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ABSTRACT

Noise poses a widespread challenge in signal processing, particularly when it
comes to denoising images. Although convolutional neural networks (CNNs)
have exhibited remarkable success in this field, they are predicated upon the belief
that noise follows established distributions, which restricts their practicality when
dealing with real-world noise. To overcome this limitation, several efforts have
been taken to collect noisy image datasets from the real world. Generative meth-
ods, employing techniques such as generative adversarial networks (GANs) and
normalizing flows (NFs), have emerged as a solution for generating realistic noisy
images. Recent works model noise using camera metadata, however requiring
metadata even for sampling phase. In contrast, in this work, we aim to estimate
the underlying camera settings, enabling us to improve noise modeling and gen-
erate diverse noise distributions. To this end, we introduce a new NF framework
that allows us to both classify noise based on camera settings and generate various
noisy images. Through experimental results, our model demonstrates exceptional
noise quality and leads in denoising performance on benchmark datasets.

1 INTRODUCTION

Noise is one of the most common and undesired artifacts in the field of signal processing. There-
fore, denoising has been studied for many decades across many research areas, among which image
denoising is a task to restore a clean image by removing noise from the input image. Recently, there
have been dramatic improvements in image denoising through the development of convolutional
neural networks (CNN) (Zhang et al., 2017; Anwar & Barnes, 2019; Chen et al., 2021) trained in a
supevised manner. Despite their impressive achievements, these supervision-based algorithms have
critical limitations in that they rely on a simple assumption that added noise follows known distri-
butions, such as Gaussian and Poisson. Such an assumption hinders the supervised algorithms from
generalizing to real-world noises that do not follow the well-known, simple distributions.

To enable supervised approaches in handling real-world noise, there have been several attempts to
collect real-world datasets consisting of pairs of clean images and their corrupted versions with
real noise (Plotz & Roth, 2017; Nam et al., 2016; Xu et al., 2018; Anaya & Barbu, 2018; Ab-
delhamed et al., 2018; 2020). Among them, one of the widely used datasets for training is the
SIDD (Abdelhamed et al., 2018) dataset, which consists of real-world noisy images captured by
various smartphone cameras, considering different ISO, shutter speed, and aperture settings. Never-
theless, obtaining such images requires a significant amount of time and resources, which restricts
the availability of large-scale real noisy datasets.

To alleviate these constraints, generative methods have been proposed. Specifically, numerous gen-
erative approaches employ generative adversarial networks (GAN) or normalizing flows (NF) to
learn the distribution of real noise and synthesize realistic noisy images (Yue et al., 2020; Zamir
et al., 2020; Abdelhamed et al., 2019; Jang et al., 2021; Chang et al., 2020; Kousha et al., 2022).

In this study, we introduce a novel framework called NAFlow, short for Noise-Aware Normalizing
Flow, designed to learn and effectively manage the diverse noise distributions originating from
various camera settings.

∗ Equal contribution. † Corresponding author.
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Table 1: Comparison between sRGB noise modeling networks.

Key features Flow-sRGB NeCA Ours

Sampling without metadata ✗ ✗ ✓
Single unified model ✓ ✗ ✓
Correlated noise generation ✗ ✓ ✓

Unlike previous models such as
NeCA (Fu et al., 2023) that use
multiple different noise models to
deal with different noise distribu-
tions, we use only a single uni-
fied model to learn such complex
noise distributions. Additionally,
we present a Noise-Aware Sampling (NAS) algorithm, which empowers our noise generation model
to exploit the Gaussian mixture model (GMM) derived from diverse noise distributions. Importantly,
NAFlow mitigate the necessity for metadata (e.g., ISO, camera model) associated with input noisy
images for sampling. Furthermore, we recognize the importance of spatial noise correlation in sRGB
space, and thus propose a multi-scale noise embedding technique to facilitate the synthesis of the
spatially correlated noise. Through various experiments, NAFlow has demonstrated its outstanding
noise quality. Additionally, when utilized for denoising tasks with generated noise, it has achieved
a state-of-the-art level of performance on SIDD benchmark.

2 RELATED WORK

Noisy Image Generation. Due to the lack of real-noise datasets, there are several attempts to gen-
erate realistic noisy images. DANet (Yue et al., 2020) learns the joint distribution of the clean and
noisy image pair to map the noisy image to the clean one, enabling simultaneous noise genera-
tion and elimination. C2N (Jang et al., 2021) is trained with unpaired clean and noisy images and
generates synthetic noisy images with adversarial loss. CycleISP (Zamir et al., 2020) presents a
CNN-based framework and exploits camera image pipelines on both the sRGB and RAW spaces.
CA-NoiseGAN (Chang et al., 2020) encodes camera-dependent noise information using contrastive
learning and generates realistic noise conditioned on that information. PNGAN (Cai et al., 2021)
splits the noisy image generation problem into image-domain and noise-domain alignment prob-
lems and carries out pixel-level noise modeling. Moreover, there are some generative models based
on conditional NF rather than GANs since NF can be trained easily and generate more diverse im-
ages (Lugmayr et al., 2020; Abdelhamed et al., 2019; Kingma & Dhariwal, 2018; Wang et al., 2022;
Liang et al., 2021; Kousha et al., 2022). NoiseFlow (Abdelhamed et al., 2019) learns noise distri-
bution of RAW images captured by smartphone cameras conditioned on the smartphone type and
gain setting (e.g., ISO), and Flow-sRGB (Kousha et al., 2022) extends the capability of NoiseFlow
to tackle denoising in sRGB space. However, the existing noise modeling methods lack modeling
spatially correlated noise. To address this issue, NeCA (Fu et al., 2023) explicitly learns the neigh-
boring correlation of the noise within the dataset of SIDD (Abdelhamed et al., 2018). Although
NeCA closes the distribution gap between synthetic and real noise in the sRGB space, it requires
multiple different noise models to deal with different real-world noise.

In this work, we extend the capabilities of the NF-based framework as a generative classifier as well
as the ability to generate a variety of samples, as discussed in previous studies (Mackowiak et al.,
2021; Izmailov et al., 2020; Ardizzone et al., 2020). In particular, we employ GMM to learn multiple
different real-world noise distributions according to ISO levels, camera models, which mainly affect
the noise distribution in camera imaging pipeline (Ramanath et al., 2005; Gow et al., 2007). These
learned distributions enable effective processing and generation of real input noisy images. For
clarity, Tab. 1 illustrates the differences between recent noise modeling methods and our approach.
Our objective is to sampling realistic noisy that considers noise correlation during the sampling
phase without any need of metadata, while employing only a single unified model.

3 BACKGROUND

3.1 NOISE MODELING

In this subsection, we begin by explaining the process of image noise acquisition, and introduce
several noise modeling methods. Noisy images can be represented as a combination of a clean
image and noise using the following equation:

y = x+ n, (1)
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Figure 1: Overview of proposed framework. (a) The training procedure of our NAFlow, which uses
conditional normalizing flow network f to map noisy images to Gaussian distributions on the latent
space, where each Gaussian distribution corresponds to the camera configuration used for capturing
images. (b) The pipeline of inference procedure NAS. We use the Gaussian mixture model to obtain
a more accurate latent representation without metadata of a given input noisy images.

where x and y represent the clean and noisy images, respectively, and n represents the added noise.

Real-world image noise n arises from inherent constraints associated with camera sensors and is
further introduced during the post-imaging process. This real-world noise—including photon noise,
read noise, and quantization—occurs during the initial capture of a RAW-RGB image. Subsequently,
a RAW-RGB image undergoes non-linear imaging processes (such as demosaicking, gamma cor-
rection, and tone mapping), transforming it from a scene-based RAW-RGB color space to a screen-
based sRGB color space. Due to the application of multiple non-linear operations to both a clean
image and a noise, modeling sRGB noise becomes a more challenging problem. To address this
problem, we aim to transform the complex real-world noise distributions into several simple distri-
butions to leverage the diverse properties of real-world noise by adopting normalizing flows.

3.2 NORMALIZING FLOW

Normalizing flows (NF) belong to a class of generative models that use invertible transformations to
map a simple distribution, typically a Gaussian distribution, to a more complex target distribution.
The invertible mapping allows NF to directly optimize negative log likelihood (NLL). Due to the
advantageous combination of simplicity and effectiveness offered by NF (Abdelhamed et al., 2019;
Kousha et al., 2022), we use NF for modeling noise distributions.

Composed of a sequence of invertible transformations, our NF aims to learn an invertible mapping
f : z 7→ x, where x and z are the original (image) and transformed data (latent), respectively.
Specifically, the change of variables formula is employed to compute the probability density of the
latent z with respect to the original data x, as follows:

p(x) = p(z) · |detDfθ(x)|. (2)

Where, detDfθ(x) represents the determinant of the Jacobian matrix of the transformation Dfθ(x),
taking into account how the volume changes during the mapping. The training objective is the NLL
loss of the observed data x, which is minimized by training the model parameters θ.

4 PROPOSED METHOD

In this section, we start with the description of our NAFlow, a novel NF-based framework that allows
for learning multiple distinctive Gaussian distributions within the latent space, thereby enabling
the effective modeling of a diverse real noise distributions (Sec. 4.1). Next, we present our NAS
algorithm, which uses the trained NF not only as a noise generator but also as a noise classifier
during the inference phase (Sec. 4.2). In contrast to previous works (Kousha et al., 2022; Fu et al.,
2023) that require the meta-data of target noise even during inference, we reduce the dependency
through our NAS algorithm. Specifically, our NAS algorithm measures similarities between the
input noise and several learned real-world noise distributions. And then, we synthesizes noise that
follows a similar distribution to the input noise. Finally, we present a multi-scale noise embedding
strategy to capture spatially correlated noise features within the sRGB input image. (Sec. 4.3).
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(a) S6_00400 (b) G4_00400 (c) IP_01000 (d) N6_03200 (e) GP_06400

Figure 2: Noise visualization from diverse device settings (e.g., smartphone model, ISO). Each noise
has a unique distribution due to the distinct characteristics of each image signal processor.

4.1 LEARNING MULTIPLE DISTINCT NOISE DISTRIBUTIONS

In this work, we aim to generate realistic noisy images to solve the real-world denoising problem.
To generate such synthetic noisy images, it is required to capture distributions of real noisy im-
ages as in (Yue et al., 2020; Jang et al., 2021; Fu et al., 2023). To do so, we learn the complex
distribution of noisy images in the SIDD dataset (Abdelhamed et al., 2018), which consists of real
noisy images with corresponding meta-information and clean counterparts. Note that the real-world
noise distribution is unknown and varies depending on the camera model, sensor type, and camera
settings (Ramanath et al., 2005; Gow et al., 2007). Furthermore, as shown in Fig. 2, we observe
distinct noise correlation conditioning on each camera configuration (e.g., smartphone model, ISO)
in the SIDD. This observation motivates us to model multiple camera-configuration-specific normal
distributions in latent space to handle various real-world noise.

Following the usual settings in the field of noise generation (Yue et al., 2020; Kousha et al., 2022;
Fu et al., 2023), we assume that ground truth clean images are given, and we use the clean images
as conditional information, where this conditional information allows the NF to learn a condition-
specific noise distribution. Specifically, in our work, we use the conditional NF (Ardizzone et al.,
2019) which takes a ground truth clean image x for conditioning as:

zc = fθ(yc;x) ⇐⇒ yc = f−1
θ (zc;x), (3)

where yc denotes a real noisy image taken with camera configuration c, and our camera configuration
c consists of smartphone model and ISO setting (e.g., iPhone7 with ISO 1600). The noisy image
undergoes mapping to a latent variable zc through the invertible conditional normalizing flow f with
parameters θ, and ground truth clean image x is used for conditioning the NF.

Then, we learn the noise distributions using camera configuration-specific normal distributions
through a single NF as follows:

zc ∼ N (µc,Σc), (4)
where µc, Σc denotes the mean and covariance matrix of the specific normal distribution for the
configuration c and are trainable parameters in this work. Then, we can compute the conditional
probability density function of yc given x as:

p(yc|x) = N (zc;µc,Σc) · |detDfθ(yc;x)|, (5)

where Dfθ(yc;x) denotes Jacobian of fθ. To handle multiple different distributions using a single
NF, we train the NF by minimizing the negative log-likelihood (NLL) loss function as follows:

LNLL(θ) = −
C∑

c=1

logp(yc|x)

= −
C∑

c=1

(logN (zc;µc,Σc) + log|detDfθ(yc;x)|),

(6)

where C denotes the number of camera configurations available in the SIDD dataset.

Through the trained conditional NF, we can synthesize noisy images which have a similar distri-
bution to yc by taking random samples from N (µc,Σc) as an input of the f−1

θ given ground truth
clean image x as the condition. Fig. 1(a) illustrates the proposed framework.

4.2 NOISE-AWARE IMAGE GENERATION

Unlike our NF training procedure, we propose to generate noisy images without metadata (e.g.,
ISO, smartphone manufacturer) given target noisy input y. In particular, we aim to synthesize
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Figure 3: Overview of NAFlow.

noisy images whose noise distributions are similar to the noise distribution of the given input im-
age. To do so, we utilize the capability of the NF as a generative classifier (Mackowiak et al.,
2021; Izmailov et al., 2020). Specifically, we obtain a latent z from the noisy input y through the
trained NF and measure the likelihood of that latent z for each learned Gaussian distribution (i.e.,
N (z;µ1,Σ1),N (z;µ2,Σ2), ...,N (z;µC ,ΣC)). Recall that we use the GMM in latent space to
approximate target noise using a combination of distinct noise information given these likelihoods.
Thus, using this set of C likelihood values, we can mix the learned C distinct noise distributions and
generate input noise-specific images from the mixture model. The proposed generation process and
algorithm are illustrated in Fig. 1(b) and Alg. 1.

Algorithm 1 Noise-Aware Sampling (NAS)
Input: clean condition x, noisy input y

1: z = fθ(y;x)

2: Sample z̃ ∼ N (µ̃, Σ̃), where µ̃ =
∑
c

N (z;µc,Σc)∑
c′

N (z;µc′ ,Σc′ )
· µc, Σ̃ =

∑
c

N (z;µc,Σc)∑
c′

N (z;µc′ ,Σc′ )
·Σc

3: return ỹ = f−1
θ (z̃;x)

In our experiments, we demonstrate that the proposed NAS algorithm 1 allows us to synthesize
real-world noisy images without metadata with the aid of our noise-aware generation mechanism.

4.3 MULTI-SCALE NOISE EMBEDDING

Taking into account spatial noise correlation in sRGB image is a critical consideration (Zhou et al.,
2020; Lee et al., 2022; Fu et al., 2023). Specifically, a majority of digital cameras employ a Bayer
filter array, where each pixel in the image sensor can only record the intensity of light for one of the
three primary colors (e.g., red, green, or blue), necessitating the interpolation of color information to
generate a comprehensive full-color image. In the other words, the process of demosaicking on the
Bayer filter induces noise correlation among adjacent pixels (Jin et al., 2020). Moreover, a recent
study (Zhang et al., 2023) has computed the size of spatially correlated noise areas within different
regions of the image, and found a considerable variance in this area size, ranging from a single pixel
to over 25 pixels. Inspired by this noteworthy observation, our NF architecture incorporates a multi-
scale noise embedding strategy involving squeeze operations to effectively address different scales
of noise correlation. Please note that our approach is the first NF-based attempt to model real-world
noise considering noise correlation through the multi-scale embedding approach.

We illustrate our proposed NAFlow in Fig. 3. The overall architecture of our proposed NAFlow
draws inspiration from several prior works (Dinh et al., 2017; Kingma & Dhariwal, 2018; Ardiz-
zone et al., 2019; Lugmayr et al., 2020). For a clearer description, we provide brief descriptions
of each component of NF in Appx. A.1. The architecture of our model network is designed with
three scale-level blocks (L = 3) to effectively manage diverse scales of noise. The initial process-
ing step involves encoding the noisy image through an embedding block, which including invertible
1×1 convolution (Kingma & Dhariwal, 2018) and ActNorm (Kingma & Dhariwal, 2018). Each
scale-level block is responsible for accommodating different noise scales and comprises a squeeze
operation, a single transition block, and two conditional flow blocks (K = 2). It is worth noting that
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the squeeze operation reduces the spatial resolution of the input features by half, a crucial step for
addressing multi-scale noise. Additionally, we have incorporated an extra transition block follow-
ing the squeeze operation to mitigate checkerboard artifacts in the reconstructed image, stemming
from pixel re-ordering (Lugmayr et al., 2020). We opt for K = 2 and bypass conditional flow
blocks following the embedding block to transform all channels in the feature at each level, ensur-
ing the network’s efficiency. This choice is motivated by the fact that affine coupling can transform
only half of the feature channels conditioned on the remaining half (see Appx. A.1). Meanwhile,
each conditional block comprises a conditional affine coupling (Ardizzone et al., 2019), an affine
injector (Lugmayr et al., 2020), and one transition block. Notably, both the affine injector and con-
ditional affine coupling blocks are conditioned on clean images, enabling them to model noise that
contingent upon the underlying clean signals.

5 EXPERIMENTS

To evaluate the capabilities of our noise generation model, we conduct two main experiments. First,
we assess the quality of the generated noise quantitatively and qualitatively and investigate noise
correlation through visualization (Sec 5.2, Sec 5.3, and Sec 5.4). Second, we examine the effective-
ness of the generated noise in real-world denoising tasks by training a denoising network using the
generated noisy images (Sec 5.5). Finally, we conduct ablation studies to show superiority of our
proposed NAFlow, NAS, and multi-scale noise embedding (Sec 5.6).

5.1 EXPERIMENTAL SETUP

Implementation Details. All the networks are optimized using Adam optimizer (Kingma & Ba,
2014). For training NAFlow, we minimize the LNLL loss in Eq. 6 with initial learning rate 1e-
4 which is reduced by half at 50k, 75k, 90k during 100k iterations. We use randomly cropped
patches (160 × 160) and the mini-batch size of 8 for training. For a denoising network, we use the
DnCNN (Zhang et al., 2017). Training is conducted with the identical experimental configuration
as described in Fu et al. (2023); with 300 epochs, a learning rate 10−3, and a batch size of 8.

Dataset. To train NAFlow, we use SIDD (Abdelhamed et al., 2018) dataset, which has 34 different
camera configurations (i.e., C = 34). Specifically, we use SIDD-Medium split which comprises 320
noisy-clean image pairs captured with five different smartphone cameras: Google Pixel (GP), iPhone
7 (IP), Samsung Galaxy S6 Edge (S6), Motorola Nexus 6 (N6), and LG G4 (G4). To evaluate the
noise generation, we use SIDD-validation. The training of the denoiser in Sec. 5.5 also uses the same
dataset, but instead of real noisy data, it uses noisy data generated by each noise modeling method.
Furthermore, to measure the real denoising performance, we use SIDD-Benchmark dataset.

Metrics. To evaluate the quality of the generated noise, we use two metrics: Kullback-Leibler Di-
vergence (KLD) and Average Kullback-Leibler Divergence (AKLD) (Yue et al., 2020). In addition,
we adapt PSNR and SSIM metrics to evaluate the denoising performance.

5.2 NOISE GENERATION WITH SIDD

Compared Baselines. We compare our model with several noise generation models, including
C2N (Jang et al., 2021), Flow-sRGB (Kousha et al., 2022), and NeCA-S, NeCA-W (Fu et al., 2023).
We measure noise quality for each camera in the SIDD-Validation to assess device-specific charac-
teristics as in (Fu et al., 2023). Following the usual settings as in (Kousha et al., 2022; Fu et al.,
2023), to ensure consistency between the training and validation sets, we ensure that both sets con-
tain the same ISO levels. We use official weight parameters to evaluate the compared methods.
Please note that C2N differs from other models in that it trains noise distribution in an unpaired
manner, utilizing additional clean dataset and noisy dataset such as BSD500 and DND (Plotz &
Roth, 2017) during training.

Results. Tab. 2 shows the noise quality in terms of KLD and AKLD conducted on SIDD-Validation
of five different cameras. Compared to other noise modeling methods, our NAFlow consistently
demonstrates superior performance in terms of average KLD and average AKLD. An important
point to note is that our NAFlow shows a performance gain of 0.0035/0.013 in terms of KLD/AKLD
compared to NeCA-W (Fu et al., 2023).
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Table 2: Quantitative results of synthetic noise on SIDD-Validation. The results are computed with
KLD↓ and AKLD↓. In the case of NeCA-S and NeCA-W (Fu et al., 2023), they require five different
models for noise generation, one for each smartphone camera. In particular, NeCA-W requires three
sub-models (GENeta, NPNetb, NCNetc) for each camera. Best results are highlighted in bold.

Camera Metrics C2N Flow-sRGB NeCA-S NeCA-W NAFlow

G4 KLD 0.1660 0.0507 0.4025 0.0242 0.0254
AKLD 0.2007 0.1504 1.6803 0.1524 0.1367

GP KLD 0.1315 0.0781 0.1713 0.0432 0.0352
AKLD 0.1968 0.1797 0.7379 0.1273 0.1180

IP KLD 0.0581 0.5128 0.3424 0.0410 0.0339
AKLD 0.2929 1.7490 1.2924 0.1145 0.1522

N6 KLD 0.3524 0.2026 0.2830 0.0206 0.0309
AKLD 0.2919 0.2469 1.0598 0.1304 0.1108

S6 KLD 0.4517 0.3735 0.1724 0.0302 0.0272
AKLD 0.4190 0.2641 0.4646 0.1933 0.1355

Average KLD 0.2129 0.2435 0.2743 0.0342 0.0305
AKLD 0.2802 0.5180 1.0470 0.1436 0.1306

#Params 2.2M 6K 5 * (7.8Mc) 5 * (263Ka + 42Kb + 7.8Mc) 1.1M

KL = 0.053 KL = 0.034KL = 0.745

C2N NeCA-W Ours Real

(a) GP_10000

KL = 0.021 KL = 0.019KL = 0.036

C2N NeCA-W Ours Real

(b) IP_01600

N
oi

sy
N

oi
se

Figure 4: Visualization of synthetic noisy images with different Camera configura-
tions (Camera ISO) on SIDD-Validation. From left to right: C2N, NeCA-W, Ours (NAFlow), and
Real noisy images.

Note that NeCA-W is trained separately for each camera model, so five differently trained NeCA-W
models may produce more realistic noise for certain camera models. In contrast, our model uses a
single unified model with a much smaller number of parameters for all camera models. Nevertheless,
our model shows comparable performance to NeCA-W. Moreover, Fig. 4 compares the generated
noise and noisy images. A notable observation is the strong similarity between the noise generated
by NAFlow and real-world noise. This indicates that NAFlow excels at synthesizing realistic noise.

5.3 NOISE GENERATION WITH SIDD+

Generating noise for different camera configurations that are not included in the SIDD dataset is a
challenging task, so most conventional noise generation models synthesize noise using the metadata
available in the SIDD. During training, our NAFlow also uses metadata from SIDD (Abdelhamed
et al., 2018) to learn a multi-distribution, but unlike other models (Kousha et al., 2022; Fu et al.,
2023), NAFlow can generate noise using only noisy-clean image pairs without relying on the meta-
data during the inference phase. Consequently, NAFlow can generate noise that is similar within the
training distribution even for the camera configuration not included in the SIDD dataset. To validate
this advantage, we use the SIDD+ (Abdelhamed et al., 2020) dataset, which is captured with smart-
phones similar to SIDD but with smartphones not used to capture images in the SIDD dataset. Tab. 3
shows the accuracy of synthetic noise using the clean-noise image pairs on the SIDD+ (Abdelhamed
et al., 2020). For the pre-trained NeCA-S and NeCA-W models, the challenge is to generate noise
for camera configurations which are not available in the SIDD training dataset. Therefore, we show
the best KLD values among their five different camera models. In Tab. 3, we can see that NAFlow
has the highest performance on SIDD+. This shows that NAFlow is able to generate comparable
synthetic noisy images even in the absence of metadata.
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Table 3: Quantitative results of synthetic
noise from the dataset (SIDD+) not used for
training the generative model. The results are
computed in terms of KLD↓. Best result is
highlighted in bold.

Metric C2N NeCA-S NeCA-W NAFlow

KLD↓ 0.3973 0.2620 0.0629 0.0494

(d) Real(c) Ours(b) NeCA-W(a) C2N

Figure 5: Noise correlation map on N6 03200 from dif-
ferent methods. Ours shows the highest similarity with
the correlation map in Real (d).

Table 4: Quantitative results of denoising performance on SIDD Benchmark in terms of PSNR↑ and
SSIM↑. All methods are trained under the same dataset conditions (synthetic noisy-clean pairs).
Note that Real Noise are trained with real noisy-clean pairs. The best result is highlighted in bold.

Metrics C2N NoiseFlow Flow-sRGB NeCA-S NeCA-W NAFlow Real Noise

PSNR↑ 33.76 33.81 34.74 36.10 36.82 37.22 37.63
SSIM↑ 0.901 0.894 0.912 0.927 0.932 0.935 0.935

5.4 NOISE CORRELATION VISUALIZATION

It is important to model real-world noise by considering noise correlation (Fu et al., 2023). In Fig. 5,
we compute correlation between the noise in the center pixel and the neighbour noises following the
procedure in (Lee et al., 2022; Wang et al., 2023) and compare the noise correlation of our NAFlow
with other noise generating networks. Our network generates spatially correlated noise that is most
closely resembles the noise correlation in the Real compared to C2N and NeCA-W.

5.5 APPLICATION: SRGB DENOISING

To evaluate the efficacy of the noise generating models and compare their performance in real-world
denoising, we train conventional denoising network using synthetic noisy images from C2N (Jang
et al., 2021), NoiseFlow (Abdelhamed et al., 2019), Flow-sRGB (Kousha et al., 2022), NeCA-S (Fu
et al., 2023), NeCA-W (Fu et al., 2023), and our NAFlow. To be specific, DnCNN is trained with
pairs of clean and synthetic noisy images, and denoising performance of DnCNN (Zhang et al.,
2017) is compared in Tab. 4. The last column (Real Noise) in Tab. 4 shows the denoising result by
DnCNN trained with clean and real noisy image pairs, indicating the upper bound result.

As a result, when using synthetic noisy generated with our NAFlow, DnCNN shows significantly
better denoising performance compared to other noise generating methods. Specifically, NAFlow
outperforms the current state-of-the-art method NeCA-W by 0.39 dB in PSNR. Note that our
NAFlow does not require metadata or a separately trained network for each camera configuration.
Comparing the performance with the upper bound, we acknowledge that the PSNR value still lags
behind. However, it is worth noting that we significantly reduce the PSNR gap and achieve equiv-
alent performance in terms of SSIM. We also provide denoising results from the differently trained
DnCNN in Fig. 6. Our synthetic noise dataset leads to visually more pleasing denoising results,
showing higher robustness against remaining noise artifacts compared to the other baseline models.

5.6 ABLATION STUDY

Effect of noise-aware sampling. As in Alg. 1, our model explores the learned latent space with
multiple different noise distributions, and generates input noise-specific noisy images. To evaluate
the effectiveness of our noise-aware sampling algorithm, we provide an ablation study result by
comparing different sampling methods in Tab. 5. First, the noisy input images are mapped to la-
tents through our NF model. Then we measure the likelihood value of the latents for each normal
distribution N (µc,Σc), and generate new noisy images using the normal distributions with high
likelihood values. In Tab. 5, (Rank-k) indicates the accuracy of the synthetic noise from the normal
distribution that has the k-th best likelihood value. As we expect, image samples generated from
normal distribution with higher likelihood value give better results, which shows the performance of
our NF as a generative classifier.
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Table 5: Ablation study on the effective of NAS. We rank the
camera configurations c classified by NAFlow and generate
the noise from these c and measure the metrics in the SIDD-
Validation.

Metrics Rank-1 Rank-2 Rank-3 Rank-4 Rank-5 Random All
KLD↓ 0.0294 0.0312 0.0408 0.0422 0.0613 0.4700 0.0291
AKLD↓ 0.1302 0.1308 0.1375 0.1463 0.1676 0.4486 0.1293

Table 6: Two conditional NFs (fθ)
trained under single latent distribution
and multiple latent distributions are
compared.

Latent distribution KLD ↓ AKLD ↓
Single normal distribution 0.0544 0.1657
Multiple distinct distributions 0.0291 0.1293

(a) Noisy (d) Ours (e) Clean(b) C2N (c) NeCA-W (a) Noisy (d) Ours (e) Clean(b) C2N (c) NeCA-W

35.35/0.978333.71/0.967233.05/0.9687 26.76/0.7462 29.78/0.8474 31.11/0.8631

Figure 6: Denoising results in terms of PSNR↑ and SSIM↑ on SIDD-Validation from DnCNN
trained on each method. For more qualitative results, please refer to the appendix.

Table 7: KLD score conditioning
on learnable parameters of Gaus-
sian distribution in Eq. 4.

Training µ Training Σ KLD ↓
✗ ✗ 0.0544
✓ ✗ 0.0449
✗ ✓ 0.0340
✓ ✓ 0.0291

Table 8: KLD score depending
on different number of scale-
level blocks L in Fig. 3.

Scale-level KLD ↓
L = 1 0.0349
L = 2 0.0313
L = 3 0.0291
L = 4 N/A

Furthermore, we see that
our NAFlow outperforms
naive Rank-k sampling,
and Random sampling
which generates new noisy
images from randomly se-
lected normal distribution
in the latent.

Effect of learning mul-
tiple distributions. Our
NAFlow is trained by assuming C distinct latent distributions, and the latent sampling mechanism
presented in Alg. 1 allows us to generate input noise-aware noisy images without additional meta-
data. To show the superiority of our generation mechanism considering multiple distinct distribu-
tions, we train the NF (fθ) by assuming a single distribution (i.e., µc = 0,Σ = I for all c) and com-
pare the accuracy of the generated noisy images in terms of KLD. In Tab. 6, we see that NAS based
on multiple different distributions renders more accurate noisy images on the SIDD-Validation.

Trainable parameters of Gaussian distribution. NAFlow leverages multiple Gaussian models
with both trainable mean and covariance in the latent space, effectively addressing the variety of
real-world noise modeling as described in Eq. 4. In Tab. 7, we conduct an ablation study to assess
the effectiveness of each parameter of the Gaussian distribution within the latent space. Our findings
indicate that the NAFlow with learnable both mean and covariance of Gaussian distribution outper-
forms the other models. This indicates that the richer expressive power of the Gaussian distribution
is crucial in accurately modeling the various real-world noise.

Impact of multi-scale noise embedding. In our flow architecture, we integrate a multi-scale noise
embedding approach to handle spatial noise correlations of varying areas. As shown in Tab. 8,
an increase in the scale-level leads to better KLD scores on the SIDD-Validation, indicating our
model’s ability to adeptly learn multi-scale noise characteristics. However, we could not investigate
the higher scale level factor (e.g., L ≥ 4) due to unstable training.

6 CONCLUSION

In this study, we developed a novel NAFlow framework to address the complex and diverse noise
distributions that arise from a variety of camera settings. In addition, we introduced the Noise-Aware
Sampling (NAS) algorithm, which builds on the foundation of the NAFlow framework. NAS allows
our noise generation model to use Gaussian mixture models derived from multiple noise distribu-
tions to synthesize realistic sRGB images with noise. A notable advantage of our method is that
it eliminates the need to input noisy image metadata during inference. In addition, we recognize
the importance of considering noise correlations with different scales. Consequently, we present a
multi-scale noise modeling approach that effectively addresses noise correlation across a range of
scales. The experimental results demonstrate the significant performance improvement that our al-
gorithm brings to both the noise modeling and the denoising network, highlighting the effectiveness
of our proposed methods.
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Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided image
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A APPENDIX

A.1 NAFLOW ARCHITECTURE DETAIL
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Figure 7: Forward pass of Conditional Affine Coupling and Affine Injector.

The overall architecture of our proposed NAFlow draws inspiration from several prior works (Dinh
et al., 2017; Kingma & Dhariwal, 2018; Ardizzone et al., 2019; Lugmayr et al., 2020).

Conditional Affine Coupling (Ardizzone et al., 2019): The conditional affine coupling
layer (Ardizzone et al., 2019) is an extension of the concept of an affine coupling layer as orig-
inally proposed in the RealNVP (Dinh et al., 2017). The distinguishing feature of a conditional
affine coupling layer is that it depends on a conditional input to perform an affine transformation.
Given an input x and a conditional input h, an affine coupling layer splits it into two parts: x1, x2.
Note that the conditional input h is a downsampled clean image by the pixel downsampling opera-
tor in our NAFlow. One part x1, remains unchanged, while the other part x2, undergoes an affine
transformation. The transformation can be defined as follows:

y1 = x1

y2 = x2 ⊙ exp(fs(x1;h)) + ft(x1;h),
(7)

where fs and ft are arbitrary neural networks to extract scale and translation factors to perform
affine transformations, and ⊙ indicates element-wise multiplication. In Fig. 7, we compose a few
layers of 1×1 convolution and 3×3 convolution to design the neural networks f to maintain the
simplicity and efficiency of our NAFlow. And the inverse transformation can be defined as follows:

x1 = y1

x2 = (y2 − ft(x1;h))⊘ exp(fs(x1;h)),
(8)

where ⊘ stands for element-wise division. Finally, the log determinant of this transformation can be
calculated as log|detDfs(x1;h))|.
Affine Injector (Lugmayr et al., 2020): To further increase the influence of the conditional input
on the mapping performed by NF, an affine injector is introduced to transform input features solely
based on conditional input features. We adopt this layer to inject clean signal information on each
scale block in Fig. 3 because learning signal dependence is the important factor in modelling real-
world noise. The difference between Affine Injector and Conditional Affine Coupling is that it uses
the output features of neural networks, which only use the conditional input h, as follows:

y1 = x1

y2 = x2 ⊙ exp(fs(h)) + ft(h).
(9)

And for the inverse process of the layer, each element-wise multiplication and addition operation is
replaced by an element-wise division and subtraction operation.

Invertible 1×1 Convolution (Kingma & Dhariwal, 2018): The operation is introduced to generalize
the channel-wise permutation (Dinh et al., 2017; 2015) and is fully invertible since it independently
multiplies each spatial coordinate of the input feature. We employ LU decomposition (Kingma &
Dhariwal, 2018) to factorize the weight matrix of the 1×1 Convolution to reduce the computation
of its determinant and enhance model training stability (Wolf et al., 2021).
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Actnorm (Kingma & Dhariwal, 2018): The operation normalizes the input feature along the channel
axis using learned affine transformation parameters.

Squeeze: Having the same structure as the pixel downsampling operator (Shi et al., 2016), the
squeeze operation is invertible and reduces the resolution of the input feature in half by moving each
spatial 2× 2 neighborhood of pixels into the channel axis and allowing for learning broader spatial
correlations. To follow the naming convention in previous NF works, we refer to the operation as
Squeeze if it is used in NF module.

A.2 QUALITATIVE RESULTS OF NOISE GENERATION

In Fig. 8, we present additional visualization results of noise sampling using our method (NAFlow),
as well as comparisons to existing methods (Jang et al., 2021; Fu et al., 2023). Based on the
noise (bottom of each row in Fig. 8), we can confirm that NAFlow is the most similar to the real
noise. In the case of C2N (Jang et al., 2021), it shows similar results in terms of KLD for low-light
images, but it does not consider noise correlation. NeCA (Fu et al., 2023) demonstrates superior
results compared to C2N, however it is clear that ours (NAFlow) outperforms existing methods in
terms of noise correlation and KL metric.

A.3 QUALITATIVE RESULTS OF DENOISING PERFORMANCE

We present additional denoising results using DnCNN (Zhang et al., 2017) denoiser. We also provide
denoising results from C2N (Jang et al., 2021) and NeCA (Fu et al., 2023) for comparison. The
DnCNN denoisers and related test code in C2N and NeCA use pretrained official weight parameters
and code from the official GitHub repositories.

• C2N (Jang et al., 2021): https://github.com/onwn/C2N
• NeCA (Fu et al., 2023): https://github.com/xuan611/sRGB-Real-Noise-Synthesizing

Based on the visualization in Fig. 9, it is apparent that NAFlow (Ours) surpasses other models in
regards to PSNR and exhibits the highest similarity to the clean image when compared.

A.4 NOISY GENERATION FROM METADATA

We aim to generate noise without metadata, but it is possible to generate noise using only clean im-
ages learned from known distributions for each camera configuration. In Fig. 10, images generated
from clean images using three cameras (GP, N6, S6) and five different ISO (100, 400, 800, 1600,
3200) settings are provided. We can observe that even at the same ISO level, slightly different noise
is generated depending on the camera (sensor) model.

A.5 LIMITATION OF THE SIDD DATASET

The limited range of smartphone model types and lack of scene diversity in the SIDD (Abdelhamed
et al., 2018) dataset makes it challenging to generalize to real-world noise modeling. Consequently,
real-world noise modeling studies face difficulties in utilizing SIDD for their methods, and there is
a need for more large-scale real-world noise datasets for better understanding of real-world noise.

Furthermore, the sRGB images in the SIDD dataset are acquired using the simplified RAW-to-sRGB
pipeline1 and it can produce the distribution gap from noise in real-world images. Therefore, these
limitations should be addressed in future research.

1https://github.com/AbdoKamel/simple-camera-pipeline
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Figure 8: Visualization of synthetic noise images on SIDD-Validation. The images are arranged
from left to right in the following order: C2N, NeCA-W, Ours (NAFlow), and Real noisy image.
For more detail, noise images are also provided at the bottom of each row.
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PSNR=25.87 PSNR= 26.93 PSNR =32.37

PSNR=39.32 PSNR= 39.78 PSNR =41.97

PSNR=27.83 PSNR= 32.04 PSNR =33.75

PSNR=25.78 PSNR= 29.07 PSNR =29.87

(a) Noisy (d) Ours (e) Clean(b) C2N (c) NeCA-W

Figure 9: Denoising results on SIDD-Validation from DnCNN trained on each method.
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N6

S6

100 400 800 1600 3200
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Figure 10: Generation results using camera configuration of NAFlow. The images is obtained from
SIDD+ (Abdelhamed et al., 2020).
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