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    Recent years have seen a fast development of high-
throughput experimental platforms (HTEP) in 
material science and a growing interest in expanding 
the use of such platforms to solve constrained multi-
objective optimization problems (cMOOPs) [1,2,3]. 
When objectives are conflicting with each other, the 
optimizer not only seeks for a single optimum but for 
a set of solutions – called Pareto Front (PF) - that 
would give the best trade-off while satisfying 
experimental constraints. However, handling 
constraints in such multi-objective optimizers can be 
a challenge, as experimental constraints are not 
always quantifiable. 
    Two types of constraints are generally encountered 
in automated experimental systems. The most 
common ones are a priori quantifiable constraints - 
e.g. the box constraints limiting the boundaries of the 
input parameter space – for which sampling 
feasibility is known without running the experiment. 
These constraints are generally quantified through 
mathematical equalities or inequalities and are 
widely implemented in optimization algorithms.  
    Less common, but more critical for self-driving 
labs, are experimental non-quantifiable constraints, 
also referred to as implicit constraints. They require 
the experiment to be run to determine sampling 
feasibility. These constraints typically come into play 
when the optimizer suggests conditions that would 
affect measurement accuracy – e.g. signal saturation, 
unexpected phase separation distorting the signal –, 
or cause deterioration of the experimental system – 
like clogging, pressure build-up. In the latter case, 
avoiding repeated sampling in infeasible regions is 
crucial, as this might lead to irreversible damage to 
the experimental platform. The challenge is therefore 
to quickly learn the boundaries of the infeasible 
regions in the input parameter space and minimize 
the number of infeasible candidates suggested by the 
optimizer [4]. 
    Although constraint handling has been widely 
studied in the context of evolutionary algorithms 
[4,5], only a few implicit constraint handling methods 
have been implemented in self-driving labs [6]. 
Recently, Low et al [7] proposed a multi-objective 
Evolution-Guided Bayesian Optimization (EGBO) 
algorithm that integrates the selection pressure into a 
q-Noisy Expected Hypervolume Improvement 
(qNEHVI) optimizer. This hybrid algorithm shows 
good performance both in terms of fast convergence 
towards the Pareto Front (PF) and good coverage of 
the PF. Here, we propose to explore how to integrate 
quantifiable and non-quantifiable constraint-
handling in EGBO to decrease sampling in the 
infeasible regions. 
    To handle non-quantifiable constraints, we 

developed a constraint metric based on the nearest 
neighbor distance between two populations: feasible 
and infeasible candidates. Such a metric can easily be 
implemented in multi-objective optimization 
algorithms like qNEHVI. We test the validity of such 
approach on a colorimetric experimental platform 
designed to find the best recipe for a universal pH 
indicator. We demonstrate the generality of this 
method on different synthetic problems (see Fig.1) 
and show that, in highly constrained problems where 
constraints are a non-linear function of the 
parameter space, our proposed constraint-handling 
method can lead to a more efficient and more precise 
resolution of the Pareto front than binary constraint 
handling or even explicit constraint handling 
methods. 
 

 
Fig. 1: a. Optimization trajectory in the objective (top) and 
decision (middle and bottom) spaces, obtained on MW3 
problem [8] with EGBO implemented with the exact values 
of the constraints ci (explicit constraint handling) or the 
nearest neighbor-based metric cnn (implicit constraint 
handling). Feasible space is highlighted in grey and the PF 
represented by a red line. b. EGBO performance indicators 
on MW3 problem for different constraint handling: ci 
(explicit handling, blue line), cnn (two-population nearest 

neighbor implicit handling, cyan line), cbin (binary implicit 
handling, purple line). Sobol sampling performance (grey 
line) is indicated as baseline. 
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