
SUPPLEMENTARY MATERIAL

A Supplementary: Temporal Playground Specifications

A.1 Environment

Temporal Playground is a procedurally generated environment consisting of 3 objects and an agent’s
body. There are 32 types of objects, listed in Fig. 6 along with 5 object categories. Each object has a
continuous 2D position, a size, a continuous color code specified by a 3D vector in RGB space, a type
specified by a one-hot vector, and a boolean unit specifying whether it is grasped. Note that categories
are not encoded in the objects’ features. The agent’s body has its 2D position in the environment and
its gripper state (grasping or non-grasping) as features. The size of the body feature vector is 3 while
the object feature vector has a size of 39. This environment is a spatio-temporal extension of the one
used in this work [14].

All positions are constrained within [�1, 1]2. The initial position of the agent is (0, 0) while the
initial object positions are randomized so that they are not in contact (d(obj1, obj2) > 0.3). Object
sizes are sampled uniformly in [0.2, 0.3], the size of the agent is 0.05. Objects can be grasped
when the agent has nothing in hand, when it is close enough to the object center (d(agent, obj) <
(size(agent) + size(obj))/2) and the gripper is closed (1, �1 when open). When a supply is on an
animal or water is on a plant (contact define as distance between object being equal to the mean size
of the two objects d = (size(obj1) + size(obj2))/2), the object will grow over time with a constant
growth rate until it reaches the maximum size allowed for objects or until contact is lost.

Category

Object

Type

furnitureanimal plant

living thing

supply

dog
cat
chameleon
human
fly

cactus
carnivorous
flower
tree
bush

grass
algae
tea
rose
bonsai

parrot
mouse
lion
pig
cow

cupboard
sink
window
sofa
carpet

door
chair
desk
lamp
table

water
food

Can move independently,
can be grown with food

or water

Can be grown with water

Figure 6: Representation of possible objects types and categories. Information about the possible
interactions between objects are also given.

15

A.2 Language

Grammar. The synthetic language we use can be decomposed into two components: the instanta-
neous grammar and the temporal logic. Both are specified through the BNF given in Figure 7.

Instantaneous grammar:

<S> ::= <pred> <thing_A>
<pred> ::= grow | grasp | shake
<thing_A> ::= <thing_B> | <attr> <thing_B> | thing <localizer> |
 thing <localizer_all>
<localizer> ::= left of <thing_B> | right of <thing_B> |
 bottom of <thing_B> | top of <thing_B>
<localizer_all> ::= left most | right most | bottom most | top most
<thing_B> ::= dog | cat | … | thing
<attr> ::= blue | green | red

Temporal aspect:

<S> ::= was <pred> <thing_A>
<thing_A> ::= thing was <localizer> | thing was <localizer_all>

Figure 7: BNF of the grammar used in Temporal Playground. The instantaneous grammar allows
generating true sentences about predicates, spatial relations (one-to-one and one to all). These
sentences are then processed by the temporal logic to produce the linguistic descriptions of our
observations; this step is illustrated in the Temporal Aspect rules. See the main text for information
on how these sentences are generated.

Concept Definition. We split the set of all possible descriptions output by our grammar into four
conceptual categories according to the rules given in Table 1.

Concept BNF Size

1. Basic
<S> ::= <pred> <thing_A>

152<pred> ::= grasp
<thing_A> ::= <thing_B> | <attr> <thing_B

2. Spatial
<S> ::= <pred> <thing_A>

156<pred> ::= grasp
<thing_A> ::= <thing <localizer> | thing <localizer_all>

3. Temporal
<S> ::= <pred_A> <thing_A> | was <pred_B> <thing_A>

648<pred_A> ::= grow | shake
<pred_B> ::= grasp | grow | shake

<thing_A> ::= <thing_B> | <attr> <thing_B>

4. Spatio-
Temporal

<S> ::= <pred_A> <thing_A> | was <pred_B> <thing_A>

1716

<pred_C> <thing_C>
<pred_A> ::= grow | shake
<pred_B> ::= grasp | grow | shake
<pred_C> ::= grasp

<thing_A> ::= thing <localizer> | thing <localizer_all> |
thing was <localizer> |
thing was <localizer_all> |

<thing_C> ::= thing was <localizer> |
thing was <localizer_all>

Table 1: Concept categories with their associated BNF. <thing_B>, <attr>, <localizer> and
<localizer_all> are given in Fig. 7

16

B Supplementary Methods

B.1 Data Generation

Scripted bot. To generate the traces matching the descriptions of our grammar we define a set of
scenarii that correspond to sequences of actions required to fulfill the predicates of our grammar,
namely grasp, grow and shake. Those scenarii are then conditioned on a boolean that modulates them
to obtain a mix of predicates in the present and the past tenses. For instance, if a grasp scenario is
sampled, there will be a 50% chance that the scenario will end with the object being grasped, leading
to a present-tense description; and a 50% chance that the agent releases the object, yielding a past
tense description.

Description generation from behavioral traces of the agent. For each time step, the instanta-
neous grammar generates the set of all true instantaneous sentences using a set of filtering operations
similar to the one used in CLEVR [27], without the past predicates and past spatial relations. Then
the temporal logic component uses these linguistic traces in the following way: if a given sentence
for a predicate is true in a past time step and false in the present time step, the prefix token ’was’ is
prepended to the sentence; similarly, if a given spatial relation is observed in a previous time step and
unobserved in the present, the prefix token ’was’ is prepended to the spatial relation.

B.2 Input Encoding

We present the input processing in Fig. 8. At each time step t, the body feature vector bt and the
object features vector oi,t, i = 1, 2, 3 are encoded using two single-layer neural networks whose
output are of size h. Similarly, each of the words of the sentence describing the trace (represented
as one-hot vectors) is encoded and projected in the dimension of size h. We concatenate to the
vector obtained a modality token m that defines if the output belongs to the scene (1, 0) or to the
description (0, 1). We then feed the resulting vectors to a positional encoding that modulates the
vectors according to the time step in the trace for bt and oi,t, i = 1, 2, 3 and according to the position
of the word in the description for wl.

We call the encoded body features b̂t and it corresponds to Ŝ0,t of the input tensor of our model (see
Fig. 2 in the Main document). Similarly, ôi,t, i = 1, 2, 3 are the encoded object features corresponding
to Ŝi,t, i = 1, 2, 3. Finally ŵl are the encoded words and the components of tensor Ŵ .

We call h the hidden size of our models and recall that |b̂t| = |ôi,t| = |ŵl| = h+ 2. This parameter
is varied during the hyper-parameter search.

Object
Encoder

Language
Encoder

Body
Encoder

.........

...

bt

bt

oi,t
oi,t

wl

Positional
Encoding

Positional
Encoding

Positional
Encoding

wl
m

m

m

Figure 8: Input encoding. Body, words and objects are all projected in the same dimension.

17

B.3 Details on LSTM models

To provide baseline models on our tasks we consider two LSTM variants. They are interesting
baselines because they do not perform any relational computation except for relations between inputs
at successive time steps. We consider the inputs as they were defined in Section 2.3 of the main paper.
We consider two LSTM variants:

1. LSTM-FLAT: This variant has two internal LSTM: one that processes the language and one
that processes the scenes as concatenations of all the body and object features. This produces
two vectors that are concatenated into one, which is then run through an MLP and a final
softmax to produce the final output.

2. LSTM-FACTORED: This variant independently processes the different body and object
traces, which have previously been projected to the same dimension using a separate linear
projection for the object and for the body. The language is processed by a separate LSTM.
These body, object and language vectors are finally concatenated and fed to a final MLP and
a softmax to produce the output.

B.4 Details on Training Schedule

Implementation Details. The architectures are trained via backpropagation using the Adam
Optimizer[28]. The data is fed to the model in batches of 512 examples for 150 000 steps. We use a
modular buffer to sample an important variety of different descriptions in each batch and to impose a
ratio of positive samples of 0.1 for each description in each batch.

Model implementations. We used the standard implementations of TransformerEncoderLayer and
TransformerEncoder from pytorch version 1.7.1, as well as the default LSTM implementation. For
initialization, we also use pytorch defaults.

Hyper-parameter search. To pick the best set of parameters for each of our eight models, we
train them on 18 conditions and select the best models. Note that each condition is run for 3 seeds
and best models are selected according to their averaged F1 score on randomly held-out descriptions
(15% of the sentences in each category given in Table 1).

Best models. Best models obtained thanks to the parameter search are given in Table 2.

Model Learning rate Model hyperparams
hidden size layer count head count param count

UT 1e-4 256 4 8 1.3M
UT-WA 1e-5 512 4 8 14.0M

TFT 1e-4 256 4 4 3.5M
TFT-WA 1e-5 512 4 8 20.3M

SFT 1e-4 256 4 4 3.5M
SFT-WA 1e-4 256 2 8 2.7M

LSTM-FLAT 1e-4 512 4 N/A 15.6M
LSTM-FACTORED 1e-4 512 4 N/A 17.6M

Table 2: Hyperparameters. (for all models)

Robustness to hyperparameters For some models, we have observed a lack of robustness to
hyperparameters during our search. This translated to models learning to predict all observation-
sentence tuples as false since the dataset is imbalanced (the proportion of true samples is 0.1). This
behavior was systematically observed with a series of models whose hyperparameters are listed in
Table 3. This happens with the biggest models with high learning rates, especially with the -WA
variants.

18

Model Learning rate Model hyperparams
hidden size layer count head count

UT-WA 1e-4 512 4 4
UT-WA 1e-4 512 4 8

SFT 1e-4 512 4 4
SFT-WA 1e-4 512 4 8
SFT-WA 1e-4 512 2 4
SFT-WA 1e-4 512 4 4

TFT 1e-4 512 4 4
TFT-WA 1e-4 512 4 8
TFT-WA 1e-4 512 2 4
TFT-WA 1e-4 512 4 4

Table 3: Unstable models. Models and hyperparameters collapsing into uniform false prediction.

C Supplementary Discussion: Formal descriptions of spatio-temporal
meanings

The study of spatial and temporal aspects of language has a long history in Artificial Intelligence and
linguistics, where researchers have tried to define formally the semantics of such uses of language.
For instance, work in temporal logic [2] has tried to create rigorous definitions of various temporal
aspects of action reflected in the English language, such as logical operations on time intervals (an
action fulfilling itself simultaneously with another, before, or after), non-action events (standing
still for one hour), and event causality. These formal approaches have been complemented by work
in pragmatics trying to define language user’s semantics as relates to spatial and temporal aspects
of language. For instance, Tenbrink [43] examines the possible analogies to be made between
relationships between objects in the spatial domain and relationships between events in a temporal
domain, and concludes empirically that these aspects of language are not isomorphic and have their
own specific rules. Within the same perspective, a formal ontology of space is developed in [4],
whose complete system can be used to achieve contextualized interpretations of language users’
spatial language. Spatial relations in everyday language use are also specified by the perspective
used by the speaker; a formal account of this system is given in [44], where the transferability of
these representations to temporal relations between events is also studied. These lines of work are of
great relevance to our approach, especially the ones involving spatial relationships. We circumvent
the problem of reference frames by placing ourselves in an absolute reference system where the x-y
directions unambiguously define the concepts of left, right, top, bottom; nevertheless these studies
would be very useful in a context where the speaker would also be embodied and speak from a
different perspective. As for the temporal aspect, these lines of work focus on temporal relations
between separate events, which is not the object of our study here; we are concerned about single
actions (as opposed to several events) unfolding, in the past or present, over several time steps.

19

D Supplementary Results

D.1 Generalization to new observations from known sentences

Figure 9: Generalization to new traces of observations. F1 scores of all models on the train
sentences with new observations. UT and TFT outperform other models on all four categories of
meanings.

D.2 Computing Resources

This work was performed using HPC resources from GENCI-IDRIS (Grant 2020-A0091011996).
We used 22k GPU-hours on nvidia-V100 GPUs for the development phase, hyperparameter search,
and the main experiments.

20

	Introduction
	Methods
	Problem Definition
	Temporal Playground
	Architectures
	Data Generation, Training and Testing Procedures

	Experiments and Results
	Generalization abilities of models on non-systematic split by categories of meaning
	Systematic generalization on withheld combinations of words

	Related Work
	Discussion and Conclusion
	Supplementary: Temporal Playground Specifications
	Environment
	Language

	Supplementary Methods
	Data Generation
	Input Encoding
	Details on LSTM models
	Details on Training Schedule

	Supplementary Discussion: Formal descriptions of spatio-temporal meanings
	Supplementary Results
	Generalization to new observations from known sentences
	Computing Resources

