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1. Introduction 
    Alzheimer’s disease (AD) is a progressive neuro-
degenerative disorder with no cure, but early 
intervention can slow cognitive decline (1–3). Pre-
dicting AD progression is critical for timely 
treatment, caregiver planning, and optimizing clinical 
trial recruitment (4,5). Machine learning models lev-
eraging multimodal biomarkers have shown promise 
in forecasting disease trajectory, but their generali-
zability across datasets remains an open question. 
 
2. Substantial section 
2.1 Related work 
     The Alzheimer's Disease Prediction Of Longitudi-
nal Evolution (TADPOLE) challenge (6), involving 92 
algorithms from 33 international teams, used multi-
modal biomarkers to predict clinical diagnosis, 
cognition, and ventricular volume up to five years in-
to the future. The winning algorithm, FROG, utilized a 
Longitudinal-to-Cross-sectional (L2C) transfor-
mation, converting variable-length histories into 
fixed-length feature vectors by extracting key sum-
mary statistics (e.g., highest/lowest values, time since 
the highest/lowest values). This approach reformu-
lates a longitudinal problem into a static prediction 
task, broadening the range of applicable machine 
learning models (e.g., XGBoost (7)) beyond conven-
tional time-series approaches.  
    As far as we know, the L2C approach is relatively 
unique in the medical imaging community, where 
most methods fit models to entire longitudinal histo-
ries— either through parametric trajectory modeling, 
such as AD Course Map (AD_Map) (8), or dynamic 
state modeling, such as minimalRNN (9). 
 
2.2 Method 
    While effective, FROG required separate models for 
different forecast windows and target variables, mak-
ing it cumbersome. We propose L2C-FNN, a 
streamlined variant of FROG that replaces XGBoost 
with a single feedforward neural network (FNN), uni-
fying prediction across all forecast windows and 
target variables.  
    TADPOLE evaluated models solely on the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) 
(10,11) dataset, leaving cross-cohort generalizability 
untested. To address this, we trained models on the 
ADNI dataset and evaluated them on three independ-
ent cohorts—AIBL (N=402, Australia) (12), MACC 
(N=650, Singapore) (13), and OASIS (N=1260, North 
America) (14)—covering 2,312 participants and 
13,200 timepoints across three continents.  
    ADNI participants were randomly divided into 
training, validation, and test sets (18:1:1) with 20 
repetitions to ensure result stability (Figure 1). Care 
was taken to ensure non-overlapping test sets, cover-
ing the entirety of the ADNI cohort across the 20 data 
splits. Following TADPOLE convention, the first 50% 

of each participant’s timepoints were used to predict 
the second 50%. Performance was evaluated through 
within- and cross-cohort comparisons. Model per-
formance was evaluated using multiclass area under 
the operating curve (mAUC) (15) for clinical diagno-
sis, and Mean Absolute Error (MAE) for Mini-Mental 
State Examination (MMSE) and ventricle volume pre-
dictions. 
    Statistical significance was assessed using correct-
ed resampled t-tests (16) for within-cohort 
evaluation and paired t-tests (17) for cross-cohort 
evaluation. Multiple comparisons were corrected 
with a false discovery rate of q < 0.05 (18). For more 
details, please refer to our preprint (19). 
 
2.3 Results 
2.3.1 Within-cohort comparisons 
    Figure 2 shows within-cohort clinical diagnosis 
prediction in ADNI. The three FROG variants: L2C-
XGBw (original FROG), L2C-XGBnw, and L2C-FNN 
outperformed MinimalRNN, which in turn outper-
formed AD-Map. However, all models performed 
similarly for MMSE and ventricle volume prediction 
(Appendix Figure 1). 
 
2.3.2 Cross-cohort comparisons 
    Figure 3 illustrates MMSE prediction errors across 
AIBL, MACC, and OASIS. L2C-FNN achieved the best 
overall performance, ranking first in AIBL and OASIS, 
while AD-Map performed slightly better in MACC. For 
ventricle volume prediction, overall L2C-FNN, L2C-
XGBnw and AD-Map performed the best. The original 
FROG algorithm (L2C-XGBw) and MinimalRNN per-
formed the worst (Appendix Figure 2). L2C-FNN also 
showed the best overall performance in clinical diag-
nosis prediction (Appendix Figure 3). 
 
2.3.3 Long-term prediction trends 

Figure 4 presents a yearly breakdown of cross-
cohort MMSE prediction from Figure 3 up to year 6, 
showing a decline in accuracy across all models as the 
prediction horizon increased. However, L2C-FNN 
consistently matched or outperformed other meth-
ods, except in MACC, where AD-Map was statistically 
superior in years 0–1 and 1–2 (Table 1). Similar 
trends were observed for ventricle volume and clini-
cal diagnosis (Appendix Figures 4–5). Statistical 
comparisons (Appendix Table 1) confirm that L2C-
FNN generally maintained strong performance across 
all time horizons and datasets. 

 
3. Conclusion 
    Our benchmarking study showed that L2C-FNN 
achieved the best overall cross-cohort performance 
and demonstrated robust long-term prediction capa-
bilities for dementia progression. 
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Fig. 1: Overview of model training on ADNI and evaluation 

on three external datasets. 
 

 
Fig.2: Within-cohort (ADNI) prediction performance for 

clinical diagnosis prediction. Left: Boxplots show variability 
across 20 test sets. Right: Statistical differences between 

models. ‘***’ p < 0.00001, ‘**’ p < 0.001. ‘n.s.’ indicates non-
significant results (p > 0.05) or those not surviving FDR 

correction. Each row compares a model against all others; 
green indicates better performance, red worse. 

 

 

Fig. 3: Cross-cohort MMSE prediction error (MAE) on three 
external datasets. Top: Boxplots show variability across 20 
trained models. The x-axis denotes the test dataset. Bottom: 
Statistical differences between models. Each row compares 
a model against all others. Color and marker definitions fol-

low Fig. 2. 
 

 
Fig. 4: Cross-cohort MMSE prediction performance (Fig. 3) 

broken down into yearly intervals up to 6 years. 

 

 
Table 1: Statistical significance between L2C-FNN and other 
approaches for cross-cohort MMSE prediction performance 
(Fig. 3) broken down into yearly intervals up to 6 years into 

the future. Color and marker definitions follow Fig. 2. 
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Appendix.  Supplementary figures and tables 

 

 
Appendix Fig. 1: Within-cohort (ADNI) prediction perfor-
mance. Left: Boxplots show variability across 20 test sets 

for MMSE (top) and ventricle volume (bottom) predictions. 
Right: Statistical differences between models for MMSE 

(top) and ventricle volume (bottom). Color and marker def-
initions follow Fig. 2. 

 

 
Appendix Fig. 2: Cross-cohort ventricle volume prediction 

error (MAE) on three external datasets. Top: Boxplots show 
variability across 20 trained models. The x-axis denotes the 
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test dataset. Bottom: Statistical differences between mod-
els. Each row compares a model against all others. Color 

and marker definitions follow Fig. 2. 

 

 
Appendix Fig. 3: Cross-cohort ventricle clinical diagnosis 
prediction accuracy (mAUC) on three external datasets. 

Top: Boxplots show variability across 20 trained models. 
The x-axis denotes the test dataset. Bottom: Statistical dif-

ferences between models. Each row compares a model 
against all others. Color and marker definitions follow Fig. 

2. 

 
Appendix Fig. 4: Cross-cohort ventricle volume prediction 
performance (Appendix Fig. 2) broken down into yearly 

intervals up to 6 years. 

 

 
Appendix Fig. 5: Cross-cohort clinical diagnosis prediction 

performance (Appendix Fig. 3) broken down into yearly 
intervals up to 6 years. 
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Appendix Table 1: Statistical significance between L2C-FNN 

and other approaches for cross-cohort ventricle volume 
(Appendix Fig. 2) and clinical diagnosis (Appendix Fig. 3) 

prediction performance broken down into yearly intervals 
up to 6 years into the future. Color and marker definitions 

follow Fig. 2. 
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