5 (Corollary of Lemma D.4). When PW(o−1, a−1) = PW(o−1)P (a−1|o−1, π̄−1),
which means π̄−1 is originated from Πoff, then π̄−1 ∈ π−1

0 .

Proof. Since PW(o−1, a−1) = PW(o−1)P (a−1|o−1, π̄−1) holds, we have

π−1
0 = arg min

π−1∈Πtrain
−
∫
o−1,a−1

PW(o−1, a−1) log(P (a−1|o−1, π−1))do−1da−1 (20a)

= arg min
π−1∈Πtrain

−
∫
o−1,a−1

PW(o−1)P (a−1|o−1, π̄−1) log(P (a−1|o−1, π−1))do−1da−1

(20b)

= arg min
π−1∈Πtrain

−
∫
o−1,a−1

PW(o−1)P (a−1|o−1, π̄−1) log(P (a−1|o−1, π−1))do−1da−1

+

∫
o−1,a−1

PW(o−1)P (a−1|o−1, π̄−1) log(P (a−1|o−1, π̄−1))do−1da−1 (20c)
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= arg min
π−1∈Πtrain

−
∫
o−1,a−1

PW(o−1)P (a−1|o−1, π̄−1)
log(P (a−1|o−1, π−1))

log(P (a−1|o−1, π̄−1))
do−1da−1

(20d)

= arg min
π−1∈Πtrain

∫
o−1

PW(o−1)DKL(P (a−1|o−1, π−1)||P (a−1|o−1, π̄−1))do−1 (20e)

= arg min
π−1∈Πtrain

Eo−1∼PW(·)
[
DKL(P (a−1|o−1, π−1)||P (a−1|o−1, π̄−1))

]
(20f)

This corollary holds evidently due to the non-negativity of the KL divergence
DKL(P (a−1|o−1, π−1)||P (a−1|o−1, π̄−1). When W contains the in-context data of the op-
ponent policy π̄−1 from Πoff, DKL(P (a−1|o−1, π−1

0 )||P (a−1|o−1, π̄−1) = 0, and PSOM
converges to the equivalent class of opponent policies that have the same action distribution as π̄−1,
i.e., ∀a−1, P (a−1|o−1, π−1

0 ) = P (a−1|o−1, π̄−1).

By extension, it can be concluded that whenW contains the in-context data of an opponent policy
outside of Πoff, Lemma D.4 ensures the convergence of PSOM algorithm to the opponent policy that
minimizes DKL(P (a−1|o−1, π−1)||P (a−1|o−1, π̄−1) between actions of the converged opponent
policy and the true opponent policy.

Using a similar proof methodology as in Lemma D.4, it can be proved straightfor-
ward that: Let π′−1

0 = argminπ−1∈Πtrain f(π−1;W ′) = argminπ−1∈Πtrain −
∫
o1,a1,o′1,r1

PW′(o1, a1, o′1, r1) log(P (o′1, r1|o1, a1, π−1))do1da1do′1dr1, then ∀f(π−1;W ′) ̸= f(π′−1
0 ;W ′),

P (π−1|(o1,a1,o′1,r1)1:n)

P (π′−1
0 |(o1,a1,o′1,r1)1:n)

P→ 0.

Now, we introduce a novel lemma to elucidate the properties of the opponent policies attained
through the original PS algorithm employing W ′ while also concluding the relative optimality of
the solutions produced by the PSOM algorithm in comparison to it.

Lemma D.6. Given o−1, o1, a1, π−1
0 , π̄−1, if ∀a−1, P (a−1|o−1, π−1

0 ) = P (a−1|o−1, π̄−1) holds,
it can be deduced that ∀o′1, r1, P (o′1, r1|o1, a1, π−1

0 ) = P (o′1, r1|o1, a1, π̄−1), but the reverse is
not true.

Proof. For the forward deduction (i.e.,⇒), we have:

∀o′1, r1, P (o′1, r1|o1, a1, π−1
0 )

=
∑

o−1,a−1

P (o−1|o1)P (a−1|o−1, π−1
0 )P (o′1, r1|o1, a1, o−1, a−1) (21a)

=
∑

o−1,a−1

P (o−1|o1)P (a−1|o−1, π̄−1)P (o′1, r1|o1, a1, o−1, a−1) (21b)

= P (o′1, r1|o1, a1, π̄−1). (21c)

For the backward deduction (i.e., ⇐), counterexamples exist. For example, when
P (o′1, r1|o1, a1, o−1, a−1) takes equal values for some a−1 ∈ Ā−1 ⊂ A−1, it is possible
that ∀a−1 ∈ A−1\Ā−1, P (a−1|o−1, π−1

0 ) = P (a−1|o−1, π̄−1) and
∑

a−1∈Ā−1 P (a−1|o−1, π−1
0 )

=
∑

a−1∈Ā−1 P (a−1|o−1, π̄−1), so that ∀a−1 ∈ A−1, P (a−1|o−1, π−1
0 ) = P (a−1|o−1, π̄−1)

does not necessarily holds. This implies that using (o1, a1, o′1, r1) tuples as in-context data will
lead to distributions on opponent policies other than the equivalence class of π̄−1 with non-zero
probability, resulting in suboptimality.

According to Lemma D.6, π−1
0 ⊂ π′−1

0 holds. According to Corollary D.5, we have π̄−1 ∈ π−1
0 .

Thus, we can conclude that π̄−1 ∈ π−1
0 ⊂ π′−1

0 . Hence, the PSOM algorithm converges to fewer
solutions with non-zero probabilities compared to the PS algorithm, thereby providing more optimal
solutions. In other words, if the PS algorithm converges to the optimal solution, then the PSOM
algorithm converges to the optimal solution. This concludes the proof.
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(a) (b)

Figure 7: The two environmental benchmarks. (a) The MS environment. We visualize the entire map
at an initial timestep. (b) The PA environment. We visualize the clipped map at a certain timestep.

E ENVIRONMENTAL SPECIFICS

Markov Soccer (MS) (Littman, 1994; Lanctot et al., 2019): A sparse-reward discrete soccer
environment that exemplifies a two-player zero-sum game. The game is played on a 4 × 7 grid
in Fig. 7(a). The game begins with the controlled agent (blue) and the opponent (red) in random
squares in the left and right half (except the goals), respectively, and the ball goes to one of them
randomly or none of them to a random square in the middle column. The players have five actions:
move N, S, W, E, or stand still (i.e., NO-OP). An action is considered invalid if it leads the
player to a shaded square (grey) or outside the border. If a player has the ball, possession will be
exchanged and transition will not take place when the two players move into the same square.

Both the control agent’s and the opponent’s objectives are taking the ball into the other’s goal (the
controlled agent’s goal is blue, and the opponent’s goal is red), and the game ends when this hap-
pens. The reward is sparse, providing +1 for success, −1 for failure, and 0 for instances where the
maximum timestep limit is exceeded, only at the end of the games.

For specific implementation of MS, we adopt the open-source code of OpenSpiel, which is avail-
able at https://github.com/deepmind/open_spiel.

Particleworld Adversary (PA) (Lowe et al., 2017): A dense-reward continuous multi-
particle environment that exemplifies a three-player non-zero-sum game. PA includes two controlled
agents (purple), one opponent (red), one normal landmark (black), and one target landmark (green)
shown in Fig. 7(b). All agents observe position of landmarks and other agents. There are no borders
present on the entire game map.

The controlled agents’ objective is to minimize the distance between himself and the target landmark
while keeping the opponent away from the target landmark. The opponent’s objective is to minimize
the distance between himself and the target landmark which is unknown to him (i.e., the opponent
does not know which one of the landmarks is the target one). This necessitates that the controlled
agents develop the skill of strategically distributing themselves to ensure coverage of all landmarks,
effectively deceiving the opponent. The two controlled agents and one opponent are given dense
rewards induced by their objectives and states using Euclidean distance as the metric.

For specific implementation of PA, we adopt the open-source code of Multi-Agent
Particle Environment, which is available at https://github.com/openai/
multiagent-particle-envs. Additionally, we introduce a collision mechanism to the orig-
inal environment to increase the randomness and dynamics of the environment.

F NEURAL ARCHITECTURE SETTINGS

In MS and PA, we adopt the same neural architecture settings as follows:

• OPE (Mθe ): The backbone of the OPE architecture is mainly implemented based on the
GPT2 (Radford et al., 2019) model of Hugging Face (Wolf et al., 2020). The backbone is a GPT2
encoder composed of 3 self-attention blocks. Each self-attention block consists of a single-head at-
tention layer and a feed-forward layer. Residual connections (He et al., 2016b) and LayerNorm (Ba
et al., 2016) are utilized after each layer in the self-attention block. Within each attention layer,
dropout (Srivastava et al., 2014) is added to the residual connection and attention weight. Actions
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a−1, rewards r−1, observations o−1 are fed into modality-specific linear layers, and a positional
episodic timestep encoding is added. We adopt the same timestep encoding as in Chen et al.
(2021). Then, we use a fusion linear layer to fuse the a−1

t−1, r
−1
t−1, o

−1
t embedding tokens at each

timestep into fused embedding tokens. Finally, the sequences of fused embedding tokens are fed
into the backbone, which autoregressively outputs the per-timestep embedding tokens correspond-
ing to each (a−1

t−1, r
−1
t−1, o

−1
t ) tuple using a causal self-attention mask.

In offline stage 1, we use Average Pooling (Gholamalinezhad & Khosravi, 2020) to aggregate
all the per-timestep embedding tokens output by the backbone, i.e., z−1

0 , z−1
1 , . . . , to obtain the

average trajectory embedding z−1 for loss calculation. In offline stage 2 and deployment stage, we
input all the per-timestep embedding tokens output by the backbone, i.e., z−1 = (z−1

0 , z−1
1 , . . . ),

as key and value into the cross-attention layers of ICD.
In the backbone, except for the fully connected layer in the feed-forward layer (the feed-forward
layer consists of a fully connected layer that increases the number of hidden layer nodes and a
projection layer that recovers the number of hidden layer nodes), which consists of 128 nodes
with ReLU (Agarap, 2018) activation functions, the other hidden layers are composed of 32 nodes
without activation functions. The modality-specific linear layers for actions, rewards, and obser-
vations are composed of 32 nodes with ELU (Clevert et al., 2015) activation functions.

• ICD (Mθd ): The backbone of the ICD architecture uses the same causal Transformer as in Chen
et al. (2021), which is mainly implemented based on the GPT2 model of Hugging Face. The
backbone is a GPT2 decoder composed of three self-attention blocks. Each self-attention block
consists of a single-head attention layer, a single-head cross-attention layer, and a feed-forward
layer. Residual connections and LayerNorm are utilized after each layer in the self-attention block.
Within each attention layer, dropout is added to the residual connection and attention weight.
RTGs G1, observations o1, actions a1 are fed into modality-specific linear layers, and a positional
episodic timestep encoding is added. The sequences consisting of embedding tokens of G1

t , o
1
t , a

1
t

are fed into the backbone, autoregressively predicts actions a1t using a causal self-attention mask.
Specifically, the obtained hidden states at the positions of o1t embedding tokens are fed to a linear
layer to output actions.
In offline stage 2 and deployment stage, we input all embedding tokens output by the back-
bone as query into the cross-attention layers of all self-attention blocks. For the original in-
put sequence y1t = (G1

0, o
1
0, a

1
0, . . . , G

1
t , o

1
t ), we truncate the latest H timesteps of it, i.e.,

y′1t = (G1
t−H+1, o

1
t−H+1, a

1
t−H+1, . . . , G

1
t , o

1
t ), as input.

In the backbone, except for the fully connected layer in the feed-forward layer, which consists of
128 nodes with ReLU activation functions, the other hidden layers are composed of 32 nodes with-
out activation functions. The modality-specific linear layers for RTGs, observations, and actions
are composed of 32 nodes without activation functions.

• Ancillary decoder for PEL (πϕd
): The model of πϕd

consists of 2 linear layers, with observation
o−1, policy embedding z−1 as input, and action a−1 as output. Among them, o−1 and z−1 are
concatenated and fed to the linear layers, and LayerNorm is added after the first linear layer. All
hidden layers comprise 32 nodes; the first hidden layer includes a ReLU activation function.

• DRON-concat: For a fair comparison, we use the GPT2 decoder to implement the backbones
of the DRON-concat architecture. The DRON-concat architecture contains 2 backbones, and the
backbones’ architectural design is identical to that of ICD, except that it does not include the
cross-attention layer. One of the backbones is used to encode the sequence consisting of RTGs
G1, observations o1, and actions a1, while the other backbone is used to encode the opponent’s
hand-crafted features (He et al., 2016a). To be versatile in different environments, we consider
using the opponent’s previous action and the opponent’s previous action frequency as the hand-
crafted features. We concatenate the embedding tokens obtained by the two backbone encodings
in the dimension of the hidden state and feed them to a fusion linear layer to get concatenated
embedding tokens. Within, the hand-crafted feature embedding tokens are aligned with the posi-
tions of a1 embedding tokens, and other positions are filled with 0 and aligned with the positions
of G1, a1 embedding tokens. Finally, given the concatenated embedding tokens, the actions a1t
are autoregressively predicted at the locations of observations o1t using the same manner as ICD.
Both the fusion linear layer and the linear layer of hand-crafted features comprise 32 nodes with-
out activation functions, while the number of other hidden layer nodes and the activation function
settings are identical to those of ICD.
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• DRON-MoE: For a fair comparison, we use the GPT2 decoder to implement the backbones of
the DRON-MoE architecture. The DRON-MoE architecture contains 2 backbones, and the back-
bones’ architectural design is identical to that of ICD, except that it does not include the cross-
attention layer. One backbone is used to encode the sequence consisting of RTGs G1, observations
o1, and actions a1, while the other backbone is used to encode G1, o1, a1 sequence and the oppo-
nent’s hand-crafted features. For the first backbone: After encoding G1

t , o
1
t , a

1
t , the o1t embedding

tokens are fed to an expert linear layer and output a predefined number of expert of action prob-
ability distributions. For the second backbone: Before inputting, the opponent’s hand-crafted fea-
tures are concatenated with the corresponding observations o1 according to the timestep, and they
are fed to a mixing linear layer; after encoding G1

t , o
1
t , a

1
t and hand-crafted features, o1 embedding

tokens are fed to an expert linear layer, and a weight vector with a length of the number of experts
is outputted. Finally, the obtained weight vector is used to perform a weighted summation of the
obtained action probability distributions, and the actions a1t are predicted autoregressively. The
mixing linear layer consists of 32 nodes without activation function, and the expert linear layer
consists of 32 nodes with Softmax (Bridle, 1989) activation function. The number of other hidden
layer nodes and the activation function settings are identical to ICD. The predefined number of
experts is set to 5.

• LIAM: For a fair comparison, we use the GPT2 model to implement the backbones of the LIAM
architecture. The architectural design of LIAM’s backbone is the same as that of ICD, except
that it does not include a cross-attention layer. In addition to feeding the sequence G1

t , o
1
t , a

1
t

into the backbone and predicting the action a1t in an autoregressive manner using a causal self-
attention mask, we also employ an extra decoder to learn an auxiliary task (Papoudakis et al.,
2021). This auxiliary task involves reconstructing the opponent’s observations o−1

t and actions
a−1
t using the observations o1t and actions a1t−1 of the controlled agent. Specifically, we use the o1t

token embeddings obtained through the backbone as input to the extra decoder to predict o−1
t and

a−1
t , as the o1t token embeddings contain all the information of o1t and a1t−1. The extra decoder

consists of two linear layers with 32 nodes and no activation functions. The number of other
hidden layer nodes and the activation function settings are identical to ICD.

• MeLIBA: For a fair comparison, we use the GPT2 model to implement the backbones of the
MeLIBA architecture. The architectural design of MeLIBA’s backbone is the same as that of
ICD, except that it does not include a cross-attention layer. In addition to feeding the sequence
G1

t , o
1
t , a

1
t into the backbone and predicting the action a1t in an autoregressive manner using a

causal self-attention mask, we also employ extra encoding layers and an extra decoder to learn
an auxiliary task for the Variational AutoEncoders (VAE) (Zintgraf et al., 2021). This auxiliary
task aims to maximize Evidence Lower BOund (ELBO) by reconstructing the opponent’s future
actions a−1

t , a−1
t+1, · · · using the opponent’s future observations o−1

t , o−1
t+1, · · · and by minimiz-

ing a certain form of KL divergence, conditioned on the past trajectory o10, a
1
0, r

1
0, · · · , o1t of the

controlled agent. Specifically, we use additional two-level hierarchical linear layers to encode the
controlled agent’s past trajectory, where the two levels embed the controlled agent’s past trajec-
tory into the Gaussian distribution parameters µ and σ of a permanent latent variable (also called
agent character) and a temporal latent variable (also called mental state), respectively. On the one
hand, µ and σ of the permanent latent variable and the temporal latent variable output the con-
trolled agent’s actions to respond to the opponent reasonably. On the other hand, the permanent
latent variable and the temporal latent variable, sampled from the Gaussian distribution param-
eterized by µ and σ, are used as the input to the extra decoder, where this decoder conditions
also on the opponent’s future observations o−1

t , o−1
t+1, · · · to predict the opponent’s future actions

a−1
t , a−1

t+1, · · · . The extra encoding layers consist of two levels of linear layers, where each level
has two linear layers with 32 nodes and no activation functions. The extra decoder consists of two
linear layers and a recurrent layer, where these layers have 32 nodes and no activation functions.
The number of other hidden layer nodes and the activation function settings are identical to ICD.

• Prompt-DT: We implement Prompt-DT’s architecture directly based on its open-source code,
which is available at https://github.com/mxu34/prompt-dt. We use high-quality
data against opponent policies from offline datasets as expert demonstrations (i.e., prompts). High-
quality data refers to trajectories of the controlled agent that rank near the top in terms of return
across all episodes in which it competes against a specific opponent policy. Specifically, we select
the top 20% for the high-quality data, sample 1 trajectory, and then sample consecutive fragments
with a length of 5 from the trajectory as prompts. The linear layers for RTGs, observations, and ac-
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tions in the prompts consist of 32 nodes without activation functions. The number of other hidden
layer nodes and the activation function settings are identical to ICD.

G DETAILS OF BASELINES

DRON-concat (He et al., 2016a): An opponent modeling approach that encodes the opponent’s
hand-crafted features with an auxiliary network. It concatenates the resulting opponent’s hidden
states and the hidden states obtained by the controlled agent’s observation to aid downstream policy
optimization of the controlled agent.

DRON-MoE (He et al., 2016a): An opponent modeling approach that encodes the opponent’s hand-
crafted features using a Mixture-of-Expert (MoE) structure (Masoudnia & Ebrahimpour, 2014).
It considers the hidden states obtained by the opponent’s hand-crafted features and the controlled
agent’s observations as a gating signal, applying a weighted summation with a predefined number
of expert of the hidden states obtained by the controlled agent’s observations.

LIAM (Papoudakis et al., 2021): An opponent modeling approach that encodes opponent infor-
mation with autoencoders (Hinton & Zemel, 1993). It utilizes the observations and actions of the
controlled agent to reconstruct those of the opponent, thereby embedding the opponent policy’s
semantics into a latent space. Then, it uses the obtained embeddings to assist downstream policy
optimization of the controlled agent.

MeLIBA (Zintgraf et al., 2021): An opponent modeling approach that encodes opponent informa-
tion with Variational AutoEncoders (VAE) (Kingma & Welling, 2013). It uses VAE to reconstruct
the opponent’s future actions to infer an approximate belief for the opponent. It aims to learn an
approximate Bayesian optimal policy based on the embedding generated by the VAE.

Prompt-DT (Xu et al., 2022): An offline meta-RL approach based on the Decision Transformer
(DT) (Chen et al., 2021) and prompt learning (Liu et al., 2023). Based on the DT, it samples expert
task trajectories as prompts and obtains task adaptability through offline dataset pre-training. This
approach holds the potential to partially address the challenges posed by the OOM problem.

TAO without PEL: A variant of our approach. It performs concurrent optimization to ICD and
OPE utilizing only Lres, without pre-training OPE using Lemb. We introduce this baseline to conduct
ablation studies for PEL and scrutinize the efficacy of TAO’s architectural design.
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H DETAILS OF OPPONENT POLICIES

H.1 OPPONENT POLICIES IN MARKOV SOCCER

Opponent Policy Name Source Description

o1 SnatchAttackPolicy script

Snatch: Move towards the football along
the shortest path when not possessing the
ball.
Attack: Move towards the goal of the con-
trolled agent nearest to the opponent while in
possession of the ball, following the shortest
path.

o2 SnatchEvadePolicy script

Snatch: Move towards the football along
the shortest path when not possessing the
ball.
Evade: When possessing the ball, move
along the path farthest from the controlled
agent.

o3 RLPolicy1 RL algorithm

This policy is obtained through self-play
training using the TRCoPO (Prajapat et al.,
2021) algorithm for 30000 episodes.
The open-source code is avail-
able at https://github.com/
manish-pra/trcopo. We adopt
the original hyperparameter settings from
the open-source code.

o4 RLPolicy2 RL algorithm

This policy is obtained through self-play
training using the TRGDA (Prajapat et al.,
2021) algorithm for 10000 episodes.
The open-source code is avail-
able at https://github.com/
manish-pra/trcopo. We adopt
the original hyperparameter settings from
the open-source code.

o5 RLPolicy3 RL algorithm

This policy is obtained through self-play
training using the PPO (Schulman et al.,
2017) algorithm for 50000 episodes.
The open-source code is avail-
able at https://github.com/
berkeleydeeprlcourse/
homework/tree/master/hw4. We
adopt the original hyperparameter settings
from the open-source code, and the other
opponent policies trained using PPO also
use the same settings.

o6 GuardAttackPolicy script

Guard: When not possessing the ball, de-
fend in front of the opponent’s goal nearest
to the controlled agent.
Attack: Move towards the goal of the con-
trolled agent nearest to the opponent while in
possession of the ball, following the shortest
path.

o7 GuardEvadePolicy script

Guard: When not possessing the ball, de-
fend in front of the opponent’s goal nearest
to the controlled agent.
Evade: When possessing the ball, move
along the path farthest from the controlled
agent.

o8 RLPolicy4 RL algorithm
This policy is obtained through self-play
training using the PPO algorithm for 100000
episodes.
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H.2 OPPONENT POLICIES IN PARTICLEWORLD ADVERSARY

Opponent Policy Name Source Description

o1 FixOnePolicy script

At the beginning of each episode, ran-
domly select one of two landmarks as the
fixed target. Throughout this episode, al-
ways move towards the fixed target along
the shortest path.

o2 ChaseOnePolicy script

At the beginning of each episode, randomly
select one of the two controlled agents as the
chasing target. Throughout this episode,
always move towards the chasing target
along the shortest path.

o3 MiddlePolicy script

At the beginning of each episode, set the
midpoint of the two landmarks as the
fixed target. Throughout this episode, al-
ways move towards the fixed target along
the shortest path.

o4 BouncePolicy script

At the beginning of each episode, randomly
select one of two landmarks as the fixed
target. During this episode, begin by mov-
ing towards the fixed target along the
shortest path. When the distance to the cur-
rent fixed target is less than or equal to
0.096, switch the fixed target to the other
landmark and then move towards the new
fixed target along the shortest path. Repeat
this process until the episode ends.

o5 RLPolicy5 RL algorithm
This policy is obtained through self-play
training using the PPO algorithm for 5000
episodes.

o6 FixThreePolicy script

At the beginning of each episode, ran-
domly choose one of the two landmarks or
the midpoint of the two landmarks as the
fixed target. Throughout this episode, al-
ways move towards the fixed target along
the shortest path.

o7 ChaseBouncePolicy script

At the beginning of each episode, randomly
select one of the two controlled agents as the
chasing target. During this episode, be-
gin by moving towards the chasing target
along the shortest path. When the distance
to the current chasing target is less than
or equal to 0.3, switch the chasing target
to the other controlled agent and then move
towards the new chasing target along the
shortest path. Repeat the process until the
episode ends.

o8 RLPolicy6 RL algorithm
This policy is obtained through self-play
training using the PPO algorithm for 10000
episodes.
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I CONSTRUCTION OF OFFLINE DATASETS

The offline dataset, denoted as Doff = {Dk}k=1,2,...,K , where K is the predefined number of oppo-
nent policies. For each k ∈ [K],Dk consists of totally A episodes’ interacting trajectories, generated
by the interactions between the opponent policy π−1,k and the approximate best response policy
π1,k,∗ against it.

However, to bring our research in line with real-world scenarios where the offline datasets are always
noisy, we introduce certain modifications: We assume that Dk, k ∈ [K] comprises a larger propor-
tion, η, of expert data and a smaller proportion, 1−η, of noisy data. The expert data is derived from
the interactions between the opponent policy π−1,k and its approximate best response policy π1,k,∗.
The noisy data is procured by interacting with π−1,k through any differing policy, e.g., play against
π−1,1 with π1,2,∗.

In this work, we set the opponent’s policy to π−1,k and utilize pre-training with an RL algorithm
to derive opponent policy π−1,k’s approximate best response policy π1,k,∗. Additionally, a rough
but practical approach to attain π1,k,∗ involves considering the policies generated by top-ranking
algorithms in particular competitive contests as approximate best response policies against π−1,k.

For the specific implementation of the offline dataset Doff, we adopt the following settings:

• In both MS and PA, we set K to 5, A to 2000, and η to 0.9;
• In both MS and PA, for each k ∈ [K], we fix the opponent policy as π−1,k and use PPO (Schulman

et al., 2017) to pre-train its approximately best response policy π1,k,∗;
• In both MS and PA, for each k ∈ [K], the noisy data is generated by the interactions between
π−1,k and all possible π1,j,∗, where j ∈ [K] ∧ j ̸= k, each for 50 episodes (i.e., accounted for
1−η
K−1 of the Dk).

J HYPERPARAMETERS

J.1 HYPERPARAMETERS FOR OFFLINE STAGE 1

Hyperparameter Name MS PA

Dimensionality of the opponent’s observations 12 8

Dimensionality of the opponent’s actions 5 5

Whether to normalize the opponent’s observations True True

Maximum horizon length for each episode 100 100

Total number of training steps 200 500

Batch size (B) 128 128

Number of updating epochs at each training step 10 10

Weighting coefficient for generative loss Lgen (α) 1.0 1.0

Weighting coefficient for discriminative loss Ldis (λ) 1.0 1.0

Warm-up epochs (the learning rate is multiplied by num epoch+1
warm-up epochs to allow it to increase

linearly during the initial warm-up epochs of training)
10000 10000

Learning rate for AdamW (Loshchilov & Hutter, 2018) optimizer 1 × 10−2 1 × 10−2

Weight decay coefficient for AdamW optimizer 1 × 10−4 1 × 10−4

Maximum norm of the gradients (clip if exceeded) 0.5 0.5

Temperature factor for discriminative loss Ldis (p) 0.1 0.1

Number of hidden layer nodes for the GPT2 encoder of OPE (see Appendix F for de-
tailed descriptions) 32 32

Dropout factor for the GPT2 encoder of OPE 0.1 0.1

Number of self-attention blocks for the GPT2 encoder of OPE 3 3

Number of attention head for the GPT2 encoder of OPE 1 1

Random seeds {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
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J.2 HYPERPARAMETERS FOR OFFLINE STAGE 2

Hyperparameter Name MS PA

Dimensionality of the opponent’s observations 12 8

Dimensionality of the opponent’s actions 5 5

Whether to normalize the opponent’s observations True True

Dimensionality of the controlled agent’s observations 12 10

Dimensionality of the controlled agent’s actions 5 5

Whether to normalize the controlled agent’s observations True True

Maximum horizon length for each episode 100 100

Length of the consecutive fragment for each trajectory sampled from the offline dateset
Doff by OPE (H) 20 20

Number of trajectories sampled by OPE (C) 5 5

Length of the input sequence for ICD after truncation (H) (see Appendix F for detailed
descriptions) 20 20

Reward scaling factor (all the rewards are multiplied by 1
reward scaling factor to reduce the

variance of training)
1 100

Total number of training steps 2000 2000

Batch size (B) 128 128

Number of updating epochs at each training step 10 10

Warm-up epochs 10000 10000

Learning rate for AdamW optimizer 1 × 10−4 1 × 10−4

Weight decay coefficient for AdamW optimizer 1 × 10−4 1 × 10−4

Maximum norm of the gradients 0.5 0.5

Number of hidden layer nodes for the GPT2 encoder of OPE 32 32

Dropout factor for the GPT2 encoder of OPE 0.1 0.1

Number of self-attention blocks for the GPT2 encoder of OPE 3 3

Number of attention head for the GPT2 encoder of OPE 1 1

Number of hidden layer nodes for the GPT2 decoder of ICD 32 32

Dropout factor for the GPT2 decoder of ICD 0.1 0.1

Number of self-attention blocks for the GPT2 decoder of ICD 3 3

Number of attention head for the GPT2 decoder of ICD 1 1

Random seeds {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}

J.3 HYPERPARAMETERS FOR DEPLOYMENT STAGE

Hyperparameter Name MS PA

Dimensionality of the opponent’s observations 12 8

Dimensionality of the opponent’s actions 5 5

Whether to normalize the opponent’s observations True True

Dimensionality of the controlled agent’s observations 12 10

Dimensionality of the controlled agent’s actions 5 5

Whether to normalize the controlled agent’s observations True True

Maximum horizon length for each episode 100 100

Total number of episodes for testing 2500 2500

Opponent policy switching interval (E) (the opponent switches its policy every E
episodes) 50 50

Length of the consecutive fragment for each trajectory sampled from the OCW by OPE
(H) 20 20

Size of the OCW (C) (the OCW collects the latest C opponent trajectories) 5 5

Length of the input sequence for ICD after truncation (H) 20 20

Reward scaling factor 1 100

Number of hidden layer nodes for the GPT2 encoder of OPE 32 32

Dropout factor for the GPT2 encoder of OPE 0.1 0.1

Number of self-attention blocks for the GPT2 encoder of OPE 3 3

Number of attention head for the GPT2 encoder of OPE 1 1

Number of hidden layer nodes for the GPT2 decoder of ICD 32 32

Dropout factor for the GPT2 decoder of ICD 0.1 0.1

Number of self-attention blocks for the GPT2 decoder of ICD 3 3

Number of attention head for the GPT2 decoder of ICD 1 1

Random seeds {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}

33



Published as a conference paper at ICLR 2024

0 0.5k 1k 1.5k 2k
Training Step

0.4

0.2

0.0

0.2

0.4
Av

g.
 R

et
ur

n

MS - seen

0 0.5k 1k 1.5k 2k
Training Step

0.4

0.2

0.0

0.2

0.4
MS - unseen

0 0.5k 1k 1.5k 2k
Training Step

400
300
200
100

0
100
200

PA - seen

0 0.5k 1k 1.5k 2k
Training Step

400
300
200
100

0
100
200

PA - unseen
DRON-concat DRON-MoE Prompt-DT LIAM MeLIBA TAO w/o PEL (ours) TAO (ours)

Figure 8: Performance for offline response policy training. All approaches are evaluated against each
opponent policy in seen and unseen for 100 episodes separately every 200 training steps. We report
the average and standard error of the mean results against all opponent policies over 5 runs.

Table 2: Experimental results on adaptation speed.
MS (Avg. Min. Episode ↓) PA (Avg. Min. Episode ↓)

seen unseen mix seen unseen mix

TAO (ours) 2.74 ± 0.27 3.78 ± 0.93 2.83 ± 0.32 1.9 ± 0.2 3.7 ± 0.5 2.8 ± 0.2
TAO w/o PEL (ours) 4.01 ± 0.56 5.82 ± 0.71 3.84 ± 0.23 1.9 ± 0.2 8.4 ± 0.9 4.1 ± 0.5

DRON-concat 14.53 ± 1.78 29.27 ± 1.44 19.60 ± 2.10 5.4 ± 1.0 7.2 ± 1.6 5.2 ± 1.0
DRON-MoE 13.99 ± 0.97 6.62 ± 1.86 6.95 ± 1.50 3.5 ± 0.3 6.7 ± 0.4 4.9 ± 0.5

LIAM 6.90 ± 0.88 7.66 ± 0.35 5.78 ± 0.68 2.6 ± 0.4 10.4 ± 2.1 6.5 ± 0.9
MeLIBA 6.12 ± 0.74 12.51 ± 1.75 6.36 ± 1.08 2.9 ± 0.2 13.3 ± 1.0 6.8 ± 0.8

Prompt-DT 5.67 ± 0.60 17.70 ± 2.29 8.19 ± 1.53 2.1 ± 0.2 16.7 ± 0.9 7.5 ± 0.8

K ADDITIONAL EMPIRICAL ANALYSIS

To further examine TAO’s effect and underlying mechanisms, we continue to ask the following
questions and design corresponding experiments to answer them:

Question 5. How does TAO perform in the offline training compared with other baselines?

In Fig. 8, we present the average results of playing against opponent policies in the opponent policy
sets separately (i.e., without switching opponent policies) during offline response policy training.
The evaluation outcomes for TAO exhibit a consistent and incremental improvement under both
seen and unseen settings as the training progresses. In contrast, other approaches like DRON-concat
display relatively unstable performance during training.

The evaluations during offline training and the subsequent testing results in Fig. 3 demonstrate that
the relative performance of all approaches remains constant. However, the performance of most
approaches during testing has shown certain improvements compared to the last evaluation of the
offline training. This observation can likely be attributed to the increased number of episodes con-
ducted during testing, offering more chances to exploit the opponent policies with low strength (i.e.,
weak and exploitable opponent policies).

Question 6. Does TAO demonstrate faster adaptation speed compared with other baselines?

We measure the adaptation speed by the minimum number of episodes to achieve a specified return.
For all opponent policies in the seen test setting, the specified return is set to be the average return
of all trajectories against this policy in the offline dataset; for all opponent policies in the unseen test
setting, the specified return is set to the average return of all approaches against this opponent policy
under the unseen test setting.

Table 2 shows the average adaptation speed under the original opponent policy configuration. TAO
showcases consistently faster adaptation in MS and PA than other approaches, underscoring its ca-
pability to acquire knowledge through in-context learning swiftly. Furthermore, it’s important to
highlight that there isn’t a straightforward positive correlation between adaptation speed and per-
formance. For instance, in scenarios involving unseen opponent policies, Prompt-DT performs ad-
mirably but often displays a sluggish adaptation speed.

Question 7. How does the opponent context window (OCW) size C affect the efficacy of TAO?

We vary the OCW size C to investigate how the context length affects TAO, and the relevant ex-
perimental results are shown in Fig. 9. In both environments, the average performance exhibits a
similar trend pattern as C changes. It is worth noting that, as C increases, the average performance
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Figure 9: Average performance for TAO on different sizes of the OCW.

does not increase monotonically under the three test settings. Under the unseen and mix settings, a
continual decrease in performance is evident, beginning at C = 5. One possible explanation is that
when C is relatively large, due to the non-stationary opponent policy switching, TAO is prone to be
influenced by the context of the previous opponent, making it challenging to recognize the current
opponent accurately. The quest to theoretically and empirically identify the most suitable value for
C is reserved for future research endeavors.

L LIMITATIONS AND FUTURE WORK

1. We only focus on exploiting opponent with fixed policies. TAO might face difficulties han-
dling opponent who exhibit policy alterations within an episode or evolve (update) their
policies as the games unfold. OOM with changing policy opponents represents a formidable
but crucial problem;

2. We do not consider recursive reasoning, i.e., scenarios where opponent also perform op-
ponent modeling. A challenging future research direction lies in learning opponent models
for recursive reasoning using offline datasets;

3. Our empirical analysis merely models one opponent agent in the environment. In situations
involving a larger number of agents to be modeled, it becomes imperative to account for
the interrelated behaviors and correlations among these agents to ensure the efficacy of
modeling;

4. This paper’s scope is limited to examining OOM problems exclusively within competi-
tive settings. Our future research will focus on understanding and mitigating the distinct
challenges that arise in cooperative and mixed environments.
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