
Cover Letter to the Reviewers

To the Editor,

We thank you and the reviewers for your time in reviewing our manuscript and providing
feedback. Your valuable comments and suggestions have led to improvements in the current
version of our manuscript. We welcome further feedback if any.

Below, we respond to each of the reviewers’ comments.

Sincerely,
Nischal Ashok Kumar
CS PhD Student at UMass Amherst.

Response to Reviewer 1
We thank the reviewer for appreciating that our test case generation method is novel as it works
on incorrect codes as well as correct codes which is particularly important in educational
settings.

“Give more insights into the iterative prompt engineering. Without much details it is difficult to evaluate

what is happening here. Also, is this iterative loop automatic or does someone have to run the code, get

results and feed it back to LLMs?”

Response:We propose a fully automatic iterative feedback loop for test case generation which
does not require any human intervention thus making it scalable. We add this detail in our
introduction and conclusion section. Also, we create a separate section “Iterative Prompt
Engineering” in the Appendix to describe engineering details.

“Evaluations are preliminary, and are tested on a simple set of coding challenges. It is still not clear

where the system succeeds and where it fails e.g. the paper's explanation on why the system works on

"string" and "int array" but not "int" and "boolean" is not convincing.”

Response:We thank the reviewer for their concern, although the CSEDM dataset contains
simple problems, the bugs demonstrated in the students' code vary across a wide spectrum
across different input types like int and string. We further mention that the approach does not
work well on “int” and “boolean” as compared to “string” and “int array” because the former
categories contain almost double the number of code submissions as compared to the latter
categories. For this reason, the former categories represent a wide variety of bugs, hence our



code pair selection strategy that selects only three representative code samples per problem
might not be effective and we may need to sample more code pairs proportional to the number
of examples in that category. We mention this information in the “Results and Discussions”
section along with the “Conclusions and Future Work”.

“In Figure 3, while I roughly understand that the items in the middle are where it is not easy to figure out

correct vs wrong behavior, and hence many errors occur. It would be great to get a double click into the

types of errors that characterize this area”

Response:We thank the author for their comment. We have included more information about
the types of common errors for the problem shown in the Analysis section. We have reorganized
the Analysis section into two paragraphs.

“There is a big question of how can this generalize to various scenarios and whether that is even

possible.”

Response: In this work, we attempt to improve the test case generation ability of LLMs by
catering to both fully correct and erroneous student codes. The concept of Langchains or “AI
society”, i..e., a collection of LLMs and external systems is becoming popular in improving LLM
outputs. Our approach can be generalized by including a diverse code pair selection strategy to
improve the pool of generated test cases and can be applied to student codes in various
programming languages other than Java.

Response to Reviewer 2

We appreciate the reviewer’s comments that our novel approach has shown success in
predicting test cases that accurately measure the student’s ability on the CSEDM dataset.

“It could be an interesting additional (qualitative) analysis to look into how and why some of the

intermediate answers have much higher mean errors.”

Response:We have reorganized the Analysis section to include more details on the errors in
assignment 494’s problem 46. We also explain how these errors correspond to the
measurement of the student’s ability using the predicted test cases.


