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Abstract
Much of learning theory is concerned with the design and analysis of probably approximately cor-
rect (PAC) learners. The closely related transductive model of learning has recently seen more
scrutiny, with its learners often used as precursors to PAC learners. Our goal in this work is to
understand and quantify the exact relationship between these two models. First, we observe that
modest extensions of existing results show the models to be essentially equivalent for realizable
learning for most natural loss functions, up to low order terms in the error and sample complexity.
The situation for agnostic learning appears less straightforward, with sample complexities poten-
tially separated by a 1

ϵ factor. This is therefore where our main contributions lie. Our results are
two-fold:

1. For agnostic learning with bounded losses (including, for example, multiclass classification), we show
that PAC learning reduces to transductive learning at the cost of low-order terms in the error and sample
complexity. This is via an adaptation of the reduction of Aden-Ali et al. (2023a) to the agnostic setting.

2. For agnostic binary classification, we show the converse: transductive learning is essentially no more
difficult than PAC learning. Together with our first result this implies that the PAC and transductive
models are essentially equivalent for agnostic binary classification. This is our most technical result,
and involves two key steps: (a) A symmetrization argument on the agnostic one-inclusion graph (OIG)
of Long (1998) to derive the worst-case agnostic transductive instance, and (b) expressing the error of
the agnostic OIG algorithm for this instance in terms of the empirical Rademacher complexity of the
class.

We leave as an intriguing open question whether our second result can be extended beyond binary
classification to show the transductive and PAC models equivalent more broadly.
Keywords: PAC Learning, Transductive Learning, Agnostic Learning, One Inclusion Graphs

1. Introduction

The dominant paradigm in statistical learning theory is the probably approximately correct (PAC)
model due to Valiant (1984). On the other hand, the transductive model of learning —first intro-
duced in early works by Vapnik and Chervonenkis (1974) and Vapnik (1982), then further devel-
oped by Haussler et al. (1994)— does away with distributional assumptions and evaluates a learner’s
leave-one-out performance on an adversarially-chosen sample. We use the transductive model as
it is conceptualized by Daniely and Shalev-Shwartz (2014) in the realizable setting, as well as its
natural extension to the agnostic setting by Asilis et al. (2024). The elegant simplicity of the trans-
ductive model has enabled application of combinatorial and graph-theoretic insights to learning, as
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evidenced by a rich body of work which employs transductive learners as precursors to PAC learn-
ers (e.g. Daniely and Shalev-Shwartz (2014); Brukhim et al. (2022); Aden-Ali et al. (2023a); Asilis
et al. (2024)). Indeed, some of this recent literature suggests that transductive and PAC learning
might be equivalent in a rich variety of learning settings, with essentially identical sample complex-
ities.

The present paper examines the strength of this equivalence. First, we modestly build on the
recent work of Aden-Ali et al. (2023a) to show that both realizable and agnostic PAC learning can
be reduced to transductive learning when the loss function is bounded, with improved guarantees in
the realizable case for pseudometric losses.

This reduction comes at modest expense: a small number of additional samples determined by
the error and confidence parameters, as well as multiplication of the error by a universal constant.
This implies a strong sense of equivalence of the two models in the realizable setting where it
is folklore, and easy to show, that transductive learning reduces to PAC learning at the cost of a
constant factor in the error (see e.g. Asilis et al. (2024)).

Such an essentially loss-less reduction from transductive to PAC learning is not known in the ag-
nostic setting. The best we know of is a reduction of Asilis et al. (2024), which loses a factor of 1

ϵ in
agnostic sample complexity where ϵ is the desired error. Other simple approaches seem to suffer the
same fate. It therefore remains plausible that agnostic transductive learning is fundamentally more
difficult than its PAC counterpart, by up to this 1

ϵ factor in sample complexity. As our second and
more technically-involved contribution, we nonetheless rule out such a separation for binary clas-
sification. We do so by explicitly quantifying the performance of the optimal agnostic transductive
learner in terms of the VC dimension of the class, by way of its empirical Rademacher complexity.
This implies that transductive learning serves as a precursor to an essentially optimal PAC learner in
agnostic binary classification, via our reduction. We leave open the intriguing question of whether
transductive and PAC learning are essentially equivalent more broadly in the agnostic setting.

1.1. Background

The overarching goal of statistical learning theory is to “learn” structure from data in a manner that
generalizes to unseen future data. In supervised learning, there is a data domain X and label set Y .
The learner observes a sequence of labeled data points S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n,
called the sample or training data, from which it derives a predictor h : X → Y which anticipates
the label of a future test data point. The quality of the prediction is evaluated using a loss function
ℓ : Y ×Y → R, applied to the predicted label and the true (unseen) label. The loss of a predictor is
compared, in some aggregate sense, to that of the best predictor in some benchmark class H ⊆ YX

of hypotheses. The most common loss function we examine in this work is 0-1 loss, i.e. ℓ(y, y′) = 0
if y = y′, and ℓ(y, y′) = 1 otherwise. Alternatively, we may use a pseudometric1 loss, or a bounded
loss where ℓ(y, y′) ≤ c for some universal constant c.

Since the inception of learning theory, several different data models and benchmarks have been
used to evaluate learners (Valiant, 1984; Haussler, 1992; Blumer et al., 1987; Vapnik and Chervo-
nenkis, 1971; Littlestone, 1987; Bousquet et al., 2021). The most prominent theoretical framework
for supervised learning is the PAC (probably approximately correct) model due to Valiant (1984). In

1. Recall that a metric is a non-negative function d on pairs satisfying that d(x, x) = 0 for all x, symmetry (d(x, y) =
d(y, x) for all x, y), the triangle inequality (d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z), and positivity (d(x, y) > 0
whenever x ̸= y). A pseudo-metric is allowed to violate positivity, i.e., multiple points of the metric space can be at
distance 0 from each other.

2
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addition to the hypothesis class H ⊆ YX , a learning problem in this setting fixes a class of plausible
data distributions supported on X × Y . An instance of the learning problem is then determined by
an (unknown) distribution D in this class, from which both training and test data are drawn. The
performance of a predictor h on data drawn from D is measured by the distributional error (also
called distributional risk), defined as the expected loss on a test point sampled from D:

LD(h) := E
(x,y)∼D

[ℓ(h(x), y)].

When all data distributions are plausible, this is the agnostic setting of learning. When only distri-
butions that are consistent with some hypothesis are plausible, meaning that there exists h ∈ H such
that (x, y) ∼ D satisfies y = h(x) with probability 1, this is the realizable setting. For functions
ϵ, δ : N → R≥0, a learner A is said to be an (ϵ, δ)-PAC learner if, given training data consisting of
n i.i.d. draws from D, with probability at least 1− δ(n) it outputs a predictor whose expected loss
on test data from D is at most ϵ(n) in excess of that of the best predictor in H, i.e.,

Pr

[
LD(A(S))−min

h∈H
LD(h) > ϵ

]
≤ δ.

Inversely, the sample complexity mPAC(ϵ, δ) of a PAC learner quantifies the minimum number of
samples needed to guarantee excess loss ϵ with probability 1 − δ, for given ϵ, δ ≥ 0. When the
sample complexity is bounded for every ϵ and δ, we say the problem is PAC learnable.

Much of the work on PAC learning seeks characterizations of learnability for natural problem
classes such as binary classification (e.g. Haussler (1995); Blumer et al. (1989)), multi-class clas-
sification (e.g. Littlestone (1988); Natarajan (1989); Daniely and Shalev-Shwartz (2014); Brukhim
et al. (2022); Daniely et al. (2011)), regression (e.g. Simon (1996); Bartlett et al. (1996); Daniely
et al. (2011); Attias et al. (2023)), and beyond. In addition to such qualitative characterizations,
a rich literature has established upper bounds (e.g. David et al. (2016); Haussler (1992); Blumer
et al. (1987); Bartlett et al. (1996); Daniely et al. (2011); Attias et al. (2023); Hanneke et al. (2024))
and lower bounds (e.g. Valiant (1984); Simon (1996)) on the sample complexity of PAC learning
problems.

In the transductive model of learning there is also a hypothesis class H, but no distribution. An
instance of the problem consists of a sample S ∈ (X ×Y)n that is selected by an adversary. Of the
n labeled data points in this sample, n− 1 are selected uniformly at random as the training set, and
the trained predictor is applied to the remaining test point. Let S−i stand for the proper subset of S
with data point i is taken out. We measure the error of a learner A in the transductive framework as
follows:

LTrans
S (A) :=

1

n

∑
i∈[n]

ℓ(A(S−i)(xi), yi).

The realizable setting of transductive learning, employed first by Haussler et al. (1994) and further
developed and formalized by Rubinstein et al. (2009) and Daniely and Shalev-Shwartz (2014),
restricts attention to samples that are consistent with some hypothesis in H. The agnostic setting
of transductive learning, as originally described by Long (1998) and later elaborated by Asilis et al.
(2024), does away with any restrictions on the sample. In both the realizable and agnostic settings,
we say that a transductive learner achieves error ϵ = ϵ(n) if its expected loss is at most ϵ in excess
of that incurred by the best fixed predictor in H, i.e.,

LTrans
S (A)−min

h∈H
LTrans
S (h) ≤ ϵ.
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As in the PAC setting, the sample complexity mTrans(ϵ) is defined inversely.

Similar to the PAC learning, numerous studies have investigated the sample complexity of trans-
ductive learning for various domains (e.g. Haussler et al. (1994); Haussler (1995); Kupavskii and
Zhivotovskiy (2020); Rubinstein et al. (2006); Asilis et al. (2024); Alon et al. (2022); Bartlett and
Long (1998)). Notably, Haussler et al. (1994) introduced the one-inclusion-graph (OIG) algorithm
for realizable binary classification, which achieves optimal sample complexity (see also Haussler
(1995) and Kupavskii and Zhivotovskiy (2020)). Subsequently, Rubinstein et al. (2006) extended
this algorithm to realizable multi-class classification, and Bartlett and Long (1998) extended the
algorithm to partial concept learning. Recently, Asilis et al. (2024) extended the OIG approach to
agnostic classification, also deriving optimal learners.

Since it demands fine-grained sample-by-sample guarantees, the transductive setting poses addi-
tional difficulties beyond those of PAC learning. On the other hand, transductive learning demands
only expected error guarantees, which fall short of the high probability guarantees required for PAC
learning. Despite these differences, Warmuth (2004) asked whether optimal transductive learners
can be used as optimal PAC learners, introducing a new perspective into the study of PAC learning.
However, Aden-Ali et al. (2023b) negatively resolved this question, showing that optimal transduc-
tive learners might not ensure high probability guarantees out of the box.

Subsequent work by Aden-Ali et al. (2023a) revealed that essentially optimal PAC learners
for various realizable learning problems could be derived by aggregating the outputs of multiple
instances of a transductive learner, trained on different prefixes of the sample. This approach is
inspired by online-to-batch conversion methods. Initial studies by Littlestone (1989) and Haussler
et al. (1994) developed algorithms that achieved small expected online error and then converted
them into offline learners by aggregating models trained on successive sample prefixes. Later, Wu
et al. (2022) strengthened these expected-error bounds to high-probability guarantees via a reverse
martingale argument. Building on these ideas, Aden-Ali et al. (2023a) proved that combining trans-
ductive learners trained on different prefixes results in PAC learners with optimal sample complex-
ity for various realizable problems. Furthermore, the concept of regret– which evaluates a learner
against the best expert retrospectively–in online learning resonates with the objective of agnostic
learning. This connection suggests the potential for a transductive-to-PAC conversion even in the
agnostic setting, a possibility that remained unverified beyond the realizable case until this work.

On the other hand, a well-known folklore result (also shown in (Asilis et al., 2024)) demonstrates
that a realizable PAC learner can be converted into a transductive learner with at most a constant
increase in the error rate. These results show that, in realizable supervised learning with a large
class of loss functions, PAC learning and transductive learning are essentially equivalent.

The situation is more nuanced in the agnostic setting, which is the focus of the present paper.
Simple approaches for reducing from transductive to PAC learning suffer a blowup of 1/ϵ in the
sample complexity (see e.g. (Asilis et al., 2024, Proposition 69)), and this is the case even for
binary classification. We do not know of any better reductions. Conversely, prior to our work there
were no known general-purpose reductions from PAC to transductive learning in the agnostic setting
that approximately preserve the sample complexity.

Throughout this paper, we say two sample-complexity expressions m and m′ are essentially
equivalent if they differ by at most an additive polynomial term in the error and/or confidence
parameters, as well as pre-multiplication of the error and/or confidence by an absolute constant.
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When both m and m′ are PAC sample complexities, this can be formally stated as

m′ (c · ϵ, c · δ)− poly

(
1

ϵ
,
1

δ

)
≤ m (ϵ, δ) ≤ m′

(
ϵ

c
,
δ

c

)
+ poly

(
1

ϵ
,
1

δ

)
where c is an absolute constant. When one or both of m and m′ is a transductive sample complexity,
we simply omit the associated dependence on δ as needed. This allows for meaningful comparison
of sample complexities across transductive and PAC learning problems. We say a learner’s sample
complexity is essentially optimal if it is essentially equivalent to the optimal sample complexity.
We say the transductive and PAC models are essentially equivalent for a class of problems if the
corresponding transductive and PAC sample complexities are essentially equivalent.

1.2. Our Results

This paper tackles the following question in settings where it has remained unanswered.

Are the PAC and transductive models essentially equivalent in a rich variety of super-
vised learning problems?

Aden-Ali et al. (2023a) developed essentially optimal Probably Approximately Correct (PAC)
learners by leveraging transductive learners for various classes of realizable learning problems, in-
cluding classification, partial concept classification, and regression. Combined with folklore reduc-
tions in the opposite direction — e.g. (Asilis et al., 2024, Proposition 32) — their results indicate
that transductive and PAC learning are essentially equivalent in the realizable setting for a large class
of loss functions. We revisit the key results of Aden-Ali et al. (2023a) and present a unified proof
that covers the entire spectrum of supervised learning with (pseudo) metric losses. The following
informal theorem summarizes our extension:

Informal Theorem A The PAC and transductive models are essentially equivalent for realizable
learning with (pseudo) metric losses.

This extension broadens the class of loss functions for which realizable PAC and transductive
problems are essentially equivalent.2 Although our contribution to this result is minimal and we
claim no novelty, we include detailed proofs in Appendix A for completeness. Our proofs provide a
slightly different perspective on the existing analysis, which we believe conceptually simplifies the
arguments.

The key contribution of our paper is to explore the relationship between PAC and transductive
learning in a more complex setting, agnostic learning, where no assumptions are made about the true
underlying data distribution. First, we extend the aforementioned reduction to show that agnostic
transductive learners can be converted into agnostic PAC learners, at the cost of a constant factor in
the error and a few additional samples. This result implies that an agnostic PAC learning problem is
essentially no harder than the corresponding agnostic transductive learning problem. The following
informal theorem summarizes this finding:

2. Note that our results for the agnostic setting, captured in the upcoming Informal Theorem B, further extend this
to bounded loss functions by implication. However, the resulting additive increase in sample complexity scales as
1
ϵ2

, dominating the optimal sample complexity for most natural realizable learning problems. Therefore, we do not
emphasize that implication here.
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Informal Theorem B For learning problems with a bounded loss function, an agnostic transduc-
tive learner can be transformed into an agnostic PAC learner with essentially equivalent sample
complexity.

Conversely, we establish a lower bound on the sample complexity of transductive learning for
agnostic binary classification which essentially matches the sample complexity of the corresponding
PAC learning problem. Our approach is not via reduction, but rather through analyzing the agnostic
one-inclusion graph of Asilis et al. (2024). First, we employ a symmetrization argument to show
that the worst case agnostic transductive error is attained by the uniform distribution on all possible
binary labelings. Second, we re-express this error in terms of the empirical Rademacher complex-
ity of the hypothesis class. Finally, we invoke the known relationship between the Rademacher
complexity and the VC dimension. Combined with informal Theorem B, we obtain the following.

Informal Theorem C The transductive and PAC models are essentially equivalent for agnostic
binary classification.

This result paves the way for extending the equivalence between PAC and transductive learning
from the realizable setting to the agnostic setting. In light of this, we conjecture that PAC and
transductive learning are essentially equivalent for a large class of loss functions in the agnostic
setting.

Conjecture 1 The PAC and transductive models are essentially equivalent for agnostic learning
with most natural label spaces and loss functions (including, most notably, multi-class classifica-
tion).

In the remainder of the paper, we formalize and prove Informal Theorems B and C. Specifically,
Section 2 focuses on Theorem B, while Section 3 is dedicated to Theorem C.

2. Reduction for Agnostic Learning

In this section, we prove one side of the “essential” equivalence between the PAC and transductive
frameworks in the agnostic setting by showing that any agnostic transductive learner can be con-
verted into an agnostic PAC learner with minimal additional data. The following theorem is the
main result of this section. Throughout this section, we assume that ϵTrans(n) is decreasing and that
A(S) is symmetric on S, meaning A(π(S)) = A(S) for any permutation π. These assumptions
hold essentially without loss of generality: most natural learners enjoy these properties, and more-
over there always exists such an optimal learner (whether or not we can efficiently find it) — see
Appendix C.1 for more detail.

Theorem 2 For any agnostic learning problem defined by sample space X × Y with a bounded
loss function ℓ(·, ·) ∈ [0, 1] and a hypothesis class H, we have

mAg
PAC,H(ϵ, δ) ≤ mAg

Trans,H(ϵ/4) +
8

ϵ2
· log

(
2

ϵ · δ

)
.

Here, mAg
PAC,H and mAg

Trans,H represent the agnostic sample complexity of PAC and transductive
learning, respectively, for the given hypothesis class H.
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Our strategy for constructing a PAC learner, applicable to both realizable and agnostic settings, uti-
lizes a transductive learner as a subroutine in a manner similar to Aden-Ali et al. (2023a). This
entails executing the transductive learner on a set of k ∈ poly(1/ϵ, log(1/δ)) distinct (not neces-
sarily disjoint) samples. Specifically, let S = {(x1, y1), . . . (xn+k, yn+k)} be n + k data points,
each independently sampled from a distribution D over X × Y . We define a sequence of sample
subsets Si = {(x1, y1), . . . (xn+i, yn+i)}. Our PAC learners call the transductive learner ATrans
independently with samples S0, S1, . . . Sk−1, generating predictors h0, . . . hk.

In order to obtain a randomized predictor that achieves a small distributional loss with high
probability over the data distribution but in expectation over its internal randomness, we can simply
select a hypothesis at random and return its prediction on each new data point encountered. The
following technical lemma shows that the expected error of a randomized predictor is small with
high probability.

Lemma 3 Let ATrans be a transductive learner with agnostic error rate ϵAg(n). Then for any δ ∈
(0, 1), and a sample S ∼ Dn+k, with probability 1 − δ over the choices of S, predictors hi−1 :=
ATrans(Si−1) for i ∈ [k] satisfy:

Pr

[
1

k

k∑
i=1

LD(hi−1)− min
h′∈H

LD(h
′) ≥ ϵAg(n) +

√
32 · log(2/δ)

k

]
≤ δ.

In particular, when k =

⌈
32·log(2/δ)

ϵ2Ag(n)

⌉
, the average distributional error is no more than 2 ·ϵAg(n)

with probability at most 1− δ.

Alternatively, if the goal is to obtain a deterministic learner that achieves small distributional loss
with high probability over the data distribution, we must utilize an aggregation step to combine the
predictions of h0, . . . , hk. In the realizable case and under the metric loss assumption, we showed
that using the generalized median of the predictions—that is, the prediction minimizing the sum of
losses to the other predictions—ensures good performance. Since the computation of the average
distributional error across predictors in the realizable setting closely mirrors the work of Aden-Ali
et al. (2023a), and combining predictions via median is a standard trick, we do not claim any novelty
for this portion and have therefore deferred the detailed analysis to Appendix A.3 However, in the
agnostic setting, such aggregation strategies are ineffective because they can magnify absolute error.
Therefore, we use a small validation set of size O

(
1
ϵ2
log

(
1
ϵδ

))
to identify the best predictor among

h0, . . . , hk. Algorithm 1 summarizes the reduction in the agnostic setting. 4

Before we prove our technical lemma, Lemma 3, in the upcoming section, we argue briefly
how it implies Theorem 2, demonstrating that Algorithm 1 guarantees a small PAC error. Lemma 3
guarantees that the average, and hence also the minimum, of the agnostic risks of {h0, . . . , hk−1} is
bounded by 2·ϵ(n) with probability 1− δ

2 . We then use a hold-out validation dataset to select some hi
whose agnostic risk is within ϵ(n) of this bound with probability 1− δ

2 . Standard Hoeffding bounds

3. That said, some readers may find this section interesting as it offers an alternate perspective on the the techniques of
Aden-Ali et al. (2023a).

4. Note that this construction assumes that δ is known in advance in order to determine the appropriate size of the
cross validation set. If δ is unknown, one can still build a randomized learner by selecting a hypothesis uniformly at
random from h0, . . . , hk, although this approach only yields a guarantee “in expectation” over the learner’s internal
randomness.
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Algorithm 1 Transforming transductive learners to PAC learners in the agnostic setting
Data: n i.i.d. samples S from D.
Result: Predictor ĥ.
Let ATrans be a transductive learner with agnostic error rate ϵAg(n).
Define Si := (x1, y1), . . . (xn, yn), (xn+1, yn+1), . . . (xn+i, yn+i) for each i ∈ [k].
Let hi−1 be the output predictor of ATrans(Si−1) for each i ∈ [k].

Let SVal be a hold-out validation set of size k′ = O

(
log(k/δ)
ϵ2Ag(n)

)
.

Estimate the empirical error of each predictor {hi−1}i∈[k] by using validation set SVal

Set ĥ as the predictor with minimum validation error among {hi−1}i∈[k].
Output: Predictor ĥ.

and the union bound imply that a validation set of size k′ = O( 1
ϵ2(n)

log(kδ )) suffices. Therefore, in

total k + k′ = O
(

1
ϵ2(n)

log( 1
ϵ(n)·δ )

)
samples suffice, as claimed in Theorem 2. We omit the details

of the argument here, as it follows a standard Hoeffding bound argument. Please see Appendix B
for the proof details.

2.1. Proof of Lemma 3

Before we proceed with the proof, we introduce notation to simplify our discussion of agnostic
distributional error and agnostic transductive error. For an agnostic PAC learning problem with
distribution D and hypothesis class H, let h∗D ∈ argminh∈H LD(h) denote the optimal hypothesis
in H for the distribution D. We define the agnostic distributional error of a predictor h as

L
Ag
D,H(h) := LD(h)− LD(h

∗
D).

Similarly, for an agnostic transductive learning problem with sample S and hypothesis class H, let
h∗S ∈ argminh∈H LTrans

S (h) be an optimal hypothesis in H for the sample S. We define the agnostic
transductive error of a learner A as

L
Trans,Ag
S,H (A) := LTrans

S (A)− LTrans
S (h∗S).

These notations help us to quantify how much worse a predictor or learning algorithm performs
compared to the best possible hypothesis within the class H for the given distribution or sample.

We now proceed to prove Lemma 3. We first define the following random variable:

di = ℓ(hi−1(xi), yi)− ℓ(h∗D(xi), yi).

Observe that conditioned on samples Si−1, di becomes an unbiased estimator of the distributional
agnostic risk of the predictor hi−1. Formally,

E[di | Si−1] = E[ℓ(hi−1(xi), yi) | Si−1]− E[ℓ(h∗D(xi), yi) | Si−1]

= LD(hi−1)− LD(h
∗
D)

= L
Ag
D,H(hi−1).
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The proof of Lemma 3 employs forward and backward martingale arguments, mirroring the
approach used in the realizable context. In the forward martingale phase, we aim to show that∑k

i=1 L
Ag
D,H(hi−1) ≲

∑k
i=1 di with high probability. This is achieved by observing that the sum∑k

i=1 L
Ag
D,H(hi−1)− di consists of random variables with conditional expected value equal to zero,

thus forming a martingale. We can then apply Azuma’s martingale concentration inequality to show
that this supermartingale stays small with high probability. The following claim provides a formal
statement of this argument.

Claim 4 (Forward Martingale Bound)

Pr

[
k∑

i=1

LAg
D,H(hi−1)−

k∑
i=1

di >

√
8k log

(
2

δ

)]
≤ δ/2.

In the backward martingale argument, we conclude the proof of our technical lemma by showing
that

∑k
i=1 di ≲ ϵ with high probability. Examining the samples in reverse order models the process

as removing one sample at a time uniformly at random. The learner trained on Si−1 predicting on
(xi, yi) effectively computes the transductive error on Si. Since our agnostic transductive learner
satisfies LTrans,Ag

Si
≤ ϵ, and by comparing the transductive errors of the best hypothesis for sample,

h∗Si
, and h∗D, we conclude that E[di] ≤ ϵ. Thus,

∑k
i=1 di forms a supermartingale when viewed

backward in time. Applying Azuma’s inequality confirms that this sum remains small with high
probability. The following claim formalizes this argument.

Claim 5 (Backward Martingale Bound)

Pr

[
k∑

i=1

di > k · ϵ+

√
8k log

(
2

δ

)]
≤ δ/2.

Combining claims 4 and 5 using the union bound, we obtain

Pr

[
k∑

i=1

Lag
D,H(hi−1) > k · ϵ+ 2

√
8k log

(
2

δ

)]
≤ δ

which completes the proof of Lemma 3. As described earlier, Theorem 2 then follows.
In the remainder of this section, we will prove these two claims to complete the proof of

Lemma 3.
Proof [Proof of Claim 4] Let Mi = L

Ag
D,H(hi−1) − di, and M i =

∑i
j=1Mj . Then, consider the

following conditional probability to see that M i forms a martingale.

E
(xi,yi)∼D

[M i | Si−1] = E[Mi | Si−1] + E[M i−1 | Si−1]

= E[LAg
D,H(hi−1)− di | Si−1] +M i−1

= M i−1.

Since both di and L
Ag
D,H(hi−1) are bounded between [−1, 1], Mi lies in [−2, 2] and so |Mi| ≤ 2.

Applying Azuma’s inequality yields the desired result.
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Proof [Proof of Claim 5] We think of constructing our sequence of samples S0, . . . , Sk “backwards”
by first conditioning on the (unordered) set Sk = {(xi, yi)}n+k

i=1 , then iteratively peeling off one
sample at a time — uniformly at random without replacement — to obtain Sk−1, Sk−2, . . . , S0 = S.
For i = k, . . . , 1, observe that (xi, yi) is a uniformly random element from Si, and that |Si| ≥ n.
The transductive error assumption implies that

L
Trans,Ag
Si,H (A) = E

[
ℓ(hi−1(xi), yi)− ℓ(h∗Si

(xi), yi)|Si

]
≤ ϵ. (1)

Similarly, because h∗Si
is the hypothesis minimizing transductive loss for the sample Si, we know

that the loss of any other hypothesis on Si must exceed that of h∗Si
. Therefore,

LTrans
Si

(h∗Si
) ≤ LTrans

Si
(h∗D)

or equivalently saying that

E
[
ℓ(h∗Si

(xi), yi)− ℓ(h∗D(xi), yi)|Si

]
≤ 0. (2)

Here, the expectation is taken over a uniformly random selection of the test point.
Adding 1 and 2, we see that

E [ℓ(hi−1(xi), yi)− ℓ(h∗D(xi), yi)|Si] = E[di|Si] ≤ ϵ.

Next, we define random variables Bi = di − ϵ, Bi =
∑k

j=iBi and observe that

E
[
Bi | Bi+1

]
= Bi+1 + E [di − ϵ | dk, . . . , di+1] ≤ Bi+1

Thus, the sequence Bi is a backwards super-martingale — i.e., a super-martingale when viewed
backwards in time. Invoking Azuma’s inequality, we obtain

Pr
[
B1 > k · ϵ(n)

]
= Pr

[
k∑

i=1

d̃i > 2 · k · ϵ(n)

]
≤ δ

2
.

While this analysis for the agnostic case resembles that of the realizable case in (Aden-Ali
et al., 2023a) and Appendix A, we will mention two key differences. First, a multiplicative tail
bound (e.g. the multiplicative version of Azuma’s inequality) is effective in the realizable setting
because the expected absolute error is close to zero. In contrast, a small agnostic error only ensures
the learner’s performance is not much worse than the best hypothesis in the class, whereas the
algorithm’s absolute error can still be large. Using a multiplicative tail bound here would amplify the
error and compromise the PAC sample complexity. Therefore, we use the traditional additive version
of Azuma’s inequality to control the error without such amplification. Second, in the realizable
setting the learner does not need to be compared against a benchmark hypothesis. In contrast, in
the agnostic setting, the performance of the predictor must be compared to the best hypothesis in
the class when evaluated on the distribution and on the transductive sample respectively. Therefore,
in this argument, we must ensure that the difference in these benchmark terms does not introduce
significant additional error.

10
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3. Optimal Agnostic Transductive Learner for Binary Classification

In this section, we aim to establish the agnostic transductive error rate of binary classification in
terms of the VC dimension of the benchmark hypothesis class H. We analyze the agnostic OIG
algorithm of Asilis et al. (2024) and show that together with our reduction, the agnostic OIG al-
gorithm obtains essentially optimal PAC sample complexity. This result indicates that the PAC
and transductive learning frameworks are essentially equivalent for binary classification with 0-1
loss, thereby confirming Informal Theorem C. The main result of this section is presented in the
following theorem:

Theorem 6 The Agnostic One Inclusion Graph algorithm (Asilis et al., 2024) for transductive
binary classification with benchmark hypothesis class H ⊆ YX attains agnostic error rate of ϵ(n) =

16 ·
√

VC(H)
n and sample complexity of at most O

(
VC(H)

ϵ2

)
.

Let ATrans denote the agnostic transductive learner guaranteed by this theorem. By invoking
Theorem 2, we can infer that Algorithm 1 transforms ATrans into a PAC learner with a sample
complexity of O

(
VC(H)+log(1/(ϵδ))

ϵ2

)
. Since the fundamental theorem of statistical learning (Shalev-

Shwartz and Ben-David, 2014) provides a lower bound of Ω
(
VC(H)+log(1/δ)

ϵ2

)
on agnostic PAC

sample complexity, the error rate in our theorem is optimal up to a constant factor.
In the remainder of this section, we start with an overview of the One Inclusion Graph algorithm

and its agnostic variant, followed by a proof of Theorem 6.

3.1. Preliminaries of the One Inclusion Graph Algorithm

The One Inclusion Graph (OIG) algorithm was first introduced by Haussler et al. (1994) to design
learners for binary classification within the transductive learning framework. This concept was
later extended to various other learning problems, such as multi-class classification (Rubinstein
et al., 2009) and regression (Attias et al., 2023). However, since this section focuses on binary
classification, we will define OIGs specifically for binary classification and explore the relevant
results.

Given a sample set T ∈ X n, consisting of (unlabeled) datapoints, the one-inclusion graph (OIG)
GH|T = (V,E) is defined as follows. The vertex set V = H|T consists of restrictions of H to T ,
i.e., all possible classifications of T by hypothesis class H. The edge set E contains an edge for
every pair of restricted hypotheses h, h′ if they disagree at exactly one data point from T . An
orientation of the edges of this graph can immediately be interpreted as a transductive learner, with
error proportional to the maximum outdegree. Haussler et al. (1994) showed that if the edge density
is low in all subgraphs simultaneously, there exists an orientation with small maximum outdegree,
and therefore a transductive learner with small error. In particular, Haussler et al. (1994) showed
that when H has finite VC dimension, the OIG algorithm attains an optimal transductive error rate
of ϵ(n) = VC(H)

n . Later works derived this error rate using different techniques (Haussler et al.,
1994; Haussler, 1995; Kupavskii and Zhivotovskiy, 2020).

Recently, Asilis et al. (2024) studied the agnostic-OIG algorithm introduced by Long (1998),
where they show it also achieves the optimal error. Consider an agnostic binary classification prob-
lem with a benchmark hypothesis class H ⊆ YX , where Y = {+1,−1}, and let T ∈ X n be an
unlabeled sample. The agnostic one-inclusion graph G

Ag
H|T

= (V Ag, EAg) is defined as follows:

11
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• V Ag = Yn, representing one node for each possible labeling of the n data points.

• EAg = {(u, v) : ∥u − v∥0 = 1}, where the Hamming distance ∥u − v∥0 is defined as∑n
i=1[ui ̸= vi], representing the number of indices at which u and v differ.

Most importantly, each u ∈ V Ag is associated with a credit equal to its Hamming distance to the
realizable classifications of T , namely ∥u − H|T ∥0 = minv∈H|T ||u − v||0. It is worth noting that

G
Ag
H|T

is structurally isomorphic to the Boolean hypercube of dimension |T | = n.
The agnostic one inclusion graph algorithm, adapting its realizable counterpart, orients the edges

of the agnostic OIG to ensure that each vertex has a small excess out-degree, measured relative to
its credit. A labeling of n− 1 data points (the training data) corresponds to an edge of this agnostic
OIG, and the algorithm labels the test point in accordance with the vertex chosen by the oriented
edge.

Now, we recall the “discounted edge density” of subgraphs of the agnostic OIG, and restate a
lemma from Asilis et al. (2024) which relates the maximum discounted edge density to the error
rate of the agnostic OIG algorithm. The discounted edge density of a set U ⊆ V Ag is defined as

Φdiscounted(U) :=
|E(U,U)| −

∑
u∈U ∥u−H|T ∥0
|U |

.

A familiar reader might recognize that the left term of the ratio in the definition of Φdiscounted
is actually the subgraph edge density introduced by Haussler et al. (1994). In the agnostic setting,
the negative term sums the credits of the nodes in U , which represent how far each particular class
assignment is from the hypothesis class H. All else held equal, larger credit values let the learner
“off the hook”, leading to lower agnostic transductive error rates. In a sense, credit measures how
suboptimal this hypothesis class is for general assignments, thereby allowing a learner to compete
with H. Intuitively, an adversary who seeks to maximize the expected error of the learner will
choose U maximizing discounted edge density, then sample a labeling from U uniformly at random.
This is formalized in the following Lemma from Asilis et al. (2024).

Lemma 7 (Implied by Asilis et al. (2024)) The agnostic OIG algorithm attains the optimal ag-
nostic error rate for classification in the transductive model, expressed as

ϵAg(n) =
1

n
· max
T∈Xn

max
U⊆V Ag

Φdiscounted(U)

where V Ag denotes the vertex set of GAg
H|T

.

3.2. Proof of Theorem 6

In the rest of this section, we use Lemma 7 to prove Theorem 6. Our proof consists of two parts,
stated below as technical lemmas.

First, we show that for an arbitrary unlabeled sample set T and its agnostic OIG G
Ag
H|T

=

(V Ag, EAg), the discounted edge density increases when the subset of labelings U ⊆ V Ag is grown
to a set which is symmetric with respect to the labeling of an arbitrary data point. Recall that the
label set is Y = {+1,−1}. We define two sets of classifiers, Ui→+ and Ui→−, each containing
copies of every classifier h from U , with the decision for the i-th data point modified to class +1

12
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and class −1, respectively. The symmetrization of U with respect to the i-th data point is defined
as U ′ = Ui→+ ∪ Ui→−. We demonstrate that the discounted edge density of U ′ is always greater
than that of U . A visual representation of this argument is provided in Figure 1. This observation
implies that the discounted edge density is maximized for the complete set of classifiers, V Ag, as
formalized in the following theorem:

Lemma 8 Given an agnostic binary classification problem, let GAg
H|T

= (V Ag, EAg) be the agnostic
OIG corresponding to an unlabeled sample T and a hypothesis class H. The following inequality
holds for all U ⊆ V Ag:

Φdiscounted(U) ≤ Φdiscounted(V
Ag).

In the second step, we estimate the discounted edge density of the complete set of labelings
V Ag. Through algebraic manipulations we show that for any sample T = {xi}ni=1 of size n:

Φdiscounted(V
Ag) = O(n) · ℜ̂T (H|T )

where ℜ̂T (H|T ) is the empirical Rademacher complexity of H|T , defined as

ℜ̂T (H|T ) :=
1

n
E

σ∼{+1,−1}n

[
sup

h∈H|T

n∑
i=1

h(xi) · σi

]
.

By utilizing the well-known upper bound of Rademacher complexity in terms of the VC dimension
of H, we conclude the following lemma:

Lemma 9 Given an unlabeled sample T and hypothesis class H, let GAg
H|T

= (V Ag, EAg) be their

agnostic OIG. Then, we have Φdiscounted(V
Ag) ≤ 16 ·

√
n ·VC(H).

Before presenting the proofs of these lemmas, we demonstrate how they collectively establish
the main result of this section. For any arbitrary unlabeled sample set T ∈ X n of size n, consider
its agnostic one-inclusion graph G

Ag
H|T

= (V Ag, EAg). By Lemmas 8 and 9, we have:

max
U⊆V

Φdiscounted(U) = Φdiscounted(V
Ag) ≤ 16 ·

√
n ·VC(H).

Since T is arbitrary, invoking Lemma 7 ensures that the agnostic error rate is bounded by 16 ·
√

VC(H)
n ,

thus completing the proof of Theorem 6.
The remainder of this section is devoted to the proofs of Lemmas 8 and 9.

3.3. Proof of Lemma 8: Symmetrization Argument

For simplicity, we omit the superscript “Ag” and will refer to V Ag and EAg as V and E, respectively,
throughout the remainder of the paper. Recall that we define the total credit (or total Hamming
distance) as ∥U − H|T ∥0 :=

∑
u∈U ∥u − H|T ∥0 for any subset U ⊆ V . Each vertex v ∈ V

13
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V +

V −

N+I+ I−i→+

I+i→− N− I−

Figure 1: Symmetrization argument: A Boolean hypercube of dimension 4 is partitioned into
two smaller hypercubes of dimension 3 by fixing a certain coordinate i. The smaller
hypercubes V + and V − are visualized as 8 boxes in the figure. Vertically aligned boxes
correspond to bit strings that differ only at index i. The set U is indicated by the blue
boxes.

represents a labeling for the samples in T . We define vi→+ and vi→− as new vertices where the i-th
sample is assigned the class label +1 and −1, respectively. Formally,

vi→+(xj) =

{
v(xj) for any xj ∈ T−i

+1 j = i.
vi→−(xj) =

{
v(xj) for any xj ∈ T−i

−1 j = i.

We extend this definition to subsets of vertices as Ui→+ := {ui→+ : u ∈ U} and Ui→− := {ui→− :
u ∈ U}.

Our aim is to show that Φdiscounted(V ) ≥ Φdiscounted(U) for any U ⊆ V . Let α := maxU⊆V Φdiscounted(U)
and let U be an arbitrary non-empty subset satisfying Φdiscounted(U) = α. Without loss of generality,
we can assume that α > 0 and U is non-empty. Otherwise, Φdiscounted(U) becomes zero uniformly
for all subsets which trivially implies the lemma.

Next, we define
g(U ′) := |E(U ′, U ′)| − ∥U ′ −H|T ∥0 − α · |U ′|

for any U ′ ⊆ V . Recall that E(U,U) is the collection of edges with both endpoints in U .
Next, we aim to demonstrate that g(V ) ≥ 0. If this condition is satisfied, it follows that

Φdiscounted(V ) ≥ α, thereby completing the proof.
Fix an arbitrary index i ∈ [n]. Let V + and V − form a partition of V such that V + := {v ∈ V :

v(xi) = +1} and V − := {v ∈ V : v(xi) = −1}. By using the sets V + and V −, we also define a
partition of U as U+ = U ∩ V + and U− = U ∩ V −. We further define the following sets:

N+ = U+ ∩ U−
i→+ N− = U− ∩ U+

i→−

I+ = U+ \N+ I− = U− \N−.

14
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Here, N+, I+, N−, I− form a partition of U . The intuition behind this partitioning is to analyze the
behavior of the function g when the i-th bit is flipped for each part of the set U . We refer the reader
to Figure 1 for a visualization of these sets.

We define U ′ = Ui→+ ∪ Ui→−, i.e., U ′ is a superset of U which is symmetric with respect to
i-th coordinate. In other words, for any vertex v ∈ U , v→+, v→− ∈ U ′. Next, we will show that g
increases as we make the set U symmetric at any coordinate.

Claim 10 For all U ⊆ V , g(U ′) ≥ g(U), where U ′ = Ui→+ ∪ Ui→−

Proof We start by observing that

g(U) = g(I+) + g(I−) + g(N+ ∪N−) + |E(I+, N+)|+ |E(I−, N−)|.

Similarly, for U ′ we evaluate g(U ′) as follows:

g(U ′) = g(U) + g(I+i→−) + g(I−i→+)

+ |E(I+i→−, U
−)|+ |E(I−i→+, U

+)| (3)

+ |E(I+i→−, I
+)|+ |E(I−i→+, I

−)|.

Now, we make series of observations:

1. For each vertex v ∈ V , because ∥vi→− − vi→+∥0 = 1 we see by the triangle inequality that

max{∥vi→+ −H|T ∥0, ∥vi→− −H|T ∥0} ≤ min{∥vi→+ −H|T ∥0, ∥vi→− −H|T ∥0}+ 1.

Therefore, we have

∥vi→+ −H|T ∥0 + ∥vi→− −H|T ∥0 ≤ 2 ·min{∥vi→+ −H|T ∥0, ∥vi→− −H|T ∥0}+ 1.

2. From the first observation we deduce that

∥I+i→−−H|T ∥0 ≤ ∥I+−H|T ∥0+ |I+| and ∥I−i→+−H|T ∥0 ≤ ∥I−−H|T ∥0+ |I−|.

Since |E(I+i→−, I
+
i→−)| = |E(I+, I+)| and |E(I−i→+, I

−
i→+)| = |E(I−, I−)|, subtracting

these quantities from the previous inequalities, we see that

g(I+i→−) ≥ g(I+)− |I+| and g(I−i→+) ≥ g(I−)− |I−|

3. For edge sets we observe

|E(I+i→−, U
−)| ≥ |E(I+, N+)| and |E(I−i→+, U

+)| ≥ |E(I−, N−)|

and also
|E(I+i→−, I

+)| = |I+| and |E(I−i→+, I
−)| = |I−|.
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By substituting these inequalities into (3) we obtain that

g(U ′)− g(U) ≥ g(I+)− |I+|+ g(I−)− |I−|+ |E(I+, N+)|+ |E(I−, N−)|+ |I+|+ |I−|
= g(I+) + g(I−) + |E(I+, N+)|+ |E(I−, N−)|
= g(U)− g(N+ ∪N−).

We claim that g(U) − g(N+ ∪ N−) is non-negative, since assuming otherwise implies that
g(N+ ∪ N−) > 0 and therefore Φdiscounted(N

+ ∪ N−) > α, contradicting the optimality of U .
Thus, g(U ′) ≥ g(U), and consequently Φdiscounted(U

′) ≥ Φdiscounted(U).

By construction, the set U ′ is the minimal superset of U that is symmetric with respect to the
index i. Iteratively applying this process for each index i ∈ [n] will always weakly increase the
value of g and, consequently, Φdiscounted. Thus, the maximal subset U∗ that satisfies g(U∗) ≥ 0,
or equivalently Φdiscounted(U

∗) = α, is symmetric with respect to any index. The only non-
empty subset with this property is V itself, i.e., the complete Boolean hypercube. Therefore,
Φdiscounted(V ) ≥ Φdiscounted(U), completing the proof.

3.4. Proof of Lemma 9: Connections to Rademacher Complexity

Given an arbitrary set of samples T ∈ X n we write Φdiscounted(V ) as follows.

Φdiscounted(V ) =
|E(V, V )| −

∑
u∈V ∥u−H|T ∥0
|V |

=
|E(V, V )| −

∑
u∈V minh∈H|T ∥u− h∥0

|V |
(definition of ∥u−H|T ∥0)

=
n · 2n−1 −

∑
u∈V minh∈H|T ∥u− h∥0

2n
(|E| = n · 2n−1, |V | = 2n)

=
n

2
− 1

2n

∑
u∈V

min
h∈H|T

∥u− h∥0.

Next, we switch notation from Hamming distance to inner product by using the following equality.

⟨u, h⟩ :=
n∑

i=1

u(xi) · h(xi) =
n∑

i=1

[u(xi) = h(xi)]−
n∑

i=1

[u(xi) ̸= h(xi)] = n− 2 · ∥u− h∥0. (4)

Then,

Φdiscounted(V ) =
n

2
− 1

2n

∑
u∈V

min
h∈H|T

n− ⟨u, h⟩
2

(4)

=
n

2
− n

2
− 1

2n

∑
u∈V

min
h∈H|T

−⟨u, h⟩
2

(|V | = 2n)

=
1

2
· 1

2n

∑
u∈V

max
h∈H|T

⟨u, h⟩

=
1

2
· E
u∼V

[
max
h∈H|T

⟨u, h⟩
]
.
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In the last step u is sampled uniformly random from V . Notice that u(xi) equals +1 or −1 with
probability 1/2 independently for any (xi, yi) ∈ S. Therefore,

Φdiscounted(V ) =
n

2
· ℜ̂T (H|T )

where ℜ̂T (H|T ) is the empirical Rademacher complexity which is defined as:

ℜ̂T (H|T ) :=
1

n
E

σ∼{+1,−1}n

[
sup

h∈H|T

n∑
i=1

σi · h(xi)

]
.

Finally, we recall the following lemma from Dudley (1967) and Haussler (1995).

Lemma 11 (Implied by (Dudley, 1967) and (Haussler, 1995)) For a sample T ∈ X n and finite
VC dimension hypothesis class H, we have

ℜ̂T (H|T ) ≤ 31 ·
√

VC(H)

n
.

Applying this lemma, we observe the following, and conclude the proof.

Φdiscounted(V ) =
n

2
· ℜ̂(H|T ) ≤ 16 ·

√
n ·VC(H).

Lemma 11 is a well-known result derived using the chaining method introduced by Dudley
(1967). Chaining is a technique for obtaining tight upper bounds on the expected supremum of a
collection of random variables {Xt}t∈T , denoted as E[supt∈T Xt]. This approach provides a sharper
bound than the naive sum E[

∑
t∈T Xt], which can be loose when the variables are highly positively

correlated. In such cases, it is beneficial to group together random variables that are nearly identical.
When calculating the Rademacher complexity ℜ̂T (H|T ), the random variables are sums of the

form
∑n

i=1 h(xi)σi, where h ranges over hypotheses forming a metric space under the Hamming
distance. Hypotheses that are close in this metric space yield similar sum values. Dudley’s integral
(Dudley, 1967) allows us to bound the expected supremum in terms of the covering numbers (sphere
coverings) of these hypotheses. Haussler (1995) provided an upper bound on the number of spheres
that can cover a hypothesis class H with finite VC dimension, which directly translates to an upper
bound on the covering numbers of H|T . Combining Dudley’s chaining argument with Haussler’s
bound leads to Lemma 11.

For a formal proof of this lemma, see the lecture notes by Rebeschi (2022). For a self-contained
introduction to chaining and its applications, we refer readers to Talagrand (1996).

4. Conclusion

This paper does a deep dive into the relationship between the transductive and PAC models of
learning. We show that PAC learning is essentially no harder than transductive learning for most
natural problems, by way of an efficient reduction. Though the converse appears challenging in
general, we take the first step by showing that transductive binary classification is essentially no
harder than its PAC counterpart. We speculate that further progress in this direction might come by
extending our analysis of the agnostic OIG to the multiclass setting. In particular, characterizing
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the subgraph of the agnostic OIG which maximizes discounted density, then relating its density to
the PAC sample complexity, seems a natural and promising approach. Moreover, recent work by
Hanneke et al. (2024) indicates that agnostic PAC learners can improve upon standard worst-case
bounds when the hypothesis class error is small. We suspect that a transductive-to-PAC conversion
that leverages small hypothesis class errors might yield PAC learners with performance guarantees
that surpass those of traditional worst-case bounds.
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Appendix A. An alternative way to show the reduction in the realizable case

In this section, we revisit and extend the technique, originally presented by Aden-Ali et al. (2023a),
for transforming transductive learners to PAC learners for realizable problems. This section serves
as a warm-up for our main result: transforming agnostic transductive learners into agnostic PAC
learners. That is, we prove the following theorem:

Theorem 12 (Equivalent to Aden-Ali et al. (2023a, Theorem 2.1)) For any realizable learning prob-
lem defined by sample space X × Y with a bounded pseudometric loss function ℓ(·, ·) ∈ [0, 1] and
a hypothesis class H, we have

mPAC,H(ϵ, δ) ≤ mTrans,H(ϵ/4) +
3

ϵ
· log

(
2

δ

)
.

Our method of reduction, in simple terms, diverges from the approach taken by Aden-Ali et al.
(2023a) in terms of problem framing. Their study centers on determining the optimal error bound
given a sample of size n by training transductive learners on subsets of the data. In contrast, our
strategy explores the requisite additional data needed to transform transductive learners to PAC
learners, by training on supersets of the original sample. For a more detailed comparison of the two
approaches, see Appendix C.

Algorithm 2 Reduction from PAC Learning to Transductive Learning in the realizable setting.
Data: n i.i.d. samples S from D.
Result: Predictor ĥ.
Let ATrans be a transductive learner with error rate ϵ(n).
Define Si := {(x1, y1), . . . (xn, yn), (xn+1, yn+1), . . . (xn+i, yn+i)} for each i ∈ [k]
Let hi−1 be the output predictor of ATrans(Si−1) for each i ∈ [k].
Define ĥ as the predictor which returns the median of predictions h0(x), . . . hk−1(x).
Output: Predictor ĥ.

We streamline the preceding analysis by adopting the following multiplicative variant of Azuma’s
inequality rather than formulating a specialized martingale concentration bound.
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Lemma 13 (Multiplicative Azuma’s Inequality Kuszmaul and Qi (2021)) Let X1, . . . Xn ∈ [0, c]
be real-valued random variables for some c > 0. Suppose that E[Xi | X1, . . . Xi−1] ≤ ai for all i.
Let µ =

∑n
i=1 ai. Then for any δ > 0,

Pr

[∑
i

Xi ≥ (1 + δ) · µ

]
≤ exp

(
− δ2 · µ
(2 + δ) · c

)
.

Beyond simplifying the process, we have expanded the scope of our reduction to cover any
supervised learning problem with bounded metric loss. This class of problems includes a wide
array of supervised learning tasks, such as classification, partial concept classification, and bounded
regression. For this extension, we have adapted the aggregation phase of the reduction to output the
median of the prediction in the metric space, defining the median as the point that minimizes the
total distance to all other predictions.

The following lemma is the key assertion that will allow us to finalize the proof of Theorem 12.

Lemma 14 Let ATrans be a transductive learner with transductive error rate ϵ(n). Then, for any
δ ∈ (0, 1), and a sample S ∼ Dn+k, with probability 1 − δ over the choices of S, predictors
hi−1 := ATrans(Si−1) for i ∈ [k] satisfy:

1

k

∑
i∈[k]

LD(hi−1) ≤ 4 · ϵ(n)

where k = 3·log(2/δ)
ϵ(n) .

Before we prove the lemma, let us show that how it implies Theorem 12.
Proof [Proof of Theorem 12] Fix any test point (x, y), let ĥ be the predictor that outputs the median
among predictions h0(x), . . . , hk−1(x) which is the label ŷ that minimizes the total loss between ŷ
and predictions {hi−1(x)}i∈[k].

Thus,

ℓ(y, ŷ) ≤ min
i∈[k]

ℓ(hi−1(x), ŷ) + ℓ(hi−1(x), y) (Triangle inequality)

≤ 1

k

∑
i∈[k]

ℓ(hi−1(x), ŷ) + ℓ(hi−1(x), y) (min ≤ avg)

≤ 2 · 1
k

∑
i∈[k]

ℓ(hi−1(x), y). (ŷ is median)

Finally, taking expectation over samples (x, y) ∼ D together with Lemma 14 concludes that distri-
butional error of predictor ĥ is at most 8 · ϵ(n) with probability 1− δ.

When (Y, ℓ) constitutes a normed vector space, the application of Jensen’s inequality ensures
that the average of the predictors’ outputs, h0(x), . . . hk−1(x) yields at most 4 · ϵ(n) distributional
error, thereby improves general metric space result.

We now proceed to prove Lemma 14. To begin, let us define the empirical error of predictor
hi−1 for any i ∈ [k] against the data point (xn+i, yn+i) as

di := ℓ(hi−1(xn+i), yn+i).
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Given the sample set Si−1, di serves as an unbiased estimate of the distributional error associated
with predictor hi−1. Formally,

E[di | Si−1] = E[ℓ(hi−1(xn+i), yn+i) | Si−1] = LD(hi−1)

as we know that (xn+i, yn+i) is independently sampled from D.
Next, we show that, with high probability, the total distributional error is at most a constant

factor larger than the total empirical error. The key observation is that the cumulative differences of
LD(hi−1) − di form a martingale, and the sequence can be bounded using Azuma’s multiplicative
inequality.

Claim 15 (Forward Martingale Bound)

Pr

[
k∑

i=1

LD(hi−1)−
k∑

i=1

di > 2 · k · ϵ(n)

]
≤ δ

2
.

Proof Let Mi = LD,H(hi−1) − di. Then, as we observed above, the following conditional expec-
tation evaluates to E[Mi | Si−1] = LD(hi−1) − E[di | Si−1] = 0. Then, the random variables
Mi satisfy Mi ∈ [−1, 1] and E[Mi | M1, . . .Mi−1] ≤ ϵ(n) where ϵ(n) is the error rate of the
transductive learner ATrans.

Invoking Lemma 13 gives us

Pr

∑
i∈[k]

Mi ≥ 2 · k · ϵ(n)

 < exp

(
−k · ϵ(n)

3

)
.

As we have k = 3·log(2/δ)
ϵ , the claim follows.

Following that, we turn our attention to show that total empirical error is small with high prob-
ability. We observe that di acts as an unbiased estimator for the transductive error of the learner
ATrans given the unordered set Si as input. We then think of constructing our sequence of samples
S0, . . . , Sk “backwards” by first conditioning on the (unordered) set Sk, then iteratively peeling off
one sample at a time — uniformly at random without replacement — to obtain Sk−1, Sk−2, . . . , S0.
For i = k, . . . , 1, observe that (xi, yi) is a uniformly random element from Si, and that |Si| ≥ n.
The transductive error assumption implies that LTrans

Si
(A) ≤ ϵ(n). Finally, applying the multiplica-

tive version of Azuma’s inequality a second time, we obtain the following bound.

Claim 16 (Backward Martingale Bound)

Pr

[
k∑

i=1

di > 2 · k · ϵ(n)

]
≤ δ

2
.

Proof Recall that we think of constructing our sequence of samples S0, . . . , Sk “backwards” by
first conditioning on the (unordered) set Sk, then iteratively peeling off one sample at a time —
uniformly at random without replacement — to obtain Sk−1, Sk−2, . . . , S0 = S. For i = k, . . . , 1,

23



DUGHMI KALAYCI YORK

observe that (xi, yi) is a uniformly random element from Si, and that |Si| ≥ n. The transductive
error assumption implies that Ltr

Si
(A) ≤ ϵ(n) and therefore

E[di | Si] ≤ ϵ.

Since di is conditionally independent of dk, . . . , di+1 given Si, it follows that

E[di | dk, . . . , di+1] ≤ ϵ.

As we have di ∈ [0, 1], invoking Lemma 13 once again gives us

Pr

∑
i∈[k]

di ≥ 2 · k · ϵ(n)

 ≤ exp

(
−k · ϵ(n)

3

)
.

Since k = 3·log(2/δ)
ϵ , the claim follows.

Combining two claims by using union bound, we conclude the proof of Lemma 14, from which
Theorem 12 follows as previously described.

Appendix B. Selecting a Hypothesis Using A Validation Set Gives a Low Error
Hypothesis With High Probability

Lemma 17 Let H := {h0, . . . hk−1} ⊆ XY be a collection of predictors satisfying

Pr

[
1

k
·
k−1∑
i=0

LAg
D,H(hi) > ϵ

]
≤ δ

for some ϵ, δ ∈ [0, 1], and let Sval := (X × Y)t be a cross-validation set of size t = log(k/δ)
ϵ2

,
sampled i.i.d. from the distribution D. Then, for the predictor ĥ := argminhi∈H LAg

Sval,H(hi), which
minimizes the agnostic loss on the cross-validation set, we have

Pr
[
LAg
D,H(ĥ) > 3ϵ

]
≤ 2 · δ.

Proof Let Sval := (x1, y1), . . . , (xt, yt). Let h∗ ∈ H be the predictor with the minimum distribu-
tional loss among predictors in H . By assumption, with probability 1− δ, the average distributional
loss of predictors h ∈ H is at most ϵ. From now on, we condition on this event and assume
that the average agnostic distributional error is at most ϵ. Therefore, optimal h∗ guarantees that
L

Ag
D,H(h

∗) ≤ ϵ. For h∗, define Xi := ℓ(h∗(xi), yi) for i ∈ [t].
Using Hoeffding’s inequality and the fact that Xi ≤ 1 for each i ∈ [t], we observe that

Pr

[
L

Ag
S,H(h

∗) ≥ ϵ+

√
log(1/δ)

2 · t

]
= Pr

[
1

t

t∑
i=1

Xi ≥ ϵ+

√
log(1/δ)

2 · t

]
≤ δ. (5)

On the other hand, let h ∈ H be an arbitrary predictor with L
Ag
D,H(h) ≥ ϵ+2 ·

√
log(k/δ)

2·t . Using
Höeffding’s bound again, we observe that

Pr

[
L

Ag
S,H(h) ≤ ϵ+

√
log(k/δ)

2 · t

]
≤ δ

k
.
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By the union bound, we can conclude that with probability at least 1 − δ, there is no predictor

h ∈ H with L
Ag
S,H(h) ≤ ϵ+

√
log(k/δ)

2·t and L
Ag
D,H(h) ≥ ϵ+2 ·

√
log(k/δ)

2·t . By (5), we know that with

probability 1 − δ, there exists a predictor whose agnostic empirical loss is at most ϵ +
√

log(k/δ)
2·t .

Therefore, we conclude that ĥ, the empirically optimal predictor, attains at most ϵ + 2 ·
√

log(k/δ)
2·t

agnostic distributional error.
Finally, we release the condition on the average distributional error being at most ϵ and conclude

that

Pr

[
L

Ag
D,H(ĥ) ≥ ϵ+ 2 ·

√
log(k/δ)

2 · t

]
≤ 3 · δ.

The proof is complete as we set t = log(k/δ)
ϵ2

.

Appendix C. Connections to the results of Aden-Ali et al.

In this section, we explore the connection between our work and that of Aden-Ali et al. (2023a).
Both papers present techniques for converting transductive learners to PAC learners in the realizable
setting, but they make different assumptions about the properties of the underlying learners. Aden-
Ali et al. (2023a) train multiple transductive learners by taking subsamples of the given sample
set and aggregating their information to obtain a PAC learner. Their work explicitly defines this
aggregation step for binary classification, partial concept classification, and bounded loss regression
problems. In contrast, our approach involves training multiple learners by providing additional data
to each and aggregating their outputs to form a PAC learner. Our aggregation method is more
generic and applicable to any learning problem with bounded pseudometric loss functions.

Both our paper and the paper of Aden-Ali et al. (2023a) make assumptions on the worst case
performance of a learner A based on the size of the input sample. Intuitively, this paper assumes
that when a learner is given larger samples, its expected error on those samples is non-increasing.
That is,

ϵTrans(n) ≤ ϵTrans(n− 1). (A1)

In contrast, the authors of Aden-Ali et al. (2023a) assume that given smaller samples, the expected
error of a learner does not increase more than linearly. More formally,

nϵTrans(n) ≥ (n− 1)ϵTrans(n− 1). (A2)

As you may notice, these two assumptions are incomparable, or equivalently, one does not imply
the other.

In this section, we will first show that A1 is without loss of generality true for transductive
learners. We then show that assuming both (A1) and (A2) hold for transductive learners, the two
results are equivalent up to constant factors.

C.1. The monotonicity and symmetry assumptions in Section 2 are true without loss of
generality

Lemma 18 If a learner Ã achieves (agnostic) transductive error at most ϵ̃(n), then there exists a
randomized learner A with transductive error rate of at most ϵ(n) such that ϵ(n+ 1) ≤ ϵ̃(n).
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Proof For any sample S ∈ (X ,Y)n+1 provided for transductive learning task. When a transductive
learner A is tested against data point (xi, yi), A subsamples a set S′ ⊆ S−i of size n− 1 uniformly
at random and returns the label A′(S′)(xi). We can upper-bound transductive error of A as follows.

LTrans
S (A) = E

i∈[n]

[
E

j∈[n]\{i}

[
ℓ(A′(S−i,−j)(xi), yi)

]]
= E

i∈[n]
[LTrans

S−i
(A′)]

≤ E
i∈[n]

[ϵ̃(n)]

= ϵ̃(n).

Notice that the proof holds even for agnostic transductive learning problem when we replace the
transductive error function with the agnostic transductive error function.

Moreover, for transductive learners with VC dimension d, we know that ϵ(n) = O
(
d
n

)
and

ϵAg(n) = O

(√
d
n

)
. Therefore, Assumption A1 holds for these learners as well.

Let us say that we have a learner A which is not symmetric and attains transductive error guaran-
tee LTrans

S (A) ≤ ϵTrans. We note that we can construct a learner A′, where A′(S) = A(π(S)) where
π is a permutation chosen as a function of the set of (unlabeled) datapoints in S. Note that because
A(S) ≤ ϵTrans regardless of the order of S, we see that A(π(S)) ≤ ϵTrans as well. In addition,
we can see that A′ is symmetric over input samples, as π sorts the sample consistently. Therefore,
we can conclude that if a learner A exists attaining transductive error rate ϵTrans, then a symmetric
learner A′ exists which also attains transductive error ϵTrans.
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