
Appendices485

A Algorithm486

Algorithm 1 Decoupled Policy Optimization

1: Input: State-only expert demonstration data D = {(si)}Ni=1, empty replay buffer B, randomly
initialized discriminator model Dφ, state transition predictor hψ and parameterized inverse
dynamics model Iφ;

2: for k = 0, 1, 2, · · · do . Pre-training stage
3: Collect trajectories {(s, a, s′, r, done)} using a random initialized policy π = Iφ(hψ) and

store in B
4: Sample (s, a, s′) ∼ B and update φ by Lφ(I)
5: Sample (s, s′) ∼ D and update ψ by Lhψ
6: end for
7: for k = 0, 1, 2, · · · do . Online training stage
8: Collect trajectories {(s, a, s′, r, done)} using current policy π = Iφ(hψ) and store in B
9: Sample (s, a, s′) ∼ B, (s, s′) ∼ D

10: Update the discriminator Dω with the loss:

LDω =− E(s,s′)∼B[logDω(s, s′)]− E(s,s′)∼D[log (1−Dω(s, s′))] , (17)

11: Update φ, ψ by Lh,Iφ,ψ
12: end for

B Proofs487

Proposition 1. Suppose Π is the policy space and P = {ρ : ρ ≥ 0} is a feasible set of OM, then a488

policy π ∈ Π corresponds to one state transition OM ρπ ∈ P . However, a state transition OM ρ ∈ P489

can correspond to more than one policy in Π.490

Proof. This is a trivial conclusion and we briefly explain a proof scratch. First, there is a one-to-one491

correspondence between the state-action OM and the policy since π = ρ(s, a)/
∫
a∗
ρ(s, a∗) da∗.492

Then it is easy to derive that there is a one-to-one correspondence between the joint OM and the493

policy since π =
∫
s′∗
ρ(s, a, s′∗) ds′∗/

∫
a∗,s′∗

ρ(s, a∗, s′∗) da∗ ds′∗. The state transition OM can be494

obtained via marginalizing the policy ρ(s, s′) =
∫
a∗
ρ(s, a∗, s′) da∗

∫
a∗,s′∗

π(a|s)T (s
′∗|s, a) da∗s

′∗.495

As a result, there is no one-to-one correspondence between ρ(s, s′) and π(a|s).496

Theorem 1 (Error Bound of DPO). Consider a deterministic environment whose transition function497

T (s, a) is deterministic and L-Lipschitz. Assume the ground-truth state transition hΩE (s) is deter-498

ministic, and for each policy π ∈ Π, its inverse dynamics Iπ is also deterministic and C-Lipschitz.499

Then for any state s, the distance between the desired state s′E and reaching state s′ sampled by the500

decoupled policy is bounded by:501

‖s′ − s′E‖ ≤ LC‖hΩE (s)− hψ(s)‖+ L‖Iπ̃(s, ŝ′)− Iφ(s, ŝ′)‖ , (18)

where π̃ is a sampling policy that covers the state transition support of the expert hyper-policy and502

ŝ′ = hψ(s) is the predicted consecutive state.503

Proof. Given a state s, the expert takes a step in a deterministic environment and get s′. We assume504

that the expert ΩE can use any feasible policy π̃ that covers the support of ΩE to reach s:505

s′E = T (s, Iπ̃(s, hΩ(s))) (19)

Similarly, using decoupled policy, the agent predict ŝ′ = hψ(s) and infer an executing action by an506

inverse dynamics model a = Iφ(s, s′), which is learned from the sampling policy π̃. Denote the507

reaching state of the agent as s′:508

s′ = T (s, Iφ(s, hψ(s))) (20)
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Therefore, the distance between s′ and s′E is:509

‖s′ − s′E‖ = ‖T (s, Iπ̃(s, hΩ(s)))− T (s, Iφ(s, hψ(s)))‖
Lets consider the deterministic transition on s is a function of a such that s′ = T s(a), then we510

continue the deviation:511

‖s′ − s′E‖ ≤ ‖T s(Iπ̃(s, hΩ(s)))− T s(Iφ(s, hψ(s)))‖
≤ L‖Iπ̃(s, hΩ(s)))− Iφ(s, hψ(s))‖
≤ L‖Iπ̃(s, hΩ(s)))− Iφ(s, hψ(s))‖
≤ L‖Iπ̃(s, hΩ(s)))− Iπ̃(s, hψ(s))) + Iπ̃(s, hψ(s)))− Iφ(s, hψ(s))‖

Similarly we also take the inverse transition on s is a function of s′ such that a = Is(s′), then we512

have that:513

‖s′ − s′E‖ ≤ L‖Isπ̃(hΩ(s)))− Isπ̃(hψ(s)))

+ Isπ̃(hψ(s)))− Isφ(hψ(s))‖
≤ L‖Isπ̃(hΩ(s)))− Isπ̃(hψ(s)))‖+ L‖Isπ̃(hψ(s)))− Isφ(hψ(s))‖
≤ LC‖hΩ(s))− hψ(s))‖+ L‖Isπ̃(ŝ′)− Isφ(ŝ′)‖ .

(21)

514

Theorem 2 (Error Bound of BCO). Consider a deterministic environment whose transition function515

T (s, a) is deterministic and L-Lipschitz, and a parameterized policy πψ(a|s) that learns from the516

label provided by a parameterized inverse dynamics model Iφ. Then for any state s, the distance517

between the desired state s′E and reaching state s′ sampled by a state-to-action policy as BCO [22]518

is bounded by:519

‖s′ − s′E‖ ≤ L
∥∥∥∥πψ(a|s)−

∫
s′∗
pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗)

∥∥∥∥
+ L

∥∥∥∥∫
s′∗
pπE (s

′∗|s)Iπ̃(a|s, s
′∗))− pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗
∥∥∥∥ , (22)

where π̃ ∈ ωE is a policy instance of the expert hyper-policy ωE such that T (s, π̃(s)) = s
′

E .520

Proof.

‖s′ − s′E‖ = ‖T (s, πψ(s))− T (s, π̃(s))‖
= ‖T s(πψ(s))− T s(π̃(s))‖
≤ L‖π̃(a|s)− πψ(a|s)‖

= L

∥∥∥∥πψ(a|s)−
∫
s′∗
pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗

+

∫
s′∗
pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗ −
∫
s′∗
pπE (s

′∗|s)Iπ̃(a|s, s
′∗)) ds

′∗
∥∥∥∥

≤ L
∥∥∥∥πψ(a|s)−

∫
s′∗
pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗)

∥∥∥∥
+ L

∥∥∥∥∫
s′∗
pπE (s

′∗|s)Iπ̃(a|s, s
′∗))− pπE (s

′∗|s)Iφ(a|s, s
′∗) ds

′∗
∥∥∥∥

(23)

521

An intuitive explanation for the bound is that BCO [22] first seeks to recover a policy that shares the522

same hyper-policy with πE via learning an inverse dynamics model and then try to conduct behavior523

cloning. Therefore the errors comes from the reconstruction error of π̃ using Iφ (the second term)524

and the fitting error of behavior cloning (the first term).525

By comparing Theorem 1 and Theorem 2, it is observed that for reaching each state, BCO requires a526

good inverse dynamics model over the state space to construct π̃ and then conduct imitation learning527

to π̃, while DPO only requires to learn a good inverse dynamics model on the predicted state and528

directly construct π̃ without the second behavior cloning step. This intuition meets our evaluation529

results in experiment Section 5.1.530
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C State Transition Occupancy Measure Matching531

In the literature of inverse reinforcement learning [21, 1, 4], the ambiguity comes from the multiple532

answer for matching the feature of the expert demonstrations. A feasible solution to this problem is the533

maximum entropy principle that models the expert data with probability models. In a recent work [17],534

the authors show that state-action OM matching corresponds to maximum entropy reinforcement535

learning. Specifically, consider modeling the state-action OM with the Boltzmann distribution as536

ρπ(s, a) ∝ exp r(s, a), then we have that:537

DKL(ρπ(s, a)‖ρπE (s, a)) =
∑
s,a

ρπ(s, a) log
ρπ(s, a)

ρπE (s, a)

=
∑
s,a

ρπ(s, a) (−r(s, a) + log ρπ(s, a)) + const

= Eπ [−r(s, a)] +
∑
s,a

ρπ(s, a) log ρπ(s, a) + const

= Eπ [−r(s, a)] +
∑
s,a

ρπ(s, a) log (ρπ(s)π(a|s)) + const

= Eπ [−r(s, a)]−H(π(a|s))−H(ρπ(s)) + const
≤ Eπ [−r(s, a)]−H(π(a|s)) + const ,

(24)

Therefore, maximizing the entropy of the state-action OM accounts for maximizing the entropy of538

the policy such that conducting maximum entropy reinforcement learning with a recovered reward539

corresponds to the upper bound of the state-action OM matching problem. Similarly, if we model the540

state transition OM with the Boltzmann distribution as ρπ(s, s′) ∝ exp r(s, s′), then:541

DKL(ρπ(s, s′)‖ρπE (s, s′)) =
∑
s,s′

ρπ(s, s′) log
ρπ(s, s′)

ρπE (s, s′)

=
∑
s,s′

ρπ(s, s′) (−r(s, s′) + log ρπ(s, s′)) + const

= Eπ [−r(s, s′)] +
∑
s,s′

ρπ(s, s′) log ρπ(s, s′) + const

= Eπ [−r(s, s′)] +
∑
s,s′

ρπ(s, s′) log ρπ(s, s′) + const

= Eπ [−r(s, s′)]−H(ρπ(s, s′)) + const .

(25)

However, maximum the entropy of the state-transition OM ρπ(s, s′) =
∫
a
π(a|s)ρπ(s)T (s′|s, a) da542

does not account for maximizing the entropy of the policy, and therefore can not alleviate the543

ambiguity.544

D Experiments545

D.1 Experiment Settings546

D.1.1 Real-World Traffic Dataset547

NGSIM I-80 dataset includes three videos with a total length of 45 minutes recorded in a fixed area,548

from which 5596 driving trajectories of different vehicles can be obtained. We choose 85% of these549

trajectories as the training set and the remaining 15% as the test set. In our experiment, the state550

space includes the position and velocity vectors of the ego vehicle and six neighbor vehicles and the551

actions are acceleration and the change in steering angle.552

D.2 Implementation Details553

For all experiments, we implement the decoupled policy network, value network as two-layer MLPs554

with 256 hidden units and the discriminator as 128 hidden units. For Mujoco benchmarks, we train555
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Figure 7: Visualization of NGSIM I-80 data set and its mapping on the simulator. This figure is borrowed from
[9].

an SAC agent to collect expert data, and take it for training the imitation learning agents without any556

normalization. At training time we remove the terminal state and episode will end until 1000 steps.557

At testing time the terminal state are set for fair comparison.558

For NGSIM driving experiment, the original state contains the information of other cars, which559

is hard to predict. Therefore, we ignore it when predicting the state transition and the action of560

inverse dynamics. During training, we randomly pick one car to be controlled by the policy at the561

beginning of every episode, and we replay the other cars by data. The episode ends when cars562

collide or successfully get through the road. To reduce the sampling time in the driving simulator,563

we implemented parallel sampling using Python multiprocessing library. In practice, we ran 25564

simulators to collect samples at the same time.565

D.3 Hyperparameters566

We list the key hyperparameters of the best performance of DPO on each task in Tab. 4. For each task,567

we first fine-tune GAIfO to find good hyperparameters for generative adversarial training, depending568

on which we further fine-tune state predictor coefficient λh and inverse dynamics coefficient λI from569

a initial hyperparameter λh = 1.0 and λI = 0.5. We find λh affects the performance most, along570

with the multi-step number k and the cycle loss. We also find that pre-training does not help a lot for571

the final performance, sometimes it will even deteriorate the training. Note that DPO needs at least572

1-step rollout for training the state transition predictor.573

Table 4: Hyperparameters of DPO.

Environments Invert. InvDouble. Hop. Walk. Half. Ant. NGSIM.
Trajectory maximum length 1000 1500
Optimizer AdamOptimizer
Discount factor γ 0.99
Replay buffer size 2e5 2e6
Batch size 256 1024
State predictor coefficient λh 1.0 0.35 1.2 1.0
Tuning range of λh [1.0] [0.3,0.35,0.45,0.5,1.0] [0.9,1.0,1.1,1.2,1.3] [1.0]
Inverse dynamics coefficient λI 0.5 0.25 0.5
Tuning range of λI [0.5] [0.25,0.5] [0.5]
Generative adversarial coefficient λG 1.0
Generative adversarial reward form logD − log (1−D) logD
Multi-step k 1 3 1 2 1
Cycle loss 7 3 7
Pre-train step 0 50000 0
Q learning rate 3e-4
π learning rate 3e-4
D learning rate 3e-4
Gradient penalty weight 4.0 0.5 4.0
Reward scale 2.0

D.4 Distributional Evaluation Metric574

Apart from the accumulated reward reported in Tab. 2, the performance of imitation learning methods575

should also be evaluated by distributional similarities to expert data. For example, in SOIL tasks we try576

to evaluate the KL divergence between policy and expert state transitions DKL(ρπE (s, s′)‖ρπ(s, s′))577

for different methods. Since it is hard to compute the distributional distance in high-dimensional578

continuous control environments, we reduce the dimension of the input data to 2 dimensions. Specifi-579
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cally, we adopt UMAP [18], which maintains a mapping function that can be used for transforming580

new data collections. In our case, we first fit a UMAP model on the expert demostration and then use581

it to transform (s, s′) pairs collected by different algorithms. We first estimate the distribution via582

Kernel Density Estimation (KDE) [20] with Gaussian kernel to compute the Kullback-Leibler (KL)583

divergence, and show the qualitative results in Tab. 5. Furthermore, we visualize a 2 dimensional584

distributional density example of these trajectories on Halfcheetah in Fig. 8. Higher frequency585

positions in collected data are colored darker in the plane, and higher the value with respect to its586

marginal distributions. And it is noticeably that DPO does not reach a higher return but recover the587

better expert state transition occupancy measure.588

Table 5: KL divergence between policy-sampled and the expert state transitions distribution.

Hopper Walker2d HalfCheetah Ant

BCO 1.32 ± 0.04 1.63 ± 0.26 5.76 ± 0.31 3.76 ± 0.42
GAIfO 1.77 ± 0.05 1.32 ± 0.21 2.47 ± 0.79 0.40 ± 0.04
DPO 1.76 ± 0.05 1.13 ± 0.09 1.68 ± 0.16 0.48 ± 0.06

Figure 8: Visualization of sampled state transition distributions on HalfCheetah environment using UMAP
reduction.

D.5 Ablation Study589

In this section we investigate the effect on different values of hyperparameter λh. As illustrated in590

Fig. 9, the final performance is robust upon a range of λh. However, we find it affects the sample591

efficiency and the optimal hyperparameter among different tasks differs.592

D.6 Empirical Correlation between Compounding Error and Reward593

The motivation of DPO indicates that if the agent can exactly predict where the expert will go and594

then learn a skill to reach that place, it can solve SOIL efficiently. In previous sections we propose595

to evaluate the distance of the reaching states and the predicted consecutive states to quantify the596

compounding error. Interestingly, in our experiments, we do find that the compounding error has a597
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Figure 9: Hyperparameter study on λh.

great impact on the efficacy of DPO. Therefore, we analyze the empirical correlation between the598

prediction-real distance and the reward. Specifically, we sample several epochs from experiments599

with different hyperparameters on each tasks and draw the connection of its prediction-real distance600

and its reward. As shown in Fig. 10, lower distance always achieves higher performance, indicating601

the rationality of the intuition and the key ingredient for utilizing DPO.
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Figure 10: The empirical correlation between the prediction-real distance and the reward. Typically, less
prediction-real distance achieves better performance

602

18



D.7 Complete Evaluation Results603

In this section we show complete evaluation training curves of DPO with different regularization in604

Fig. 11. Typically, experiments with less prediction-real distance can achieve better performance.605
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Figure 11: Complete learning curves of DPO with different regularization.
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