
404

Appendix405

Table of Contents
406
407

A Theoretical results 16408

A.1 A hard example for GCN . 16409

A.2 A solution for GAT and CAT . 17410

B Synthetic experiments 22411

B.1 Other experiments . 24412

C Dataset description 25413

D Real data experiments 26414

D.1 Experimental details . 26415

D.2 Additional results . 27416

E Open Graph Benchmark experiments 27417

E.1 Experimental details . 27418

E.2 Additional results . 28419
420
421422

12

A Theoretical results423

A.1 A hard example for GCN424

In this subsection, we present a dataset and classification task for which GCN performs poorly. Note425

that we follow the similar techniques and notation as [14], as described in the main paper.426

We recall our data model. Fix n, d ∈ N and let ε1, . . . , εn be i.i.d uniformly sampled from {−1, 0, 1}.427

Let Ck = {j ∈ [n] | εj = k} for k ∈ {−1, 0, 1}. For each index i ∈ [n], we set the feature vector428

Xi ∈ Rd as Xi ∼ N (εi · µ, I · σ2), where µ ∈ Rd, σ ∈ R and I ∈ {0, 1}d×d is the identity matrix.429

For a given pair p, q ∈ [0, 1] we consider the stochastic adjacency matrix A ∈ {0, 1}n×n defined430

as follows. For i, j ∈ [n] in the same class, we set aij ∼ Ber(p), and if i, j are in different classes,431

we set aij ∼ Ber(q). We let D ∈ Rn×n be a diagonal matrix containing the degrees of the vertices.432

We denote by (X,A) ∼ CSBM(n, p, q,µ, σ2) a sample obtained according to the above random433

process.434

The task we wish to solve is classifying C0 vs C−1 ∪ C1. Namely, we want our model φ to satisfy435

φ(Xi) < 0 if and only if i ∈ C0. Moreover, note that the posed problem is not linearly classifiable.436

To this end, we start by stating an assumption on the choice of parameters. This assumption is437

necessary to achieve degree concentration in the graph.438

Assumption 1. p, q = Ω(log2 n/n) .439

We now show the distribution of the convolved features. The following lemma can be easily obtained440

using the techniques in [3].441

Lemma 3. Fix p, q satisfying Assumption 1. With probability at least 1− o(1) over A and {εi}i,442

(D−1AX)i ∼ N
(
εi ·

p− q

p+ 2q
µ,

σ2

n(p+ 2q)

)
, ∀i ∈ [n].

To prove the above lemma, we need the following definition of our high probability event.443

Definition 1. We define the even E as the intersection of the following events over A and {εi}i:444

1. E1 is the event that |C0| = n
3 ±O(

√
n log n), |C1| = n

3 ±O(
√
n log n)445

and |C−1| = n
3 ±O(

√
n log n).446

2. E2 is the event that for each i ∈ [n], Dii =
n(p+2q)

3

(
1± 10√

logn

)
.447

3. E3 is the event that for each i ∈ [n] and k ∈ {−1, 0, 1},448

|Ni ∩ Ck| =

Dii · p
p+2q ·

(
1± 10√

logn

)
if i ∈ Ck

Dii · q
p+2q ·

(
1± 10√

logn

)
if i /∈ Ck

.

The following lemma is a direct application of Chernoff bound and a union bound.449

Lemma 4. With probability at least 1− 1/poly(n) the event E holds.450

Proof of Lemma 3. By applying Lemma 4, and conditioned on E , for any i ∈ [n]451

(D−1AX)i =
1

Dii

∑
j∈Ni

Xj =
1

Dii

 ∑
j∈Ni∩C−1

Xj +
∑

j∈Ni∩C0

Xj +
∑

j∈Ni∩C1

Xj

 .

Using the definition of E and properties of Gaussian distributions the lemma follows.452

Lemma 3 shows that essentially, the convolution reduced the variance and moved the means closer,453

but the structure of the problem stayed exactly the same. Therefore, one layer of GCN cannot separate454

C0 from C−1 ∪ C1 with high probability.455

13

A.2 A solution for GAT and CAT456

In what follows, we show that GAT is able to handle the above classification task easily when the457

distance between the means is large enough. Then, we show how the additional convolution on the458

inputs to the score function improves the regime of perfect classification when the graph is not too459

noisy. Our main technical lemma considers a specific attention architecture and characterize the460

attention scores for our data model.461

Lemma 5. Suppose that p, q satisfy Assumption 1, ∥µ∥ ≥ ω
(
σ
√
log n

)
, fix the LeakyRelu constant462

β ∈ (0, 1) and R ∈ R. Then, there exists a choice of attention architecture Ψ such that with463

probability at least 1− on(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2) the following holds.464

Ψ(Xi,Xj) =



10Rβ∥µ∥(1± o(1)) if i, j ∈ C2
1

−2R∥µ∥(1 + 2β)(1± o(1)) if i, j ∈ C2
−1

−2R∥µ∥(1 + 5β)(1± o(1)) if i ∈ C1, j ∈ C−1

10Rβ∥µ∥(1± o(1)) if i ∈ C−1, j ∈ C1

−R
2 ∥µ∥(1− 21β)(1± o(1)) if i ∈ C0, j ∈ C1

−R
2 ∥µ∥(1− 11β)(1± o(1)) if i ∈ C0, j ∈ C−1

−R
2 ∥µ∥(1− 5β)(1± o(1)) if i ∈ C1, j ∈ C0

−R
2 ∥µ∥(1− 5β)(1± o(1)) if i ∈ C−1, j ∈ C0

2Rβ∥µ∥(1± o(1)) if i, j ∈ C2
0

.

Proof. We consider as an ansatz the following two layer architecture Ψ.465

w̃
def
=

µ

∥µ∥ , S
def
=



1 1
−1 −1
1 −1
−1 1
0 1
1 0
0 −1
−1 0


, b

def
=



−3/2
−3/2
−3/2
−3/2
−1/2
−1/2
−1/2
−1/2


· ∥µ∥, r

def
= R ·



2
−2
−2
2
−1
−1
−1
−1


,

where R > 0 is an arbitrary scaling parameter. The output of the attention model is defined as466

Ψ(Xi,Xj)
def
= rT · LeakyRelu

(
S ·

[
w̃TXi

w̃TXj

]
+ b

)
.

Let ∆ij
def
= S ·

[
w̃TXi

w̃TXj

]
+ b ∈ R8, and note that for each element t ∈ [8] of ∆ij , we have that467

(∆ij)t = St,1w̃
TXi + St,2w̃

TXj + bt. Note that the random variable (∆ij)t is distributed as468

follows:469

(∆ij)t ∼



N
(
(St,1 + St,2)w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i, j ∈ C2
1

N
(
−(St,1 + St,2)w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i, j ∈ C2
−1

N
(
(St,1 − St,2)w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C1, j ∈ C−1

N
(
−(St,1 − St,2)w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C−1, j ∈ C1

N
(
St,2w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C0, j ∈ C1

N
(
−St,2w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C0, j ∈ C−1

N
(
St,1w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C1, j ∈ C0

N
(
−St,1w̃

Tµ+ bt, ∥St,∗∥2σ2
)

if i ∈ C−1, j ∈ C0

N
(
bt, ∥St,∗∥2σ2

)
if i, j ∈ C2

0

.

Therefore, for a fixed i, j ∈ [n]2 we have that the entries of ∆ij are distributed as follows (where we470

use N y
x as abbreviation for the Gaussian N (x, y))471 [
N 4σ2

∥µ∥
2

N 4σ2

−7∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N σ2

∥µ∥
2

N σ2

∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− 3∥µ∥
2

]
for i, j ∈ C2

1 ,

14

[
N 4σ2

− 7∥µ∥
2

N 4σ2

∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

∥µ∥
2

N σ2

∥µ∥
2

]
for i, j ∈ C2

−1,[
N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

∥µ∥
2

N 4σ2

− 7∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

∥µ∥
2

N σ2

∥µ∥
2

N σ2

− 3∥µ∥
2

]
for i, j ∈ C1 × C−1,[

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 7∥µ∥
2

N 4σ2

∥µ∥
2

N σ2

∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

∥µ∥
2

]
for i, j ∈ C−1 × C1,[

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N σ2

∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− ∥µ∥
2

]
for i, j ∈ C0 × C1,[

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

∥µ∥
2

N σ2

− ∥µ∥
2

]
for i, j ∈ C0 × C−1,[

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− 3∥µ∥
2

]
for i, j ∈ C1 × C0,[

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N 4σ2

− 5∥µ∥
2

N 4σ2

− ∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− 3∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

∥µ∥
2

]
for i, j ∈ C−1 × C0,[

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N 4σ2

− 3∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− ∥µ∥
2

N σ2

− ∥µ∥
2

]
for i, j ∈ C2

0 ,

Next, we will use the following lemma regarding LeakyRelu concentration.472

Lemma 6 (Lemma A.6 in [14]). Fix s ∈ N, and let z1, . . . , zs be jointly Gaussian random variables473

with marginals zi ∼ N (µi, σ
2
i). There exists an absolute constant C > 0 such that with probability474

at least 1− os(1), we have475

LeakyRelu(zi) = LeakyRelu (µi)± Cσi

√
log s, for all i ∈ [s].

Using Lemma 6 with the assumption on ∥µ∥ and a union bound, we have that with probability at476

least 1− on(1), LeakyRelu(∆ij) is (up to 1± o(1))477 [
∥µ∥
2

−7β∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2

∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2

]
for i, j ∈ C2

1 ,[
− 7β∥µ∥

2
∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2

∥µ∥
2

]
for i, j ∈ C2

−1,[
− 3β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2 − 7β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2

∥µ∥
2 − 3β∥µ∥

2

]
for i, j ∈ C1 × C−1,[

− 3β∥µ∥
2 − 3β∥µ∥

2 − 7β∥µ∥
2

∥µ∥
2

∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2

∥µ∥
2

]
for i, j ∈ C−1 × C1,[

−β∥µ∥
2 − 5β∥µ∥

2 − 5β∥µ∥
2 −β∥µ∥

2
∥µ∥
2 −∥µ∥

2 − 3β∥µ∥
2 −∥βµ∥

2

]
for i, j ∈ C0 × C1,[

− 5β∥µ∥
2 −β∥µ∥

2 −β∥µ∥
2 − 5β∥µ∥

2 − 3β∥µ∥
2 −β∥µ∥

2
∥µ∥
2 −β∥µ∥

2

]
for i, j ∈ C0 × C−1,[

−β∥µ∥
2 − 5β∥µ∥

2 −β∥µ∥
2 − 5β∥µ∥

2 −β∥µ∥
2

∥µ∥
2 −β∥µ∥

2 − 3β∥µ∥
2

]
for i, j ∈ C1 × C0,[

− 5β∥µ∥
2 −β∥µ∥

2 − 5β∥µ∥
2 −β∥µ∥

2 −β∥µ∥
2 − 3β∥µ∥

2 −∥βµ∥
2

∥µ∥
2

]
for i, j ∈ C−1 × C0,[

− 3β∥µ∥
2 − 3β∥µ∥

2 − 3β∥µ∥
2 − 3β∥µ∥

2 −β∥µ∥
2 −β∥µ∥

2 −β∥µ∥
2 −β∥µ∥

2

]
for i, j ∈ C2

0 .

Then,478

rT · LeakyRelu(∆ij) =



10Rβ∥µ∥(1± o(1)) if i, j ∈ C2
1

−2R∥µ∥(1 + 2β)(1± o(1)) if i, j ∈ C2
−1

−2R∥µ∥(1 + 5β)(1± o(1)) if i ∈ C1, j ∈ C−1

10Rβ∥µ∥(1± o(1)) if i ∈ C−1, j ∈ C1

−R
2 ∥µ∥(1− 21β)(1± o(1)) if i ∈ C0, j ∈ C1

−R
2 ∥µ∥(1− 11β)(1± o(1)) if i ∈ C0, j ∈ C−1

−R
2 ∥µ∥(1− 5β)(1± o(1)) if i ∈ C1, j ∈ C0

−R
2 ∥µ∥(1− 5β)(1± o(1)) if i ∈ C−1, j ∈ C0

2Rβ∥µ∥(1± o(1)) if i, j ∈ C2
0

,

15

and the proof is complete.479

Next we will define our high probability event.480

Definition 2. E ′ def
= E ∩ E∗, where E∗ is the event that for a fixed w ∈ Rd, all i ∈ [n] satisfy481

|wTXi −E[wTXi]| ≤ 10σ∥w∥2
√
log n.482

The following lemma is obtained by using Lemma 4 with standard Gaussian concentration and a483

union bound.484

Lemma 7. With probability at least 1− 1/poly(n) event E ′ holds.485

Corollary 8. Suppose that p, q satisfy Assumption 1, ∥µ∥ = ω(σ
√
log n) and fix R ∈ R. Then,486

there exists a choice of attention architecture Ψ such that with probability 1− on(1) over (A,X) ∼487

CSBM(n, p, q,µ, σ2) it holds that488

γij =


3
np (1± o(1)) if i, j ∈ C2

0 ∪ C2
1

3
nq (1± o(1)) if i, j ∈ C−1 × C1
3
nq exp(−Θ(R∥µ∥)) if i, j ∈ C−1 × C−1 ∪ C0
3
np exp(−Θ(R∥µ∥)) otherwise

,

where R is a parameter of the architecture.489

Proof. The proof is immediate. First applying the ansatz from Lemma 5 with β < 1/25, Lemma 7490

and a union bound. Using the definition of γij concludes the proof.491

Next, we prove Theorem 1 that the model distinguish nodes from C0 for any choice of p, q satisfying492

Assumption 1. We restate the theorem for convince.493

Theorem 9 (Formal restatement of Theorem 1). Suppose that p, q satisfy Assumption 1 and ∥µ∥2 =494

ω(σ
√
log n). Then, there exists a choice of attention architecture Ψ such that with probability at least495

1− on(1) over the data (X,A) ∼ CSBM(n, p, q,µ, σ2), the estimator496

x̂i
def
=

∑
j∈Ni

γijw̃
TXj + b where w̃ = µ/∥µ∥, b = −∥µ∥/2

satisfies x̂i < 0 if and only if i ∈ C0.497

Proof. Let Ψ be the architecture from Corollary 8 and let R satisfy R∥µ∥2 = ω(1). We will498

compute the mean and variance of the estimator x̂i conditioned on E ′. Suppose that i ∈ C0. By using499

Corollary 8, Definition 2 and our assumption on ∥µ∥ and R, we have500

max

{
3

np
exp(−Θ(R∥µ∥)), 3

nq
exp(−Θ(R∥µ∥))

}
= o

(
1

n(p+ 2q)

)
,

and therefore501

E
[
x̂i | E ′] = E

 ∑
k∈{−1,0,1}

∑
j∈Ni∩Ck

γijw̃
TXj | E ′

− ∥µ∥
2

= E[|C0 ∩Ni| | E ′]

(
± 3

np
(1± o(1)) · 10σ

√
log n

)
+E[|C1 ∩Ni| | E ′]

(
o

(
1

n(p+ 2q)

)
· (∥µ∥ ± 10σ

√
log n)

)
+E[|C−1 ∩Ni| | E ′]

(
o

(
1

n(p+ 2q)

)
· (−∥µ∥ ± 10σ

√
log n)

)
− ∥µ∥

2

= −∥µ∥
2

(1± o(1)).

16

By similar reasoning we have that for i ∈ C−1 ∪ C1, E
[
x̂i | E ′] = ∥µ∥

2 (1± o(1)).502

Next, we claim that for each i ∈ [n] the random variable x̂i given E ′ is sub-Gaussian with a small503

sub-Gaussian constant compared to the above expectation. The following lemma is a straightforward504

adaptation of Lemma A.11 in [14], and we provide its proof for completeness.505

Lemma 10. Conditioned on E ′, the random variables {x̂i}i are sub-Gaussian with parameter506

σ̃2
i = O

(
σ2

np

)
if i ∈ C0 ∪ C1 and σ̃2

i = O
(

σ2

nq

)
otherwise.507

Proof. Fix i ∈ [n], and write Xi = εiµ + σgi where gi ∼ N (0, Id), and εi denotes the class508

membership. Consider x̂i as a function of g = [g1 ◦ g2 ◦ · · · ◦ gn] ∈ Rnd, where ◦ denotes vertical509

concatenation. Namely, consider the function510

x̂i = fi(g)
def
=

∑
j∈Ni

γij(g) w̃
T (εjµ+ σgj)− ∥µ∥/2, i ∈ [n].

Since g ∼ N (0, Ind), proving that x̂i given E ′ is sub-Gaussian for each i ∈ [n], reduces to511

showing that the function fi : Rnd → R is Lipschitz over E ⊆ Rnd defined by E ′ and the relation512

Xi = εiµ+ σgi. That is, E def
=

{
g ∈ Rnd

∣∣ |w̃Tgi| ≤ 10
√
log n, ∀i ∈ [n]

}
. Specifically, we show513

that conditioning on the event E ′ (which restricts g ∈ E), the Lipschitz constant Lfi of fi satisfies514

Lfi = O
(

σ√
np

)
for i ∈ C0 ∪ C1 and Lfi = O

(
σ
nq

)
otherwise, and hence proving the claim.515

To compute the Lipschitz constant of fi(g) for i ∈ [n], let us denote X = [X1 ◦X2 ◦ · · · ◦Xn] and516

consider the function517

f̃i(X)
def
=

∑
j∈Ni

γij(X) w̃TXj , i ∈ [n]

Let us assume without loss of generality that i ∈ C0 (the cases for i ∈ C1 and i ∈ C−1 are obtained
identically). Conditioning on the event E ′, which imposes the restriction that X ∈ Ẽ where

Ẽ
def
=

{
X ∈ Rnd

∣∣ |Xi − εiµ| ≤ 10σ
√

log n, ∀i ∈ [n]
}
.

Conditioning on E ′ (which restricts X,X′ ∈ Ẽ), using Corollary 8 and recalling that R satisfies518

R∥µ∥2 = ω(1), we get5519 ∣∣∣f̃i(X)− f̃i(X
′)
∣∣∣

≃

∣∣∣∣∣∣
∑

j∈Ni∩C0

3

np
w̃T (Xj −X′

j) +
∑

j∈Ni∩C1

3

np
· e−Θ(R∥µ∥2)w̃T (Xj −X′

j) +
∑

j∈Ni∩C−1

3

np
· e−Θ(R∥µ∥2)w̃T (Xj −X′

j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣


3
np (1± o(1))w̃ if j ∈ Ni ∩ C0
3
np exp(−Θ(R∥µ∥2))(1± o(1))w̃ if j ∈ Ni ∩ C1
3
np exp(−Θ(R∥µ∥2))(1± o(1))w̃ if j ∈ Ni ∩ C−1

0 if j /∈ Ni


T

j∈[n]

(X−X′)

∣∣∣∣∣∣∣∣∣
≤

∥∥∥∥∥∥∥∥∥


3
np (1± o(1))w̃ if j ∈ Ni ∩ C0
3
np exp(−Θ(R∥µ∥2))(1± o(1))w̃ if j ∈ Ni ∩ C1
3
np exp(−Θ(R∥µ∥2))(1± o(1))w̃ if j ∈ Ni ∩ C−1

0 if j /∈ Ni


j∈[n]

∥∥∥∥∥∥∥∥∥
2

∥X−X′∥2

≤
√

3

np
(1 + o(1))∥w̃∥2 ∥X−X′∥2

=

√
3

np
(1 + o(1)) ∥X−X′∥2 .

5We drop the (1± o(1)) in the first line of the computation for compactness and use ≃ as notation.

17

This shows the Lipschitz constant of f̃i(X) over Ẽ satisfies Lf̃i
= O

(
1√
np

)
. On the other hand, by520

viewing X as a function of g, it is straightforward to see that the function h(g) : Rnd → Rnd defined521

by h(g)
def
= X(g) has Lipschitz constant Lh = σ, as522

∥h(g)− h(g′)∥2 = ∥εµ+ σg − (εµ+ σg′)∥2 = σ∥g − g′∥2.

Therefore, since fi(g) = f̃i(h(g)) and g ∈ E if and only if X ∈ Ẽ, we have that, conditioning on E ′,523

the function x̂i = fi(g) is Lipschitz continuous with Lipschitz constant Lfi = Lf̃i
Lh = O

(
σ√
np

)
.524

Since g ∼ N (0, Ind), we know that x̂i is sub-Gaussian with sub-Gaussian constant σ̃2 = L2
fi

=525

O
(

σ2

np

)
.526

The following lemma will be used for bounding the misclassification probability.527

Lemma 11 ([30]). Let x1, . . . , xn be sub-Gaussian random variables with the same mean and528

sub-Gaussian parameter σ̃2. Then,529

E

[
max
i∈[n]

(xi −E[xi])

]
≤ σ̃

√
2 log n.

Moreover, for any t > 0530

Pr

[
max
i∈[n]

(xi −E[xi]) > t

]
≤ 2n exp

(
− t2

2σ̃2

)
.

We bound the probability of misclassification531

Pr

[
max
i∈C0

x̂i ≥ 0

]
≤ Pr

[
max
i∈C0

x̂i > t+E[x̂i]

]
,

for t < |E[x̂i]| = ∥µ∥2

2 (1 ± o(1)). By Lemma 10, picking t = Θ
(
σ
√
log |C0|

)
and applying532

Lemma 11 implies that the above probability is 1/poly(n).533

Similarly for class C1 ∪ C−1 we have that the misclassification probability is534

Pr

[
min

i∈C1∪C−1

x̂i ≤ 0

]
= Pr

[
− max

i∈C1∪C−1

(−x̂i) ≤ 0

]
= Pr

[
max

i∈C1∪C−1

(−x̂i) ≥ 0

]
≤ Pr

[
max

i∈C1∪C−1

−x̂i > t−E[x̂i]

]
,

for t < E[x̂i]. Picking t = Θ
(
σ
√
log |C1 ∪ C−1|

)
and applying Lemma 11 and a union bound over535

the misclassification probabilities of both classes conclude the proof of the corollary.536

Combining Theorem 9 with Lemma 3, we immediately get Corollary 2 which we restate below.537

Corollary 12. Suppose p, q = Ω(log2 n/n) and ∥µ∥ ≥ ω
(
σ
√

(p+2q) logn
n(p−q)2

)
. Then, there is a choice538

of attention architecture Ψ such that, with probability at least 1 − o(1) over the data (X,A) ∼539

CSBM(n, p, q,µ, σ2), CAT separates nodes C0 from C1 ∪ C−1.540

18

B Synthetic experiments541

In this section, we present the complete results for the synthetic data experiments of §6.1. First, we542

describe the parameterization we use for the 1-layer GCN, GAT, and CAT models; then, we verify the543

behavior of the normalized score function (γij) matches that of the theory presented in Corollary 8.544

In particular, we visualize the average of the following three groups of gammas (Fig. 4):545

• Gammas γij included in i, j ∈ C2
0 ∪ C2

1 . Solid lines.546

• Gammas γij included in i, j ∈ C−1 × C1. Dashed lines.547

• The rest of gammas. Dotted lines.548

For completeness, we also include the empirical results that validate Theorem 1 and Corollary 2,549

which were discussed already in §6.1.550

Experimental setup. We assume the following parametrization for the 1-layer GCN, GAT, and CAT:551

h′
i =

∑
j∈Ni

γijw̃
TXj

− C · ∥µ∥/2 , (8)

where Ni are the set of neighbors of node i, Xj are the features of node j—obtained from the552

CSBM described in §4, and h′
i are the logits of the prediction of node i. Note that for GCN we have553

γij =
1

|N∗
i |

. Otherwise, we consider the following parameterization of the score function Ψ:554

γij =
exp (Ψ(hi,hj))∑

k∈N∗
i
exp(Ψ(hi,hk))

where (9)

Ψ(hi,hj)
def
= rT · LeakyRelu

(
S ·

[
w̃Thi

w̃Thj

]
+ b

)
. (10)

For these experiments, we define the parameters w̃, S, b and r as in the proofs in Appendix A:555

w̃
def
=

µ

∥µ∥ , S
def
=



1 1
−1 −1
1 −1
−1 1
0 1
1 0
0 −1
−1 0


, b

def
=



−3/2
−3/2
−3/2
−3/2
−1/2
−1/2
−1/2
−1/2


· ∥µ∥ · C, r

def
= R ·



2
−2
−2
2
−1
−1
−1
−1


, (11)

where R > 0 and C > 0 are arbitrary scaling parameters. Both C and R and input to the score556

function are set different for each of the models, as indicated in Table 4. In particular, we set R = 7
∥µ∥557

for both GAT and CAT such that: i) all γij are distinguishable as we decrease ∥µ∥; and ii) we avoid558

numerical instabilities in the implementation when computing the exponential of R× ∥µ∥ in order559

to obtain γij (see Corollary 8), as the exponential of small or large values leads to under/overflow560

issues. As for C, we set C = 1 for GAT and C = (p− q)/(p+ 2q) for CAT such that we counteract561

the fact that the distance between classes shrink as we increase q, see Lemma 3:562

Table 4: Parameters for the synthetic experiments.

Model C R hi

GCN 0 − −
GAT 1 7

∥µ∥ Xi

CAT p−q
p+2q

7
∥µ∥

1
|N∗

i |
∑

k∈N∗
i
Xk

Regarding the data model, we set (as described in §6.1) n = 10000, p = 0.5, σ = 0.1, and563

d = n/
(
5 log2(n)

)
. We set the slope of the LeakyReLU activation to β = 1/5 for the GAT and564

19

0 2 4 6 8

||µ||
40

50

60

70

80

90

100

GCN GAT CAT

0.2 0.4
q

50

75

100

A
cc

ur
ac

y
(%

)

||µ||=0.1

0.2 0.4
q

60

80

100
||µ||=4.3

10−1 101

||µ||

50

75

100
q=0.1

10−1 101

||µ||

50

75

100
q=0.3

0 2 4 6 8

||µ||
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

Va
lu

e

GAT

γ0,0, γ1,1 γ−1,1 γ0,−1, γ0,1, γ−1,0, γ−1,−1, γ1,0, γ1,−1

0.2 0.4
q

0.000

0.002

0.004

0.006

γ
i,j

GAT

0.2 0.4
q

0.000

0.002

0.004

0.006

γ
i,j

GAT

10−1 101

||µ||

0.000

0.002

γ
i,j

GAT

10−1 101

||µ||

0.0000

0.0005

0.0010

γ
i,j

GAT

0.2 0.4
q

0.000

0.002

0.004

0.006

γ
i,j

CAT

0.2 0.4
q

0.000

0.002

0.004

0.006

γ
i,j

CAT

10−1 101

||µ||

0.000

0.002

γ
i,j

CAT

10−1 101

||µ||

0.0005

0.0010

γ
i,j

CAT

Figure 4: Synthetic data results. On the top row, we show the node classification, and in the following
two rows we show the γij values for GAT and CAT respectively. In the two left-most figures, we
show how the results vary with the noise level q for ∥µ∥ = 0.1 and ∥µ∥ = 4.3. In the two right-most
figures, we show how the results vary with the norm of the means ∥µ∥ for q = 0.1 and q = 0.3.
We use two vertical lines to present the classification threshold stated in Theorem 1 (solid line) and
Corollary 2 (dashed line).

β = 0.01 for CAT, such that the proof of Corollary 8 is valid. As described in the main paper, to565

assess the sensitivity to structural noise, we present the complete results for two sets of experiments.566

First, we vary the noise level q between 0 and 0.5, fixing the mean vector µ. We test two values567

of ∥µ∥: the first corresponds to the easy regime (∥µ∥ = 10σ
√
2 log n ≈ 4.3) where classes are568

far apart; and the second correspond to the hard regime (∥µ∥ = σ = 0.1) where the distance569

between the clusters is small. In the second experiment we modify instead the distance between570

the means, sweeping ∥µ∥ in the range
[
σ/20, 20σ

√
2 log n

]
which corresponds to [0.005, 8.58], and571

thus covering the transition from the hard setting (small ∥µ∥) to the easy one (large ∥µ∥). In these572

experiments, we fix q to 0.1 (low noise) and 0.3 (high noise).573

Results are summarized in Fig. 4. The top row contains the node classification performance for each574

of the models (i.e., Fig. 1), the next two rows contain the γij values for GAT and CAT respectively.575

The two left-most columns of Fig. 4 show the results for the hard and easy regimes, respectively, as576

we vary the noise level q. In the hard regime, we observe that GAT is unable to achieve separation for577

any value of q, whereas CAT achieves perfect classification when q is small enough. The gamma578

plots help shed some light on this question. For GAT, we observe that the gammas represented with579

the dotted and solid lines collapse for any value of q (see middle plot), while this does not happen for580

CAT when the noise level is low (see bottom plot). This exemplifies the advantage of CAT over GAT581

as stated in Corollary 2. When the distance between the means is large enough, we see that GAT582

achieves perfect results independently of q, as stated in Theorem 1. We also observe that, in this case,583

the gammas represented with the dotted and solid lines do not collapse for any value of q. In contrast,584

as we increase q, CAT fails to satisfy the condition in Corollary 2, and therefore achieves inferior585

performance. We note that the low performance is due to the fact that all gammas collapse to the586

same value for large noise levels.587

For the second set of experiments (two right-most columns of Fig. 1), where we fix q and sweep588

∥µ∥, we observe that, for both values of q, there exists a transition in the accuracy of both GAT589

20

0 2 4 6 8

||µ||

50

60

70

80

90

100

110

GCN GAT CAT L-CAT

0.2 0.4
q

50

100

A
cc

ur
ac

y
(%

)

||µ||=0.1

0.2 0.4
q

50

75

100

||µ||=4.3

10−1 101

||µ||

50

100

q=0.1

10−1 101

||µ||

50

75

100

q=0.3

0 2 4 6 8

||µ||

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

λ

L-CAT

λ1 λ2

0.2 0.4
q

0.0

0.5

1.0

λ

L-CAT

0.2 0.4
q

0.0

0.5

1.0

λ

L-CAT

10−1 101

||µ||

0

1

λ

L-CAT

10−1 101

||µ||

0

1

λ

L-CAT

Figure 5: Synthetic data results learning C, λ1 and λ2. On the top row, we show the node classification
accuracy, and in the bottom row we show the learned values of λ1 and λ2 for L-CAT. In the two
left-most figures, we show how the results vary with the noise level q for ∥µ∥ = 0.1 and ∥µ∥ = 4.3.
In the two right-most figures, we show how the results vary with the norm of the means ∥µ∥ for
q = 0.1 and q = 0.3. We use two vertical lines to present the classification threshold stated in
Theorem 1 (solid line) and Corollary 2 (dashed line).

and CAT as a function of ∥µ∥. As shown in the main manuscript, GAT achieves perfect accuracy590

when the distance between the means satisfies the condition in Theorem 1 (solid vertical line in591

Fig. 1). Moreover, we can see the improvement CAT obtains over GAT. Indeed, when ∥µ∥ satisfies592

the conditions of Corollary 2 (dashed vertical line in Fig. 1), the classification threshold is improved.593

As we increase q, we see that the gap between the two vertical lines decreases, which means that the594

improvement decreases as q increments, exactly as stated in Corollary 2. This transition from the595

hard regime to the easy regime is also observed in the gamma plots: we observe the largest difference596

in value between the different groups of lambdas for values of ∥µ∥ that satisfy the condition in597

Theorem 1 (that is to the right of the vertical lines).598

B.1 Other experiments599

In the following, we extend the results for the synthetic data presented above. In particular, we aim to600

evaluate if L-CAT is able to achieve top performance regardless of the scenario. That is, we want to601

evaluate if L-CAT consistently performs at least as good as the best-performing model. We change602

the fixed-parameter setting of the previous section and, instead, we evaluate the performance of GCN,603

GAT, CAT and L-CAT when we learn the model-dependent parameters.604

Experimental setup. We assume the same parametrization for the 1-layer GCN, GAT and CAT605

described in Eq. 8 and Eq. 10. For L-CAT, we add the parameters λ1 and λ2, as indicated in Eq. 7.606

We fix the parameters shared among the models, that is, w̃, S, b, r, and R, with the values indicated607

in Eq. 11. Different from previous experiments, we now learn C and, for L-CAT, we also learn λ1608

and λ2. We choose to fix part of the parameters (instead of learning them all) to keep the problem as609

similar as possible to the theoretical analysis we provided in §4 and Appendix A. If we instead learn610

all the parameters, it takes a single dimension of the features to be (close to) linearly separable to find611

a solution that achieves a similar performance regardless of the model, which hinders the analysis.612

This is a consequence of the probabilistic nature of the features. One way of solving this issue would613

be to make n big enough. Instead, we opt to have a fixed n and reduce the degrees of freedom of the614

models by fixing the parameters shared across all models. The rest of the experimental setup matches615

the one from Appendix B. Additionally, we use the Adam optimizer [24] with a learning rate of 0.05,616

and we train for 100.617

Results are summarized in Fig. 5. The top row contains the node classification performance for618

every model, while the bottom row contains the learned values of λ1 (solid line) and λ2 (dashed line)619

21

with L-CAT. The two left-most columns of Fig. 5 show the results for the hard and easy regimes,620

respectively, as we vary the noise level q. In the hard regime, we see rather noisy results. Still,621

the behaviour is similar to that of Fig. 4: the performance of CAT degrades as we increase q. We622

also observe that, on average, CAT outperforms GAT. In this case, we observe that L-CAT achieves623

similar performance as CAT, which can be explained by inspecting the learned values of lambda in624

the bottom row. We observe that λ1 = 1 and λ2 ≥ 0.5 on average for all values of q. This indicates625

that L-CAT is closer to CAT than to GAT. When the distance between the means is large enough (i.e.,626

∥µ∥ = 4.3), we see that GAT achieves perfect results independently of q while the performance of627

CAT deteriorates with large values of q, the same trend as in Fig. 4. Remarkably, we observe that628

L-CAT also achieves perfect results independently of q. If we inspect the lambda values, we first see629

that λ = 1 for all q, thus the interpolation happens between CAT and GAT. Looking at the values of630

λ2, we observe that, for small values of q, λ2 is pretty noisy, which is expected since any solution631

achieves perfect performance. Interestingly, we have that λ2 = 0 for large values of q, with negligible632

variance. This indicates that L-CAT learns that it must behave like GAT in order to perform well.633

For the second set of experiments (two right-most columns of Fig. 5), we fix q and sweep ∥µ∥ like634

we did in Fig. 4. Here, we observe a similar trend: for both values of q, there exists a transition in635

the accuracy of both GAT and CAT as a function of ∥µ∥. Yet once again, we observe that L-CAT636

consistently achieves a similar performance to the best-performing model in every situation.637

C Dataset description638

We present further details about the datasets used in our experiments, summarized in Table 5. All639

datasets are undirected (or transformed to undirected otherwise) and transductive.640

The upper rows of the table refer to datasets used in §6.2 taken from the PyTorch Geometric641

framework.6 The following paragraphs present a short description of such datasets.642

Amazon Computers & Photos are datasets taken from [34], in which nodes represent products, and643

edges indicate that the products are usually bought together. The node features are a Bag of Words644

(BoW) representation of the product reviews. The task is to predict the category of the products.645

GitHub is a dataset introduced in [31], in which nodes correspond to developers, and edges indicate646

mutual follow relationship. Node features are embeddings extracted from the developer’s starred647

repositories and profile information (e.g., location or employer). The task is to infer whether a node648

relates to web or machine learning development.649

FacebookPagePage is a dataset introduced in [31], where nodes are Facebook pages, and edges650

imply mutual likes between the pages. Nodes features are text embeddings extracted from the pages’651

description. The task consist on identifying the page’s category.652

TwitchEN is a dataset introduced in [31]. Here, nodes correspond to Twitch gamers, and links reveal653

mutual friendship. Node features are an embedding of games liked, location, and streaming habits.654

The task is to infer if a gamer uses explicit content.655

Coauthor Physics & CS are datasets introduced in [34]. In this case, nodes represent authors which656

are connected with an edge if they have co-authored a paper. Node features are BoW representations657

of the keywords of the author’s papers. The task consist on mapping each author to their corresponding658

field of study.659

DBLP is a dataset introduced in [7] that represents a citation network. In this dataset, nodes represent660

papers and edges correspond to citations. Node features are BoW representations of the keywords of661

the papers. The task is to predict the research area of the papers.662

PubMed, Cora & CiteSeer are citation networks introduced in [46]. Nodes represent documents,663

and edges refer to citations between the documents. Node features are BoW representations of the664

documents. The task is to infer the topic of the documents.665

The bottom rows of Table 5 refer to the datasets from Open Graph Benchmark (OGB) [20] 7 used in666

§6.3. We include a short description of them in the paragraphs below.667

6https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
7https://ogb.stanford.edu/docs/nodeprop

22

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://ogb.stanford.edu/docs/nodeprop

ogbn-arxiv is a citation network of computer science papers in arXiv [40]. Nodes represent papers,668

and directed edges refer to citations among them. Node features are embeddings of the title and669

abstract of the papers. The task is to predict the research area of the nodes.670

ogbn-products contains a co-purchasing network [6]. Nodes represent products, and links are present671

whenever two products are bought together. Node features are embeddings of a BoW representation672

of the product description. The task is to infer the category of the products.673

ogbn-mag is a heterogeneous network formed from a subgraph of the Microsoft Academic Graph674

(MAG) [40]. Nodes can belong to one of these four types: authors, papers, institutions and fields of675

study. Moreover, directed edges belong to one of the following categories: “author is affiliated with676

an institution,” “author has written a paper,” “paper cites a paper,” and “paper belongs to a research677

area.” Only nodes that are papers contain node features, which are a text embedding of the document678

content. The task is to predict the venue of the nodes that are papers.679

ogbn-proteins is a network whose nodes represent proteins and edges indicate different types of680

associations among them. This dataset does not contain node features. The tasks are to predict681

multiple protein functions, each of them being a binary classification problem.682

Table 5: Dataset statistics. On the top part of the table, we show the datasets used in §6.2. On the
bottom part of the table, we show the datasets used in §6.3.

Name #Nodes #Edges Avg.
degree

#Node
feats.

#Edge
feats. #Tasks Task Type

AmazonComp. 13,752 491,722 35.76 767 - 1 10-class clf.
AmazonPhoto 7,650 238,162 31.13 745 - 1 8-class clf.
GitHub 37,700 578,006 15.33 128 - 1 Binary clf.
FacebookP. 22,470 342,004 15.22 128 - 1 4-class clf.
CoauthorPh. 34,493 495,924 14.38 8415 - 1 5-class clf.
TwitchEN 7,126 77,774 10.91 128 - 1 Binary clf.
CoauthorCS 18,333 163,788 8.93 6805 - 1 15-class clf.
DBLP 17,716 105,734 5.97 1639 - 1 4-class clf.
PubMed 19,717 88,648 4.50 500 - 1 3-class clf.
Cora 2,708 10,556 3.90 1433 - 1 7-class clf.
CiteSeer 3,327 9,104 2.74 3703 - 1 6-class clf.

ogbn-arxiv 169,343 1,166,243 6.89 128 - 1 40-class clf.
ogbn-products 2,449,029 123,718,280 50.52 100 - 1 47-class clf.
ogbn-mag 1,939,743 21,111,007 18.61 128 4 1 349-class clf.
ogbn-proteins 132,534 79,122,504 597.00 - 8 112 Multi-task

D Real data experiments683

D.1 Experimental details684

Computational resources. We used CPU cores to run this set of experiments. In particular, for each685

trial, we used 2 CPU cores and up to 16GB of memory. We ran the experiments in parallel using a686

shared cluster with 10000 CPU cores approximately.687

General experimental setup. As mentioned in §6.2, we repeat all experiments 10 times, which688

correspond to 10 different random initialization of the parameters of the GNNs. In all cases, we689

choose the model parameters with the best validation performance during training. In order to run the690

experiments and collect the results, we used the GraphGym framework [47], which includes the data691

processing and loading of the datasets, as well as the evaluation and collection of the results. We split692

the datasets in 70% training, 15% validation, and 15% test.693

We cross-validate the number of message-passing layers in the network (2, 3, 4), as well as the694

learning rate ([0.01, 0.005]). Then, we report the results of the best validation error among the695

4 possible combinations. However, in practice we found the best performance always to use 4696

message-passing layers, and thus the only difference in configuration lies in the learning rate.697

23

We use residual connections between the GNN layers, 4 heads in the attention models, and the698

Parametric ReLU (PReLU) [19] as the nonlinear activation function. We do not use batch nor-699

malization [22], nor dropout [35]. We use the Adam optimizer [24] with β = (0.9, 0.999), and700

an exponential learning-rate scheduler with γ = 0.998. We train all the models for 2500 epochs.701

Importantly, we do not use weight decay, since this will bias the solution towards λ1 = 0 and λ2 = 1.702

We use the Pytorch Geometric [13] implementation of L-CAT for all experiments, switching between703

models by properly by setting λ1 and λ2. We parametrize λ1 and λ2 as free-parameters in log-space704

that pass through a sigmoid function—i.e., sigmoid(10x)—such that they are constrained to the unit705

interval, and they are learned quickly.706

D.2 Additional results707

Table 6 shows the results presented in the main paper (with the addition of a dense feed-forward708

network), while Table 7 presents the results for the remaining datasets, with smaller average degree.709

If we focus on Table 7, we observe that all models perform equally well, yet in a few cases CAT and710

L-CAT are significantly better than the baselines—e.g., L-CATv2 in CoauthorCS, or L-CAT in Cora.711

Following a similar discussion as the one presented in the main paper, these results indicates that712

L-CAT achieves similar or better performance than baseline models and thus, should be the preferred713

architecture.714

Competitive performance without the graph. We also include in Tables 6 and 7 the performance715

of a feed-forward network, referred to as Dense (first row). Note that the only data available to this716

model are the node features, and thus no graph information is provided. Therefore, we should expect a717

significant drop in performance, which indeed happens for some datasets such as Amazon Computers718

(≈ 7% drop), FacebookPagePage (≈ 20% drop), DBLP (≈ 9% drop) and Cora (≈ 14% drop). Still,719

we found that for other commonly used datasets the performance is similar, e.g., Coauthor Physics720

and PubMed; or it is even better CoauthorCS. These results manifest the importance of a proper721

benchmarking, and of carefully considering the datasets used to evaluate GNN models.722

Table 6: Test accuracy (%) of the considered convolution and attention models for different datasets
(sorted by their average node degree), and averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Dataset Amazon
Computers

Amazon
Photo GitHub Facebook

PagePage
Coauthor
Physics TwitchEN

Avg. Deg. 35.76 31.13 15.33 15.22 14.38 10.91

Dense 83.73 ± 0.34 91.74 ± 0.46 81.21 ± 0.30 75.89 ± 0.66 95.41 ± 0.14 56.26 ± 1.74

GCN 90.59 ± 0.36 95.13 ± 0.57 84.13 ± 0.44 94.76 ± 0.19 96.36 ± 0.10 57.83 ± 1.13

GAT 89.59 ± 0.61 94.02 ± 0.66 83.31 ± 0.18 94.16 ± 0.48 96.36 ± 0.10 57.59 ± 1.20
CAT 90.58 ± 0.40 94.77 ± 0.47 84.11 ± 0.66 94.71 ± 0.30 96.40 ± 0.10 58.09 ± 1.61
L-CAT 90.34 ± 0.47 94.93 ± 0.37 84.05 ± 0.70 94.81 ± 0.25 96.35 ± 0.10 57.88 ± 2.07

GATv2 89.49 ± 0.53 93.47 ± 0.62 82.92 ± 0.45 93.44 ± 0.30 96.24 ± 0.19 57.70 ± 1.17
CATv2 90.44 ± 0.46 94.81 ± 0.55 84.10 ± 0.88 94.27 ± 0.31 96.34 ± 0.12 57.99 ± 2.02
L-CATv2 90.33 ± 0.44 94.79 ± 0.61 84.31 ± 0.59 94.44 ± 0.39 96.29 ± 0.13 57.89 ± 1.53

E Open Graph Benchmark experiments723

E.1 Experimental details724

Computational resources. For this set of experiments, we had at our disposal a set of 16 Tesla725

V100-SXM GPUs with 160 CPU cores, shared among the rest of the department.726

Statistical significance. For each CAT and L-CAT model, we highlight significant improvements727

according to a two-sided paired t-test (α = 0.05), with respect to its corresponding baseline model.728

For example, for L-CATv2 with 8 heads we perform the test with respect to GATv2 with 8 heads.729

General experimental setup. As mentioned in §6.3, we repeat all experiments with OGB datasets730

5 times. In all cases, we choose the model parameters with the best validation performance during731

24

Table 7: Test accuracy (%) of the considered convolution and attention models for different datasets
(sorted by their average node degree), and averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Model CoauthorCS DBLP PubMed Cora CiteSeer
Avg. Deg. 8.93 5.97 4.5 3.9 2.74

Dense 94.88 ± 0.21 75.46 ± 0.27 88.13 ± 0.33 72.75 ± 1.72 73.02 ± 1.01

GCN 93.85 ± 0.23 84.18 ± 0.40 88.50 ± 0.18 86.68 ± 0.78 75.76 ± 1.09

GAT 93.80 ± 0.38 84.15 ± 0.39 88.62 ± 0.18 85.95 ± 0.95 75.40 ± 1.43
CAT 93.70 ± 0.31 84.10 ± 0.29 88.58 ± 0.25 85.85 ± 0.79 75.64 ± 0.91
L-CAT 93.65 ± 0.23 84.13 ± 0.26 88.45 ± 0.32 86.66 ± 0.87 75.04 ± 1.12

GATv2 93.19 ± 0.64 84.33 ± 0.18 88.52 ± 0.27 85.65 ± 1.01 75.14 ± 1.20
CATv2 93.51 ± 0.34 84.15 ± 0.41 88.54 ± 0.29 85.50 ± 0.94 74.68 ± 1.30
L-CATv2 93.65 ± 0.20 84.31 ± 0.31 88.48 ± 0.24 85.75 ± 0.72 75.04 ± 1.30

training. Moreover, when we show the results without specifying the number of heads, we take the732

model with the best validation error among the two models with 1 and 8 heads.733

We use the same implementation of L-CAT for all experiments, switching between models by properly734

setting λ1 and λ2. Experiments on arxiv, mag, products use a version of L-CAT implemented in735

Pytorch Geometric [13]. Experiments on proteins use a version of L-CAT implemented in DGL [41].736

We parametrize λ1 and λ2 as free-parameters in log-space that pass through a sigmoid function—i.e.,737

sigmoid(10x)—such that they are constrained to the unit interval, and they are learned quickly.738

ArXiv. As described in §6.3, we use the example code from the OGB framework [20]. The network739

is composed of 3 GNN layers with a hidden size of 128. We use batch normalization [22] and a740

dropout [35] of 0.5 between the GNN layers, and Adam [24] with a learning rate of 0.01. We use the741

ReLU as activation function. For the initial experiments, we train for 1500 epochs, while we train for742

500 epochs for the noise experiments in §6.3.1. This is justified given the convergence plots in Fig. 2.743

MAG. We adapted the official code from [8]. The network is composed of 2 layers with 128 hidden744

channels. This time, we use layer normalization [2] and a dropout of 0.5 between the layers. Again,745

we use ReLU as the activation function, and add residual connections to the network. As with arxiv,746

we use Adam [24] with learning rate 0.01. We set a batch size of 20000 and train for 100 epochs.747

Products. We use the same setup as [8], with a network of 3 GNN layers and 128 hidden dimensions.748

We apply residual connections once again, with a dropout [35] of 0.5 between layers. This time, we749

use ELU as the activation function. The batch size is set to 256. Adam [24] is again the optimizer in750

use, this time with a learning rate of 0.001. We train for 100 epochs, although we apply early stopping751

whenever the validation accuracy stops increasing for more than 10 epochs. Note the training split of752

this dataset only contains 8% of the data.753

Proteins. We follow once more the setup of [8]. The network we use has 6 GNN layers of hidden754

size 64. Dropout [35] is set to 0.25 between layers, with an input dropout of 0.1. At the beginning755

of the network, we place a linear layer followed by a ReLU activation to encode the nodes, and a756

linear layer at the end of the network to predict the class. Moreover, we use batch normalization [22]757

between layers and ReLU as the activation function. We train the model for 1200 epochs at most,758

with early stopping after not improving for 10 epochs.759

E.2 Additional results760

We show in Tables 8 to 10 the results of the main paper for the arxiv, mag, products datasets,761

respectively, without selecting the best configuration for each type of model. That is, we show the762

results for both number of heads. Note that we already show the full table of results for the protein763

datasets in the main paper (Table 3). All the trends discussed in the main paper hold.764

Extrapolation ablation study. Due to page constraints, these results were not added to the main765

paper. Here, we study two questions. First, how important are λ1 and λ2 in the formulation of L-CAT766

(Eq. 7)? For the sake of completeness, the second question we attempt to answer here is whether we767

25

Table 8: Test accuracy on the arxiv dataset for attention models using 1 head and 8 heads.

GCN GAT CAT L-CAT GATv2 CATv2 L-CATv2

1h 71.58 ± 0.19 71.58 ± 0.15 72.04 ± 0.20 72.00 ± 0.11 71.70 ± 0.14 72.02 ± 0.08 71.96 ± 0.21
8h − 71.63 ± 0.11 72.14 ± 0.20 71.98 ± 0.08 71.72 ± 0.24 71.76 ± 0.14 71.91 ± 0.16

Table 9: Test accuracy on the mag dataset for attention models using 1 head and 8 heads.

GCN GAT CAT L-CAT GATv2 CATv2 L-CATv2

1h 32.77 ± 0.36 32.35 ± 0.24 31.98 ± 0.46 32.47 ± 0.38 32.76 ± 0.18 32.43 ± 0.22 32.68 ± 0.50
8h − 32.15 ± 0.31 31.58 ± 0.22 32.49 ± 0.21 32.85 ± 0.21 32.34 ± 0.18 32.38 ± 0.28

Table 10: Test accuracy on the products dataset for attention models using 1 head and 8 heads.

GCN GAT CAT L-CAT GATv2 CATv2 L-CATv2

1h 74.12 ± 1.20 78.53 ± 0.91 77.38 ± 0.36 77.19 ± 1.11 73.81 ± 0.39 74.81 ± 1.12 76.37 ± 0.92
8h − 78.23 ± 0.25 76.63 ± 1.15 76.56 ± 0.45 76.40 ± 0.71 75.20 ± 0.92 74.70 ± 0.28

can obtain similar performance by just interpolating between GCN and GAT (fixing λ2 = 0)? Note768

that we theoretically showed in §§4 and 6.1 that CAT fills up a gap between GCN and GAT, making769

it preferable in certain settings.770

To this end, we repeat the experiments for network-initialization robustness in §6.3.2, since they771

showed to be the best ones to tell apart the performance across models. We include three additional772

models: GCN-GAT, which interpolates between GCN and GAT (or GATv2) by learning λ1 and fixing773

λ2 = 0; CAT-λ1 which interpolates between GCN and CAT by learning λ1 and fixing λ2 = 1; and774

CAT-λ2, which interpolates between GAT and CAT by learning λ2 and fixing λ1 = 1.775

Results using GAT and shown in Table 11, and using GATv2 in Table 12. We can observe that776

GCN-GAT obtains results in between GCN and GAT for all settings, despite being able to interpolate777

between both layers in each of the six layers of the network. Regarding learning λ1 and λ2, we can778

observe that there is a clear difference between learning boths (L-CAT), and learning a single one.779

For both attention models, CAT-λ1 obtains better results than CAT-λ2 in all settings, but uniform780

with 8 heads. Still, the results of both variants are substantially worse than those of L-CAT in all781

cases, demonstrating the importance of learning to interpolate between the three layer types.782

Table 11: Test accuracy on the proteins dataset for GCN [25] and GAT [38] attention models using
two network initializations, and two numbers of heads (1 and 8).

GCN GCN-GAT GAT CAT L-CAT CAT-λ1 CAT-λ2

uniform initialization

1h 61.08 ± 2.86 70.44 ± 1.56 59.73 ± 4.04 74.19 ± 0.72 77.77 ± 1.44 71.97 ± 3.78 73.55 ± 1.36
8h − 68.51 ± 0.91 72.23 ± 3.20 73.60 ± 1.27 78.85 ± 1.76 76.43 ± 2.47 72.76 ± 2.79

normal initialization

1h 80.10 ± 0.61 66.51 ± 3.23 66.38 ± 7.76 73.26 ± 1.84 78.06 ± 1.40 76.77 ± 1.91 73.39 ± 1.25
8h − 69.93 ± 1.93 79.08 ± 1.64 74.67 ± 1.29 79.63 ± 0.79 78.86 ± 1.07 73.32 ± 1.15

Table 12: Test accuracy on the proteins dataset for GCN [25] and GATv2 [8] attention models using
two network initializations, and two numbers of heads (1 and 8).

GCN GCN-GATv2 GATv2 CATv2 L-CATv2 CATv2-λ1 CATv2-λ2

uniform initialization

1h 61.08 ± 2.86 69.69 ± 1.59 59.85 ± 3.05 64.32 ± 2.61 79.08 ± 1.06 63.24 ± 1.55 73.41 ± 0.34
8h − 69.94 ± 1.62 75.21 ± 1.80 74.16 ± 1.45 78.77 ± 1.09 77.61 ± 1.32 73.96 ± 1.27

normal initialization

1h 80.10 ± 0.61 68.54 ± 1.63 69.13 ± 9.48 74.33 ± 1.06 79.07 ± 1.09 78.41 ± 0.93 74.07 ± 1.17
8h − 68.71 ± 1.96 78.65 ± 1.61 73.40 ± 0.62 79.30 ± 0.55 78.76 ± 1.41 73.22 ± 0.77

26

References783

[1] T.W. Anderson. An introduction to multivariate statistical analysis. John Wiley & Sons, 2003.784

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint785

arXiv:1607.06450, 2016.786

[3] Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-787

supervised classification: Improved linear separability and out-of-distribution generalization. In788

International Conference on Machine Learning (ICML). PMLR, 2021.789

[4] Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Effects of graph convolutions790

in deep networks. arXiv preprint arXiv:2204.09297, 2022.791

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius792

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan793

Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint794

arXiv:1806.01261, 2018.795

[6] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme796

classification repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/797

downloads/XC/XMLRepository.html.798

[7] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsu-799

pervised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.800

[8] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In801

International Conference on Learning Representations (ICLR), 2022.802

[9] Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y Hammerla. Relational graph803

attention networks. arXiv preprint arXiv:1904.05811, 2019.804

[10] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal805

neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems806

(NeurIPS), 33, 2020.807

[11] Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual808

stochastic block models. Advances in Neural Information Processing Systems (NeurIPS), 31,809

2018.810

[12] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.811

arXiv preprint arXiv:2012.09699, 2020.812

[13] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.813

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.814

[14] Kimon Fountoulakis, Amit Levi, Shenghao Yang, Aseem Baranwal, and Aukosh Jagannath.815

Graph attention retrospective. arXiv preprint arXiv:2202.13060, 2022.816

[15] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.817

Neural message passing for quantum chemistry. In International Conference on Machine818

Learning (ICML), 2017.819

[16] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward820

neural networks. In International Conference on Artificial Intelligence and Statistics (AISTATS),821

2010.822

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large823

graphs. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, 2017.824

[18] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods825

and applications. IEEE Data Eng. Bull., 40, 2017.826

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:827

Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE828

international conference on computer vision, 2015.829

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele830

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.831

Advances in Neural Information Processing Systems (NeurIPS), 33:22118–22133, 2020.832

[21] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In833

The Web Conference (WWW), 2020.834

27

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

[22] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training835

by reducing internal covariate shift. In International Conference on Machine Learning (ICML).836

PMLR, 2015.837

[23] Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design838

with self-supervision. In International Conference on Learning Representations (ICLR), 2021.839

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Inter-840

national Conference on Machine Learning (ICML), 2015. URL http://arxiv.org/abs/841

1412.6980.842

[25] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional843

networks. In International Conference on Learning Representations (ICLR), 2017.844

[26] Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and gen-845

eralization in graph neural networks. Advances in Neural Information Processing Systems846

(NeurIPS), 32, 2019.847

[27] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.848

Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-849

cessing Systems (NeurIPS), 34, 2021.850

[28] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh. Attention851

models in graphs: A survey. ACM Transactions on Knowledge Discovery from Data (TKDD),852

13, 2019.853

[29] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,854

Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural855

networks. In AAAI conference on artificial intelligence, volume 33, 2019.856

[30] P. Rigollet and J.-C. Hütter. High dimensional statistics. Lecture notes for course 18S997, 813:857

814, 2015.858

[31] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.859

Journal of Complex Networks, 2021.860

[32] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.861

The graph neural network model. IEEE transactions on neural networks, 20, 2008.862

[33] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-863

Rad. Collective classification in network data. AI magazine, 29(3), 2008.864

[34] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.865

Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.866

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.867

Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine868

Learning Research, 15(56):1929–1958, 2014.869

[36] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph870

neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.871

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,872

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information873

Processing Systems (NeurIPS), 30, 2017.874

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua875

Bengio. Graph attention networks. In International Conference on Learning Representations876

(ICLR), 2018.877

[39] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural878

networks. In International Joint Conference on Artificial Intelligence (IJCAI), 2021.879

[40] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul880

Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science881

Studies, 2020.882

[41] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,883

Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.884

Deep graph library: A graph-centric, highly-performant package for graph neural networks.885

arXiv preprint arXiv:1909.01315, 2019.886

28

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

[42] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heteroge-887

neous graph attention network. In The World Wide Web Conference (WWW), 2019.888

[43] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-889

mender systems: a survey. ACM Computing Surveys (CSUR), 2020.890

[44] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A891

comprehensive survey on graph neural networks. IEEE transactions on neural networks and892

learning systems, 32, 2020.893

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural894

networks? In International Conference on Learning Representations (ICLR), 2019.895

[46] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning896

with graph embeddings. In International conference on machine learning, 2016.897

[47] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances898

in Neural Information Processing Systems (NeurIPS), 33, 2020.899

[48] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph900

transformer networks. Advances in Neural Information Processing Systems (NeurIPS), 32,901

2019.902

29

	Introduction
	Preliminaries
	Previous work
	On the limitations of GCN and GAT networks

	Convolved attention: benefits and hurdles
	L-CAT: Learning to interpolate
	Experiments
	Synthetic data
	Real data
	Open Graph Benchmark

	Conclusions and future work
	 Appendix
	Theoretical results
	A hard example for GCN
	A solution for GAT and CAT

	Synthetic experiments
	Other experiments

	Dataset description
	Real data experiments
	Experimental details
	Additional results

	Open Graph Benchmark experiments
	Experimental details
	Additional results

