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ABSTRACT

Large Language Models (LLMs) often excel in specific domains but fall short in
others due to the limitations of their training. Thus, enabling LLMs to solve prob-
lems collaboratively by integrating their complementary knowledge promises to
improve their performance across domains. To realize this potential, we introduce a
novel Collaborative Speculative Decoding (CoSD) algorithm that enables efficient
LLM knowledge fusion at test time without requiring additional model training.
CoSD employs a draft model to generate initial sequences and an easy-to-learn
rule or decision tree to decide when to invoke an assistant model to improve these
drafts. CoSD not only enhances knowledge fusion but also improves inference
efficiency, is transferable across domains and models, and offers greater explain-
ability. Experimental results demonstrate that CoSD improves accuracy by up to
10% across benchmarks compared to existing methods, providing a scalable and
effective solution for LLM-based applications.

1 INTRODUCTION

State-of-the-art large language models (LLMs), such as GPT-4 (Achiam et al., 2023) and Llama-
3 (Dubey et al., 2024), have demonstrated impressive capabilities in generating high-quality text
across a variety of domains. These models are trained on vast datasets, allowing them to perform
well on a wide range of tasks. However, despite their general effectiveness, no single LLM excels
uniformly across all domains. Different models tend to have complementary knowledge, with each
model specializing in certain areas. For example, one model may be more proficient in technical
writing, while another may outperform in creative tasks. This heterogeneity has led to an increasing
interest in developing methods that can fuse the knowledge of multiple LLMs, enabling users to
harness their collective strengths for more robust and versatile applications.

To address these challenges, recent research has shifted focus to test-time knowledge fusion, which
eliminates the need for retraining by combining model outputs during inference. This approach
allows users to leverage the complementary knowledge of multiple LLMs without the overhead of
additional training. For example, Wang et al. (2023) proposed a method that selects expert models
dynamically at inference time using supervised learning, while Ong et al. (2024) introduced a router
model that optimizes the selection of models based on performance and cost. Other approaches
focus on integrating outputs through the decoding process, such as token-wise decoding (Shen et al.,
2024) and character-wise decoding (Gu et al., 2024), which combine outputs at a fine-grained level.
Although these methods offer potential, they often struggle to balance strong knowledge integration
with efficiency, which limits their practicality in real-world applications.

In response to these limitations, we propose Collaborative Speculative Decoding COSD, a novel
algorithm designed to efficiently fuse the knowledge of multiple LLMs at inference time. COSD
builds upon recent developments in Speculative Decoding (Leviathan et al., 2023; Xia et al., 2023) to
create an efficient system where multiple LLMs collaborate during the inference process. As shown
in Figure 1, COSD consists of two models: a draft model that generates an initial sequence of tokens
and an assistant model that verifies these tokens in parallel. When the assistant model predicts a token
different from that of the draft model, a comparison of their token probabilities is used to determine
whether to replace the draft token. This decision-making process can be guided by either a predefined
rule set (Rule-Based COSD) or a pre-trained decision tree (Tree-Based COSD). The sequence is
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then regenerated and re-verified iteratively until all tokens are accepted, ensuring both accuracy and
computational efficiency.

COSD presents several notable advantages over existing test-time fusion methods. First, by lever-
aging speculative decoding, COSD improves inference efficiency, relying on token probabilities
rather than more complex and resource-intensive representations like embeddings or hidden states.
Second, COSD demonstrates superior knowledge fusion due to the carefully designed decision-
making process, which can be optimized for specific domains. Third, Rule-Based COSD is highly
transferable across different domains and model pairs; once the rules are established with optimal
hyperparameters, they can be applied to a broad range of tasks. Similarly, the decision tree-based
approach exhibits strong transferability, even when trained on domain-specific data. Finally, COSD
offers an interpretable framework, i.e., its use of human-readable rules or decision trees provides
transparency, making it easier to evaluate, optimize, and understand compared to less transparent
deep learning systems.

We validate the effectiveness of COSD through extensive experiments on standard benchmarks and
multiple model pairings. Our results show that COSD not only significantly enhances the fusion of
LLM knowledge but also improves efficiency and transferability across various domains. The key
contributions of this work are as follows:

• We introduce COSD, a novel algorithm that enables efficient fusion of LLM knowledge without
requiring retraining.

• COSD’s efficiency and transferability make it practical for a wide range of users, facilitating its
implementation through both models and APIs.

• Our experimental results demonstrate that COSD improves overall accuracy by up to 10% across
benchmarks, surpassing the state-of-the-art methods.

2 RELATED WORK

Language Model Fusion from multiple LMs aims at enhancing the cross-domain performance
of the resulting model and reducing bias. The primary efforts for such integration include model
merging (Goddard et al., 2024), such as model weight averaging (Wortsman et al., 2022) and linear
mode connectivity (Ainsworth et al., 2022; Ito et al., 2024; Wang et al., 2020). Another series of
works is called model stacking, which refers to concatenating models along the depth dimension. Wu
et al. (2024) and Kim et al. (2023) stack the decoder blocks to expand the depth of Llama models.
For large language models, some other research proposes knowledge fusion (Wan et al., 2024). They
combine the capabilities of existing LLMs and transfer them into a single LLM. Another important
trend of work called Mixture of Expert (MoE) (Zhu et al., 2024; Xue et al., 2024) builds sparse neural
networks and only activates a subset of parameters (i.e., experts) for each input. However, these
methods either require the fused models to have the same structure or require fine-tuning after fusing
to achieve the desired model performance. Towards mitigating these flaws, a new wave of works
adopt decoding methods to fuse LMs. Gu et al. (2024) propose a character-wise ensemble decoding
method to fuse two LLMs’ outputs. Shen et al. (2024) and Wang et al. (2023) fuse model knowledge
by training to choose between the generation of different LLMs. In our experiments, we consider
several baselines from the latter group of works and observe gains in either efficiency or performance
when using our method to merge cross-domain knowledge from different LMs when decoding.

Speculative Decoding is an efficient decoding paradigm for LM inference (Xia et al., 2024; Stern
et al., 2018; Xia et al., 2023). It accelerates the inference process by first generating draft tokens effi-
ciently, and then using an LLM to verify draft tokens in parallel and correct them if needed (Leviathan
et al., 2023), which avoids the autoregression process. In practice, the draft generator in speculative
decoding could be a small LM (Chen et al., 2023; Miao et al., 2023; Zhou et al., 2023), a sub-model of
an LLM (Zhang et al., 2023; Yang et al., 2023; Elhoushi et al., 2024), or a text database retriever (He
et al., 2023; Li et al., 2024). The final generation of speculative decoding will be similar to the
autoregressive generation of the target LLM, which is only acceptable when the target LLM has much
better performance but is less efficient than the draft generator. No previous work focuses on using
speculative decoding to approach the model fusion problem.
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Figure 1: The workflow of collaborative speculative decoding.

3 COLLABORATIVE SPECULATIVE DECODING

In our Collaborative Speculative Decoding system, our purpose is to fuse the predicted sequences of
two LLMs efficiently. We define our problem as follows: given an input sequence x1, . . . , xt, COSD
uses a draft modelMp and an assistant modelMq to collaboratively generate an output sequence
xt+1, . . . , xt+K that integrates both models’ knowledge and expertise.

As Figure 1 illustrates, the process begins with the draft modelMp generating a draft sequence
x̃t+1, . . . , x̃t+K in an autoregressive manner. Subsequently, the assistant modelMq verifies the draft
tokens and their respective probabilities in parallel, producing an assistant sequence x̂t+1, . . . , x̂t+K .
After both sequences are generated, we iterate through the tokens and their corresponding probabilities
to verify whether to accept a draft token x̃t+i or replace it with the corresponding assistant token x̂t+i.
Both rule-based or tree-based verification strategies, use token probabilities to determine whether
a replacement is necessary. When a replacement occurs, all subsequent draft tokens are discarded,
and a new draft sequence is generated starting from the replaced token. This process continues until
the output reaches the maximum length or an <EOS> token is generated. The full generation and
verification process is elaborated in Algorithm 1 and described in following sections.

3.1 GENERATION.

The generation process follows the principles of Speculative Decoding. First, the draft modelMp

generates a sequence of tokens autoregressively:

for i = 1 to K do
x̃t+i ∼Mp(x|x1, . . . , x̃t+i−1),

(1)

Here, x̃t+i represents the token predicted by the draft model at position i, selected as the token with
the highest probability. The sequence x̃t+1, . . . , x̃t+K is generated autoregressively and produced
sequentially.

After the draft sequence is generated, the assistant modelMq is used to verify these tokens. The
assistant model generates tokens in parallel:

i =1, . . . ,K in parallel do
x̂t+i ∼Mq(x|x1, . . . , x̃t+i−1),

(2)

Note that we already have all the draft tokens x̃t+1, . . . , x̃t+K when we generate the assistant tokens.
Thus, all the x̂t+i in Eq. (2) can be generated in parallel. The process can also handle cases where the
draft and assistant models use different tokenizers. In such cases, the draft sequence is first decoded
by the draft model’s tokenizer and then encoded by the assistant model’s tokenizer:

i =1, . . . ,K in parallel do

x1, . . . , x̃t+i−1
decode−−−−→

Tp

Texts encode−−−−→
Tq

x∗
1, . . . , x

∗
n,

x̂t+i ∼Mq(x|x∗
1, . . . , x

∗
n),

(3)
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Algorithm 1 Workflow of COSD
Input: Draft modelMp, assistant modelMq , input sequence x1, . . . , xt, predefined hyperparame-

ters α, β and trained decision tree T ;
Output: Output sequence xt+1, . . . , xt+K ;

Generation
1: for i in 0, 1, . . . ,K do
2: x̃t+i ∼Mp(x|x1, . . . , x̃t+i−1) #Generate draft in an auto-regressive manner.
3: end for
4: Verify the draft in parallel:
5: i = 1, . . . ,K in parallel do
6: x̂t+i ∼Mq(x|x1, . . . , x̃t+i−1), #Generate the assistant sequence in parallel.
7: Send both x̃1, . . . , x̃K , x̂1, . . . , x̂K , and all related probabilitiesMp(x̃i),Mq(x̂i) to verification.

Verification
8: for i in 0, 1, . . . ,K do
9: if x̃t+i ̸= x̂t+i and Mp(x̃t+i) < α and Mq(x̂t+i) > β · Mp(x̃t+i) then

or
10: if x̃t+i ̸= x̂t+i and T (Mp(x̃t+i),Mq(x̂t+i)) = 1 then
11: xt+i ← x̂t+i

12: t← t+ i
13: Exit loop, go to Generation
14: end for

where Tp and Tq are the tokenizers of the draft model and the assistant model respectively. The draft
sequence is first decoded into texts by Tp and then encoded by Tq to fit the assistant model.

3.2 VERIFICATION

After the generation, we have a draft sequence x̃t+1, . . . , x̃t+K and an assistant sequence
x̂t+1, . . . , x̂t+K , along with the corresponding probabilities Mp(x̃t+i) and Mq(x̂t+i). We then
use this information to verify whether to keep the draft token x̃i or replace it with the assistant token
x̂i and thus ensemble the model knowledge. In order to make COSD suitable for a wider range of
tasks, we propose two strategies for verification. The first strategy, called Rule-Based Verification,
applies clear rules to decide whether to select the draft token or the assistant token. The second
strategy, i.e., Tree-Based Verification, involves training a decision tree to classify and select between
the draft and assistant tokens.

Rule-Based Verification. In Rule-Based Verification, the system applies simple yet general rules to
determine whether the draft token x̃t+i should be replaced by the assistant token x̂t+i. The intuition
behind these rules is that if the draft model predicts a token with low confidence and the assistant
model offers a higher-confidence alternative, the draft token should be replaced. The following rules
define the verification process:

x̃t+i ̸= x̂t+i, (4)
Mp(x̃t+i) < α, (5)
Mq(x̂t+i) > β · Mp(x̃t+i), (6)

These conditions check whether (1) the draft and assistant tokens differ, (2) the draft token has a
probability below a threshold α, and (3) the assistant token has a probability sufficiently higher than
the draft token’s probability by a factor of β. If all conditions are met, the draft token is replaced with
the assistant token.

Intuitively, the Rule-Based Verification can be explained as follows: if the draft model is uncertain
and the assistant model provides a better alternative, the system opts for the assistant’s prediction.
If a replacement is made, the sequence is updated, and the draft model regenerates from that point
onward.

4
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Tree-Based Verification. For domain-specific applications, Rule-Based Verification may not always
be optimal. It is necessary to improve performance in specialized domains, such as healthcare (Poonia
& Al-Alshaikh, 2024), smart home (Amru et al., 2024), or math (Mazraeh et al., 2024). Therefore, we
design the Tree-Based Verification method, which involves training a decision tree to decide when to
replace a draft token with an assistant token. Training the decision tree on specific domain data allows
for a more accurate assessment of knowledge fusion performance within those particular contexts.
Specifically, our decision tree T takes two probabilities,Mp(x̃t+i) andMq(x̂t+i), as inputs. The
decision tree’s output T (Mp(x̃t+i),Mq(x̂t+i)) ∈ {0, 1} indicates whether to use the draft token
(yi = 0) or replace it with the assistant token (yi = 1).

To train a decision tree suitable for specific domains, we first select a commonly used benchmark
dataset D for this domain (e.g., GSM8K (Cobbe et al., 2021) in math) with several input and ground-
truth output pairs, i.e., x1, . . . , xt and xt+1, . . . , xt+K . We iterate through all the tokens in the
ground-truth output in each pair. For the i-th token, we concatenate the input sequence and the first
i− 1 tokens of output sequences. Then, we feed the concatenated input x1, . . . , xt+i−1 into the two
models separately to obtain the predicted next token x̃t+i, x̂t+i and their corresponding probabilities
Mp(x̃t+i),Mq(x̂t+i). This probability pair is one training sample of the decision tree. As for the
related ground-truth label, we have three rules:

• If x̃t+i = xt+i, we assign the label yi = 0 to encourage the decision tree to select the draft token.
• If x̃t+i ̸= xt+i and x̂t+i = xt+i, we assign the label yi = 1 to encourage the decision tree to select

the assistant token.
• If neither x̃t+i nor x̂t+i match the target, we drop the sample and continue the loop with i← i+ 1.

We iterate through all the input-output pairs and finally construct the training data sample in the
form of {[Mp(x̃i),Mq(x̂i)], yi}. In the training process, we aim to train the decision tree classifier
T : R2 → {0, 1} to minimize the difference between the predicted label and the ground truth:

min
T

N∑
i=1

[yi log(T (Mp(x̃i),Mq(x̂i))) + (1− yi) log(1− T (Mp(x̃i),Mq(x̂i)))] . (7)

After training, our decision tree can predict whether to choose the draft token or the assistant
token based on the two input probabilities. If the decision tree predicts 1, the same as the rule-based
verification, we replace the token, update the accepted token number, and send the new input sequence
back to the generation. Since the decision tree is trained on a dataset specific to the corresponding
domain, using this decision tree to fuse the model outputs can achieve better results in that domain.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Scenarios, Models, and Benchmarks. We evaluate COSD and compare it against several baselines
in scenarios that reflect common use cases where users may seek to fuse the knowledge of multiple
LLMs. These scenarios include: (i) Complementary Knowledge Fusion: The fused LLMs have
complementary knowledge, and users hope that the knowledge fusion system can perform as well
as the best model for each task across all tasks; (ii) Catastrophic Forgetting Recovery: The fused
models are one base model and a model fine-tuned from the base model. Fine-tuning improves
performance in certain domains but reduces the performance in other domains due to catastrophic
forgetting. Users expect to heal the catastrophic forgetting by fusing the knowledge of the two LLMs;
(iii) Capacity Imbalance: Users use a small draft model and adopt an API of the assistant model with
a much larger capacity. The fusion system is expected to perform similarly to the assistant model; (iv)
Different Tokenizers: Fuses the LLMs with different tokenizers. To simulate these scenarios, we
carefully selected six pairs of LLMs from the HuggingFace repository (Jain, 2022), representing each
of the four use cases outlined above. Table 1 lists the model pairs and the corresponding simulated
scenarios.

For all the scenarios and model pairs, we use MMLU (Hendrycks et al., 2020), GSM8K (Cobbe
et al., 2021), and HumanEval (Chen et al., 2021) as the evaluation benchmark. We use tinyBench-
marks (Polo et al., 2024) for MMLU and GSM8K to further increase the efficiency of experiments.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: LLM pairs in the experiments.
Methods Draft Model Assist. Model Simulated Scenario

Pair 1 Llama 3 Wissenschaft 8B Llama 3 Bophades 8B Complementary Knowledge Fusion
Pair 2 Mistral 7B DARE Mistral 7B Mixed Complementary Knowledge Fusion
Pair 3 Mistral 7B (Jiang et al., 2023) Mistral Math 7B Catastrophic Forgetting Recovery
Pair 4 TinyLlama (Zhang et al., 2024) Llama 2 Chat Capacity Imbalance
Pair 5 Llama 2 Chat (Touvron et al., 2023) WizardMath (Luo et al., 2023) Different Tokenizers
Pair 6 Llama 2 Chat DeepSeek Coder (Guo et al., 2024) Different Tokenizers

These benchmarks test general question-answering, mathematical reasoning, and coding capabili-
ties, providing a comprehensive assessment of the models’ abilities across different domains. By
using these benchmarks, we can evaluate the effectiveness of COSD and the baselines in fusing
complementary knowledge across diverse tasks and model configurations.

Baselines. We use tree baselines in the experiment: (1) Speculative Decoding: It also uses a draft
model and an assistant model to generate the output. However, it adopts a different verification
algorithm that replaces the draft token when Mp(x̃i)

Mq(x̂i)
< U(0, 1) (2) Average Decoding: It averages

the predicted probabilities of the draft model and the assistant model and chooses the final output
from the averaged probabilities. (3) Co-LLM (Shen et al., 2024): It trains a single layer to classify
the hidden state of a base model. The output probability of the layer decides to use the base model
generation or evoke an assistant model to help generation.

Hyperparameters. We run COSD with the following settings. For Rule-Based COSD, we set
α = 0.5 and β = 0.5, which were determined to be the optimal and most transferable parameters
based on our analysis in Figure 2. For Tree-Based COSD, we randomly select three samples from the
AlpacaEval dataset to train the decision tree. It is important to note that we use MMLU, GSM8K, and
HumanEval as our benchmarks. Consequently, the training data for the decision tree do not overlap
with the test data, creating a more realistic scenario to evaluate the decision tree’s transferability
across different tasks and domains.

4.2 EXPERIMENTAL RESULTS

Fusing LLMs with Complementary Domain Knowledge. We first evaluated the performance of
different methods for fusing LLMs with complementary knowledge, with results shown in the pair
1 and pair 2 columns of Table 2. Both CoSD-Rule and CoSD-Tree consistently outperformed the
baseline methods in terms of overall performance. For instance, in pair 1, CoSD-Rule and CoSD-Tree
achieved scores of 56.97 and 58.37 on MMLU, respectively, surpassing all the baselines. Besides,
CoSD-Rule also achieves the best performance on GSM8K and HumanEval. Notably, CoSD can
match the performance of the better model for each task across all tasks. For example, in pair 1, CoSD
achieves a similar MMLU performance to the draft model and a similar performance on GSM8K and
HumanEval to the assistant model. A similar conclusion can be drawn from pair 2 as well. Compared
with our COSD, Speculative Decoding only performs similarly to the assistant model, thus will be
more suitable to the scenario when the assistant model is much stronger than the draft model. Average
Decoding can fuse model knowledge. However, it can only achieve an average accuracy across tasks,
unlike CoSD, which integrates the strengths of different LLMs. Co-LLM’s performance is the closest
to COSD, but since it requires training on specific datasets, its transferability across different datasets
is inferior to COSD.

It is also interesting to see that CoSD-Rule outperforms CoSD-Tree in GSM8K and HumanEval. We
attribute this phenomenon to the fact that the rules exhibit greater generalizability compared to the
decision tree. Since our decision tree is trained on AlpacaEval, it performs better on some general
QA tasks (e.g., MMLU), but does not have an advantage in math (e.g., GSM8K) and coding (e.g.,
HumanEval). CoSD-Rule is relatively general and performs well across three domains; however, it is
not as effective as the decision tree on MMLU (e.g., 56.97 for CoSD-Rule and 58.37 for CoSD-Tree
in pair 1).

These results highlight the effectiveness of COSD, particularly the superior fusion capabilities
across multiple benchmarks and model pairs. The clear improvements in accuracy demonstrate

6
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Table 2: The results of fusing LLMs with complementary knowledge and the same tokenizer. Pair 1
and pair 2 are complementary knowledge fusion results. Pair 3 simulates a catastrophic forgetting
healing scenario, and pair 4 is a disparate capacity LLM fusion result.

Models Benchmarks Draft Assist. Spec. Avg. Co-LLM CoSD-Rule CoSD-TreeDecoding Decoding

Pair 1
MMLU 54.81 52.02 53.20 52.31 55.25 56.97 58.37
GSM8K 39.79 51.02 43.85 43.89 41.04 45.72 41.89

HumanEval 21.34 43.90 39.02 38.41 37.25 39.10 36.22

Pair 2
MMLU 65.82 59.26 59.33 62.22 60.40 65.06 63.71
GSM8K 31.20 42.19 33.36 38.33 38.85 36.81 37.24

HumanEval 28.66 31.10 14.02 25.60 29.91 31.34 28.29

Pair 3
MMLU 61.45 46.59 43.39 56.60 58.78 62.41 63.87
GSM8K 25.01 35.43 33.10 36.61 37.15 45.47 33.85

HumanEval 27.44 9.76 10.97 18.90 21.88 25.61 23.17

Pair 4
MMLU 32.13 47.65 47.30 42.62 47.47 47.84 48.15
GSM8K 3.36 15.63 14.63 12.12 11.97 12.52 12.29

HumanEval 8.53 12.20 10.39 12.55 11.73 12.80 10.54

Table 3: Fusing LLMs with different tokenizers.
Models Benchmarks Draft Assist. Char-ED CoSD-Rule CoSD-Tree

Pair 5 MMLU 47.65 40.61 44.29 50.65 52.13
GSM8K 15.63 51.13 37.54 44.88 37.01

Pair 6 MMLU 47.65 59.63 52.51 57.33 55.20
HumanEval 8.53 73.17 59.04 59.88 51.42

that our methods not only efficiently fuse LLMs with complementary knowledge but also enhance
performance across a wide range of tasks.

Catastrophic Forgetting Recovery. We select a Mistral base model and a fine-tuned math Mistral
model for pair 3 in Table 2 to simulate the catastrophic forgetting recovery. We found that CoSD-
Rule performs particularly well on this type of task. It not only recovers from forgetting across all
benchmarks but also outperforms both the draft and assistant models on MMLU and GSM8K. These
results suggest that COSD can further enhance the original performance of both models by enabling
collaboration between them.

Fusing LLMs with disparate capacity. When the assistant model has a much larger capacity than
the draft model, the model fusion system is supposed to achieve a similar performance to the draft
model. Speculative Decoding is more suited for this task because its verification strategy tends to
replace more draft tokens with assistant tokens. However, COSD results in pair 4, Table 2 are still
comparable to Speculative Decoding. For instance, CoSD-Rule has higher MMLU and HumanEval
scores than Speculative Decoding and has comparable GSM8K performance to Speculative Decoding.
These results on LLMs with disparate capacities indicate that COSD is not only applicable to
complementary knowledge LLM fusion but also to efficient inference tasks. When the draft model is
smaller and the assistant model is larger, our COSD can achieve performance similar to the assistant
model. At the same time, since the assistant model only performs parallel verification, COSD still
has more efficient inference compared to using the assistant model alone.

Fusing LLMs with Different Tokenizers. Although COSD needs to decode and then encode the
sequences during the verification when the models have different tokenizers, which sacrifices some
efficiency, it can still effectively fuse the model knowledge. In the experiments, we fuse a Llama
2 Chat and a WizardMath to evaluate the COSD performance on MMLU and GSM8K. We fuse a
Llama 2 Chat and a Deepseek Coder to evaluate COSD on MMLU and HumanEval. Results are
shown in Table 3. COSD outperforms the character-wise averaging method CharED (Gu et al., 2024)
in both model pairs and benchmarks. We do not include other baselines since they are not applicable
to the different tokenizer settings.
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Table 4: Training the decision tree with different datasets. Each column represents a decision tree
trained by the dataset in the column header. Experiments are done by pair 3. We use 10 samples of
MMLU, 3 samples of each other datasets to train the decision tree.

Benchmarks MMLU GSM8K HumanEval AlpacaEval

MMLU 63.94 60.88 61.23 63.87
GSM8K 35.04 37.17 30.08 33.85

HumanEval 25.62 23.04 23.09 23.17

Table 5: Efficiency of LLM Knowledge Fusion. Token latency represents the average time to
generate a single token, and acceptance rate refers to the proportion of draft tokens that were not
replaced. Typically, the higher the latter, the lower the former, as fewer tokens require replacement
and regeneration. Experiments are done by pair 3.

Methods Token Acceptance
Latency (ms) Rate

Spec. Decoding 131.22 0.89
CoSD-Rule 132.31 0.81
CoSD-Tree 135.82 0.77

𝛼

𝛽 𝛽

𝛼
Figure 2: The sum score of MMLU and GSM8K with various α, β
settings on pair 1 (left figure) and pair 2 (right figure).

Ablation Studies. We
have several tunable hy-
perparameters in COSD.
In Rule-Based COSD, we
have α and β that determine
the rules to replace the
draft tokens. In Tree-Based
COSD, the training data
and hyperparameters influ-
ence the performance of
the decision tree. Thus, we
use ablation experiments to
identify the impact of these
hyperparameters on the
final model performance,
allowing us to determine
the optimal and transferable
hyperparameter settings.
Figure 2 shows the relationship between α, β values in Rule-Based COSD and model performance.
The x-axis represents the values of α, and the y-axis represents the values of β. The numbers in
the small squares represent the sum score of MMLU and GSM8K, which reflect the overall model
performance of COSD. We can see that with α = 0.5, 0.75 and β = 0.5, 0.75, Rule-Based COSD
perform consistently well in the two model pairs. We ultimately selected α = 0.5, β = 0.5 as
the general hyperparameters in our experiments. We believe this setting effectively integrates the
knowledge of the models.

Table 4 displays the impact of the tree training dataset on Tree-Based COSD. The decision tree
trained on different datasets performs relatively consistently, even when the training set is not in
the same distribution with any benchmark (e.g., AlpacaEval, which achieved good results across all
three benchmarks.). When the decision tree’s training set shares the same distribution as a particular
benchmark, Tree-Based COSD tends to perform slightly better on that benchmark. Therefore, if
users are aware of the model’s application scenario, they can use the corresponding benchmark from
that task to train the decision tree. This would result in a domain-adapted tree that is better suited to
the specific task. In addition, as mentioned in the table title, we use very few samples to train the
decision tree, thus training decision trees introduces almost no additional computational overhead.
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Case Studies. We use an example in GSM8K to demonstrate how CoSD effectively combines the
knowledge of two models in Table 6. CoSD replaces the red tokens generated by the draft model
with the green tokens from the assistant model. Neither the draft model nor the assistant generates
the correct result when used alone. The main issue with the draft model is its weak mathematical
calculation ability (e.g., in the fourth line, it calculates the tax as 20% of 20 to be 10, instead of the
correct answer 4). On the other hand, the assistant model performs well in terms of mathematical
calculations but lacks the logical rigor of the draft model (it fails to compute the subtotal of $24
without the tip, leading to the incorrect final calculation of 15+3+2+5).

COSD effectively integrates the strengths of both models. For instance, in CoSD-Rule, in the fifth
line, the assistant model rejects the draft model’s incorrect computation of 20% of 20 = 10 and instead
uses the correct calculation of 20 * 0.2 = 4, successfully avoiding the error in the draft model’s tax
calculation. In the sixth line, the draft model correctly leads to generate the subtotal of $24, so in the
final step, CoSD-Rule computes the simpler 24 + 5 instead of the more complicated 15 + 3 + 2 + 5,
resulting in the correct answer.

Also, there are situations that COSD makes wrong decisions. As shown in Table 9 in Appendix A,
COSD does not always select the correct answer. In the above example, the draft model made the
correct choice with high confidence, so the final generation retained the correct answer. However, in
the example below, while the draft model also made the correct choice, the assistant model provided
an incorrect answer with higher confidence, leading to the final output being changed to the wrong
answer. This demonstrates that using confidence as the criterion does not guarantee selecting the
correct option but can only aim to choose the correct answer with a higher probability.

Efficiency. Since we perform fusion during the inference stage, efficiency is a major advantage of
our approach. We compared the time overhead of our method with the baselines. We use token latency
and acceptance rate as the metrics for efficiency. As displayed in Table 5, Speculative Decoding
has the lowest latency among all methods, since it makes the least token replacement. However,
although COSD methods replace a few more tokens, the increase in total latency is almost negligible.
Considering that COSD has the best knowledge fusion performance, we have achieved a better
balance between efficiency and effectiveness.

5 CONCLUSION

In this paper, we fuse the LLMs’ knowledge in a simple yet effective way. Our proposed algorithm
COSD takes the probabilities of predicted tokens from two LLMs as the feature to verify whether to
keep the draft token or adopt the assistant token. The verification strategy can be either a rule-based
or a pre-trained decision tree. Our extensive experiments show that COSD performs better than the
state-of-the-art methods across 6 LLM pairs and 3 benchmarks. Compared to previous works, COSD
has superior knowledge fusion ability, a broader range of application scenarios, and comparable
efficiency. It works well in scenarios including complementary knowledge fusion, catastrophic
forgetting recovery, knowledge fusion with disparate model capacity, and knowledge fusion with
different tokenizers. COSD makes it possible for ordinary users to fuse the LLM knowledge with
only the API queries, without any training or fine-tuning of LLMs, or requirements of white-box
LLM information such as hidden states. It provides users with better tools to manipulate LLMs in
wider application scenarios.

6 LIMITATION

While COSD demonstrates strong performance across various scenarios, it is important to acknowl-
edge its limitations. This section highlights cases where COSD may not be applicable and tasks that
it fails to address. Identifying these constraints provides clarity on its scope of use and helps guide
future improvements. Below, we outline two specific limitations:

(1) When the two collaborating models are of similar size and one significantly outperforms the other,
COSD offers no advantage over using only the better model. In this case, using the better model
only is sufficient. This also requires the user to have prior knowledge of the performance of the two
models on different benchmarks and to determine that one model is significantly better than the other.
If the user is uncertain, we still recommend using COSD to ensure the best results.
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Model Example

Question
Rory orders 2 subs for $7.50 each, 2 bags of chips for $1.50 each and 2 cookies for $1.00
each for delivery. There’s a 20% delivery fee added at check out and she wants to add a
$5.00 tip. What will her delivery order cost? Correct answer: 29

Draft
Model

The cost of the subs is 2 * $7.50 = «2*7.5=15»15
The cost of the chips is 2 * $1.50 = «2*1.5=3»3
We add the total cost of the food items by $15 + $3 + $2 = $«15+3+2=20»20
The cost of the delivery fee is 20% of the total cost of the order,
so 20% of 20 = «20% of 20=10»10
The total cost of the food items and delivery fee is $20 + $10 = $«20+10=30»30
The cost of the tip is $5.00
The total cost of the order is 15 + 3 + 2 + 10 + 5 = «15+3+2+10+5=45»45.

Assist.
Model

The cost of the subs is 2 x $7.5 = $«2*7.5=15»15
The cost of the chips is 2 x $1.5 = $«2*1.5=3»3
The total cost of her order without any fees is $15 + $3 + $2 = $«15+3+2=20»20
The delivery fee is 20% of the total order, so $20 * 0.20 = $«20*0.20=4»4
The tip is an additional $5
Therefore, her delivery order will cost $15 + $3 + $2 + $4 + $5 = $«15+3+2+4+5=35»35.

CoSD
Rule

The cost of the subs is 2 * x $7.50 = «2*7.50=15»15
The cost of the bags of chips is 2 x $1.50 = «2*1.50=3»3
We The delivery total final sub is before tax the tax delivery fee is

15 $ 15 + $3 + $2 = $«15+3+2=20»20
The delivery fee is 20% of $20 = , so the delivery fee is $20 x 0.20 = «20*0.20=4»4
The total cost before the tip is $20 + $4 = $«20+4=24»24 The tip is $5.00
The total of delivery is order will cost is $24 + $5 = $«24+5=29»29

CoSD
Tree

The cost of the subs is 2 * x $7.50 = «2*7.5=15»15
The cost of the bags chips is 2 x $1.50 = «2*1.5=3»3
The cost of the cookies: 2 x $1.00 = «2*1=2»2
The cost subtotal of before the delivery fee: 15 + 3 + 2 = «15+3+2=20»20
The 20% delivery fee: 20% of 20 = «20 % * 2 . 2=4»4
The total cost of the order before the tip: 20 + 4 = «20+4=24»24
The total cost of the order is by adding all the tip: 24 + 5 = «24+5=29»29

Table 6: An example of how COSD polish the draft generation in GSM8K dataset. The table shows
the different outputs for the same question generated by the Draft Model, Assistant Model, and two
CoSD algorithms. In the CoSD outputs, tokens that are not highlighted represent accepted draft
tokens, while tokens marked in pink are rejected draft tokens, followed by the assistant tokens that
replace the rejected ones highlighted in green.

(2) Another limitation of COSD is that it cannot guarantee the replaced assistant token is always better
than the discarded draft one. It relies on the confidence scores of the models, which are not always
perfectly aligned with token quality. The algorithm selects the output of the more confident model,
aiming to maximize the likelihood of choosing a better token, but this approach may occasionally
lead to suboptimal results.
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A ADDITIONAL EXPERIMENTS AND DISCUSSION

The Average Iterations in COSD. The number of iterations required during collaborative decoding
depends on the maximum length of the model output. Table 7 reports the average number of iterations
on the GSM8K dataset for different maximum lengths.

Max Length CoSD-Rule CoSD-Tree Spec. Dec.
128 11.41 13.58 9.77
256 15.29 16.01 14.20
512 21.23 21.95 18.51

Table 7: Average number of iterations for different maximum output lengths.

Although the number of iterations scales with the output length, it does not directly imply a propor-
tional increase in generation time. As the number of accepted tokens grows, the number of tokens
requiring regeneration decreases significantly. For instance, with a maximum output length of 128,
the average number of iterations is 11, but the total generated output length remains around 300
tokens. This highlights the efficiency of our approach in reducing redundant generation.

Collaborate with More LLMs. Our COSD also supports multiple collaborating models. Table 8
presents the results when three models are used for collaboration:

Dataset Draft Assist. 1 Assist. 2 CoSD-Rule CoSD-Tree
MMLU 32.13 47.65 35.62 44.14 46.48
GSM8K 3.36 15.63 8.33 15.85 14.02

Table 8: Performance of three collaborator LLMs.
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Example

Question
The Yang-shao culture gave way to the Lung-Shan sometime after:
A. 6,000 B.P. B. 5,000 B.P. C. 4,000 B.P. D. 3,000 B.P.
Correct answer: B

Answer Draft Assist. CoSD-Rule CoSD-Tree
B D (wrong) B B

Question

Rowena can paint a room in 14 hours, while Ruby can paint it in 6 hours.
If Rowena paints for x hours and Ruby paints for y hours, they will finish
half of the painting, while if Rowena paints for y hours and Ruby paints
for x hours they will paint the whole room. Find the ordered pair (x, y).
A. ( 1110 ,

11
10 ) B. ( 23120 , 21

20 ) C. ( 23140 , 21
40 ) D. (1,1)

Correct answer: C

Answer Draft Assist. CoSD-Rule CoSD-Tree
C D (wrong) D (wrong) D (wrong)

Table 9: Two examples of how COSD modify the generation in MMLU dataset. The example above
demonstrates how COSD helps improve generation quality, while the example below shows instances
where COSD sometimes selects incorrect answers.

In this setup, the draft model is TinyLlama, while the assistant models are Llama 2 Chat 7b and
Llama-7b. Our findings demonstrate that involving additional models improves prediction accuracy.
Table 8 demonstrates that when three models collaborate if one significantly outperforms the other
two, the final system will achieve performance close to that of the best model. This indicates that our
algorithm is effective when applied to more than two models. With sufficient LLMs, we can also
better utilize training data, even when certain samples are excluded.

The Case Study of MMLU. While COSD is effective in many cases, there are instances where it
makes incorrect decisions, highlighting its limitations. As shown in Table 9, COSD does not always
select the correct answer when the draft model and the assistant model disagree. In the first example,
the draft model correctly identified the answer with high confidence, which allowed the final output
to retain the accurate result. This showcases the potential of COSD to preserve correct answers when
confidence aligns with accuracy.

However, in the second example, the draft model once again made the correct prediction, but the
assistant model, despite being incorrect, provided an answer with higher confidence. Consequently,
the final output was altered to the wrong answer, overriding the draft model’s correct prediction.
This illustrates a shortcoming of the COSD approach: relying solely on confidence scores as the
decision-making criterion does not guarantee correctness. Confidence may reflect certainty but not
necessarily accuracy, leading to situations where errors from the assistant model dominate the final
outcome.

This limitation suggests that while COSD can improve generation quality by prioritizing higher-
confidence predictions, it does so with the assumption that confidence correlates with correctness. In
practice, this assumption does not always hold, especially when the assistant model is overconfident
in its incorrect predictions. To address this, future improvements could explore additional heuristics
or cross-validation mechanisms to better balance confidence with accuracy, ensuring that correct
answers are more consistently selected.
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