
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPECULATE, THEN COLLABORATE: FUSING KNOWL-
EDGE OF LANGUAGE MODELS DURING DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) often excel in specific domains but fall short in
others due to the limitations of their training. Thus, enabling LLMs to solve prob-
lems collaboratively by integrating their complementary knowledge promises to
improve their performance across domains. To realize this potential, we introduce a
novel Collaborative Speculative Decoding (CoSD) algorithm that enables efficient
LLM knowledge fusion at test time without requiring additional model training.
CoSD employs a draft model to generate initial sequences and an easy-to-learn
rule or decision tree to decide when to invoke an assistant model to improve these
drafts. CoSD not only enhances knowledge fusion but also improves inference
efficiency, is transferable across domains and models, and offers greater explain-
ability. Experimental results demonstrate that CoSD improves accuracy by up to
10% across benchmarks compared to existing methods, providing a scalable and
effective solution for LLM-based applications.

1 INTRODUCTION

State-of-the-art large language models (LLMs), such as GPT-4 (Achiam et al., 2023) and Llama-
3 (Dubey et al., 2024), have demonstrated impressive capabilities in generating high-quality text
across a variety of domains. These models are trained on vast datasets, allowing them to perform
well on a wide range of tasks. However, despite their general effectiveness, no single LLM excels
uniformly across all domains. Different models tend to have complementary knowledge, with each
model specializing in certain areas. For example, one model may be more proficient in technical
writing, while another may outperform in creative tasks. This heterogeneity has led to an increasing
interest in developing methods that can fuse the knowledge of multiple LLMs, enabling users to
harness their collective strengths for more robust and versatile applications.

To address these challenges, recent research has shifted focus to test-time knowledge fusion, which
eliminates the need for retraining by combining model outputs during inference. This approach
allows users to leverage the complementary knowledge of multiple LLMs without the overhead of
additional training. For example, Wang et al. (2023) proposed a method that selects expert models
dynamically at inference time using supervised learning, while Ong et al. (2024) introduced a router
model that optimizes the selection of models based on performance and cost. Other approaches
focus on integrating outputs through the decoding process, such as token-wise decoding (Shen et al.,
2024) and character-wise decoding (Gu et al., 2024), which combine outputs at a fine-grained level.
Although these methods offer potential, they often struggle to balance strong knowledge integration
with efficiency, which limits their practicality in real-world applications.

In response to these limitations, we propose Collaborative Speculative Decoding COSD, a novel
algorithm designed to efficiently fuse the knowledge of multiple LLMs at inference time. COSD
builds upon recent developments in Speculative Decoding (Leviathan et al., 2023; Xia et al., 2023) to
create an efficient system where multiple LLMs collaborate during the inference process. As shown
in Figure 1, COSD consists of two models: a draft model that generates an initial sequence of tokens
and an assistant model that verifies these tokens in parallel. When the assistant model predicts a token
different from that of the draft model, a comparison of their token probabilities is used to determine
whether to replace the draft token. This decision-making process can be guided by either a predefined
rule set (Rule-Based COSD) or a pre-trained decision tree (Tree-Based COSD). The sequence is

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

then regenerated and re-verified iteratively until all tokens are accepted, ensuring both accuracy and
computational efficiency.

COSD presents several notable advantages over existing test-time fusion methods. First, by lever-
aging speculative decoding, COSD improves inference efficiency, relying on token probabilities
rather than more complex and resource-intensive representations like embeddings or hidden states.
Second, COSD demonstrates superior knowledge fusion due to the carefully designed decision-
making process, which can be optimized for specific domains. Third, Rule-Based COSD is highly
transferable across different domains and model pairs; once the rules are established with optimal
hyperparameters, they can be applied to a broad range of tasks. Similarly, the decision tree-based
approach exhibits strong transferability, even when trained on domain-specific data. Finally, COSD
offers an interpretable framework, i.e., its use of human-readable rules or decision trees provides
transparency, making it easier to evaluate, optimize, and understand compared to less transparent
deep learning systems.

We validate the effectiveness of COSD through extensive experiments on standard benchmarks and
multiple model pairings. Our results show that COSD not only significantly enhances the fusion of
LLM knowledge but also improves efficiency and transferability across various domains. The key
contributions of this work are as follows:

• We introduce COSD, a novel algorithm that enables efficient fusion of LLM knowledge without
requiring retraining.

• COSD’s efficiency and transferability make it practical for a wide range of users, facilitating its
implementation through both models and APIs.

• Our experimental results demonstrate that COSD improves overall accuracy by up to 10% across
benchmarks, surpassing the state-of-the-art methods.

2 RELATED WORK

Language Model Fusion from multiple LMs aims at enhancing the cross-domain performance
of the resulting model and reducing bias. The primary efforts for such integration include model
merging (Goddard et al., 2024), such as model weight averaging (Wortsman et al., 2022) and linear
mode connectivity (Ainsworth et al., 2022; Ito et al., 2024; Wang et al., 2020). Another series of
works is called model stacking, which refers to concatenating models along the depth dimension. Wu
et al. (2024) and Kim et al. (2023) stack the decoder blocks to expand the depth of Llama models.
For large language models, some other research proposes knowledge fusion (Wan et al., 2024). They
combine the capabilities of existing LLMs and transfer them into a single LLM. Another important
trend of work called Mixture of Expert (MoE) (Zhu et al., 2024; Xue et al., 2024) builds sparse neural
networks and only activates a subset of parameters (i.e., experts) for each input. However, these
methods either require the fused models to have the same structure or require fine-tuning after fusing
to achieve the desired model performance. Towards mitigating these flaws, a new wave of works
adopt decoding methods to fuse LMs. Gu et al. (2024) propose a character-wise ensemble decoding
method to fuse two LLMs’ outputs. Shen et al. (2024) and Wang et al. (2023) fuse model knowledge
by training to choose between the generation of different LLMs. In our experiments, we consider
several baselines from the latter group of works and observe gains in either efficiency or performance
when using our method to merge cross-domain knowledge from different LMs when decoding.

Speculative Decoding is an efficient decoding paradigm for LM inference (Xia et al., 2024; Stern
et al., 2018; Xia et al., 2023). It accelerates the inference process by first generating draft tokens effi-
ciently, and then using an LLM to verify draft tokens in parallel and correct them if needed (Leviathan
et al., 2023), which avoids the autoregression process. In practice, the draft generator in speculative
decoding could be a small LM (Chen et al., 2023; Miao et al., 2023; Zhou et al., 2023), a sub-model of
an LLM (Zhang et al., 2023; Yang et al., 2023; Elhoushi et al., 2024), or a text database retriever (He
et al., 2023; Li et al., 2024). The final generation of speculative decoding will be similar to the
autoregressive generation of the target LLM, which is only acceptable when the target LLM has much
better performance but is less efficient than the draft generator. No previous work focuses on using
speculative decoding to approach the model fusion problem.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Draft
Model

Assist.
Model

The cost of subs is 1 4
🌚

🌝

CoSD
Verification

…

…

The cost of subs are 2

Draft
token Rule/Tree-Based

CoSD verification

Reject the draft token.
Replace it with the assistant token.
Regenerate all the following draft tokens.Accept the draft token to the final output

Assist.
token

Input
tokens

Rule-Based CoSD: F are several pre-designed rules.
Tree-Based CoSD: F is a pre-trained decision tree.

Autoregressive
generation
Generation
in parallel

The cost of subs is 2 Final Output

Figure 1: The workflow of collaborative speculative decoding.

3 COLLABORATIVE SPECULATIVE DECODING

In our Collaborative Speculative Decoding system, our purpose is to fuse the predicted sequences of
two LLMs efficiently. We define our problem as follows: given an input sequence x1, . . . , xt, COSD
uses a draft modelMp and an assistant modelMq to collaboratively generate an output sequence
xt+1, . . . , xt+K that integrates both models’ knowledge and expertise.

As Figure 1 illustrates, the process begins with the draft modelMp generating a draft sequence
x̃t+1, . . . , x̃t+K in an autoregressive manner. Subsequently, the assistant modelMq verifies the draft
tokens and their respective probabilities in parallel, producing an assistant sequence x̂t+1, . . . , x̂t+K .
After both sequences are generated, we iterate through the tokens and their corresponding probabilities
to verify whether to accept a draft token x̃t+i or replace it with the corresponding assistant token x̂t+i.
Both rule-based or tree-based verification strategies, use token probabilities to determine whether
a replacement is necessary. When a replacement occurs, all subsequent draft tokens are discarded,
and a new draft sequence is generated starting from the replaced token. This process continues until
the output reaches the maximum length or an <EOS> token is generated. The full generation and
verification process is elaborated in Algorithm 1 and described in following sections.

3.1 GENERATION.

The generation process follows the principles of Speculative Decoding. First, the draft modelMp

generates a sequence of tokens autoregressively:

for i = 1 to K do
x̃t+i ∼Mp(x|x1, . . . , x̃t+i−1),

(1)

Here, x̃t+i represents the token predicted by the draft model at position i, selected as the token with
the highest probability. The sequence x̃t+1, . . . , x̃t+K is generated autoregressively and produced
sequentially.

After the draft sequence is generated, the assistant modelMq is used to verify these tokens. The
assistant model generates tokens in parallel:

i =1, . . . ,K in parallel do
x̂t+i ∼Mq(x|x1, . . . , x̃t+i−1),

(2)

Note that we already have all the draft tokens x̃t+1, . . . , x̃t+K when we generate the assistant tokens.
Thus, all the x̂t+i in Eq. (2) can be generated in parallel. The process can also handle cases where the
draft and assistant models use different tokenizers. In such cases, the draft sequence is first decoded
by the draft model’s tokenizer and then encoded by the assistant model’s tokenizer:

i =1, . . . ,K in parallel do

x1, . . . , x̃t+i−1
decode−−−−→

Tp

Texts encode−−−−→
Tq

x∗
1, . . . , x

∗
n,

x̂t+i ∼Mq(x|x∗
1, . . . , x

∗
n),

(3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Workflow of COSD
Input: Draft modelMp, assistant modelMq , input sequence x1, . . . , xt, predefined hyperparame-

ters α, β and trained decision tree T ;
Output: Output sequence xt+1, . . . , xt+K ;

Generation
1: for i in 0, 1, . . . ,K do
2: x̃t+i ∼Mp(x|x1, . . . , x̃t+i−1) #Generate draft in an auto-regressive manner.
3: end for
4: Verify the draft in parallel:
5: i = 1, . . . ,K in parallel do
6: x̂t+i ∼Mq(x|x1, . . . , x̃t+i−1), #Generate the assistant sequence in parallel.
7: Send both x̃1, . . . , x̃K , x̂1, . . . , x̂K , and all related probabilitiesMp(x̃i),Mq(x̂i) to verification.

Verification
8: for i in 0, 1, . . . ,K do
9: if x̃t+i ̸= x̂t+i and Mp(x̃t+i) < α and Mq(x̂t+i) > β · Mp(x̃t+i) then

or
10: if x̃t+i ̸= x̂t+i and T (Mp(x̃t+i),Mq(x̂t+i)) = 1 then
11: xt+i ← x̂t+i

12: t← t+ i
13: Exit loop, go to Generation
14: end for

where Tp and Tq are the tokenizers of the draft model and the assistant model respectively. The draft
sequence is first decoded into texts by Tp and then encoded by Tq to fit the assistant model.

3.2 VERIFICATION

After the generation, we have a draft sequence x̃t+1, . . . , x̃t+K and an assistant sequence
x̂t+1, . . . , x̂t+K , along with the corresponding probabilities Mp(x̃t+i) and Mq(x̂t+i). We then
use this information to verify whether to keep the draft token x̃i or replace it with the assistant token
x̂i and thus ensemble the model knowledge. In order to make COSD suitable for a wider range of
tasks, we propose two strategies for verification. The first strategy, called Rule-Based Verification,
applies clear rules to decide whether to select the draft token or the assistant token. The second
strategy, i.e., Tree-Based Verification, involves training a decision tree to classify and select between
the draft and assistant tokens.

Rule-Based Verification. In Rule-Based Verification, the system applies simple yet general rules to
determine whether the draft token x̃t+i should be replaced by the assistant token x̂t+i. The intuition
behind these rules is that if the draft model predicts a token with low confidence and the assistant
model offers a higher-confidence alternative, the draft token should be replaced. The following rules
define the verification process:

x̃t+i ̸= x̂t+i, (4)
Mp(x̃t+i) < α, (5)
Mq(x̂t+i) > β · Mp(x̃t+i), (6)

These conditions check whether (1) the draft and assistant tokens differ, (2) the draft token has a
probability below a threshold α, and (3) the assistant token has a probability sufficiently higher than
the draft token’s probability by a factor of β. If all conditions are met, the draft token is replaced with
the assistant token.

Intuitively, the Rule-Based Verification can be explained as follows: if the draft model is uncertain
and the assistant model provides a better alternative, the system opts for the assistant’s prediction.
If a replacement is made, the sequence is updated, and the draft model regenerates from that point
onward.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Tree-Based Verification. For domain-specific applications, Rule-Based Verification may not always
be optimal. It is necessary to improve performance in specialized domains, such as healthcare (Poonia
& Al-Alshaikh, 2024), smart home (Amru et al., 2024), or math (Mazraeh et al., 2024). Therefore, we
design the Tree-Based Verification method, which involves training a decision tree to decide when to
replace a draft token with an assistant token. Training the decision tree on specific domain data allows
for a more accurate assessment of knowledge fusion performance within those particular contexts.
Specifically, our decision tree T takes two probabilities,Mp(x̃t+i) andMq(x̂t+i), as inputs. The
decision tree’s output T (Mp(x̃t+i),Mq(x̂t+i)) ∈ {0, 1} indicates whether to use the draft token
(yi = 0) or replace it with the assistant token (yi = 1).

To train a decision tree suitable for specific domains, we first select a commonly used benchmark
dataset D for this domain (e.g., GSM8K (Cobbe et al., 2021) in math) with several input and ground-
truth output pairs, i.e., x1, . . . , xt and xt+1, . . . , xt+K . We iterate through all the tokens in the
ground-truth output in each pair. For the i-th token, we concatenate the input sequence and the first
i− 1 tokens of output sequences. Then, we feed the concatenated input x1, . . . , xt+i−1 into the two
models separately to obtain the predicted next token x̃t+i, x̂t+i and their corresponding probabilities
Mp(x̃t+i),Mq(x̂t+i). This probability pair is one training sample of the decision tree. As for the
related ground-truth label, we have three rules:

• If x̃t+i = xt+i, we assign the label yi = 0 to encourage the decision tree to select the draft token.
• If x̃t+i ̸= xt+i and x̂t+i = xt+i, we assign the label yi = 1 to encourage the decision tree to select

the assistant token.
• If neither x̃t+i nor x̂t+i match the target, we drop the sample and continue the loop with i← i+ 1.

We iterate through all the input-output pairs and finally construct the training data sample in the
form of {[Mp(x̃i),Mq(x̂i)], yi}. In the training process, we aim to train the decision tree classifier
T : R2 → {0, 1} to minimize the difference between the predicted label and the ground truth:

min
T

N∑
i=1

[yi log(T (Mp(x̃i),Mq(x̂i))) + (1− yi) log(1− T (Mp(x̃i),Mq(x̂i)))] . (7)

After training, our decision tree can predict whether to choose the draft token or the assistant
token based on the two input probabilities. If the decision tree predicts 1, the same as the rule-based
verification, we replace the token, update the accepted token number, and send the new input sequence
back to the generation. Since the decision tree is trained on a dataset specific to the corresponding
domain, using this decision tree to fuse the model outputs can achieve better results in that domain.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Scenarios, Models, and Benchmarks. We evaluate COSD and compare it against several baselines
in scenarios that reflect common use cases where users may seek to fuse the knowledge of multiple
LLMs. These scenarios include: (i) Complementary Knowledge Fusion: The fused LLMs have
complementary knowledge, and users hope that the knowledge fusion system can perform as well
as the best model for each task across all tasks; (ii) Catastrophic Forgetting Recovery: The fused
models are one base model and a model fine-tuned from the base model. Fine-tuning improves
performance in certain domains but reduces the performance in other domains due to catastrophic
forgetting. Users expect to heal the catastrophic forgetting by fusing the knowledge of the two LLMs;
(iii) Capacity Imbalance: Users use a small draft model and adopt an API of the assistant model with
a much larger capacity. The fusion system is expected to perform similarly to the assistant model; (iv)
Different Tokenizers: Fuses the LLMs with different tokenizers. To simulate these scenarios, we
carefully selected six pairs of LLMs from the HuggingFace repository (Jain, 2022), representing each
of the four use cases outlined above. Table 1 lists the model pairs and the corresponding simulated
scenarios.

For all the scenarios and model pairs, we use MMLU (Hendrycks et al., 2020), GSM8K (Cobbe
et al., 2021), and HumanEval (Chen et al., 2021) as the evaluation benchmark. We use tinyBench-
marks (Polo et al., 2024) for MMLU and GSM8K to further increase the efficiency of experiments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: LLM pairs in the experiments.
Methods Draft Model Assist. Model Simulated Scenario

Pair 1 Llama 3 Wissenschaft 8B Llama 3 Bophades 8B Complementary Knowledge Fusion
Pair 2 Mistral 7B DARE Mistral 7B Mixed Complementary Knowledge Fusion
Pair 3 Mistral 7B (Jiang et al., 2023) Mistral Math 7B Catastrophic Forgetting Recovery
Pair 4 TinyLlama (Zhang et al., 2024) Llama 2 Chat Capacity Imbalance
Pair 5 Llama 2 Chat (Touvron et al., 2023) WizardMath (Luo et al., 2023) Different Tokenizers
Pair 6 Llama 2 Chat DeepSeek Coder (Guo et al., 2024) Different Tokenizers

These benchmarks test general question-answering, mathematical reasoning, and coding capabili-
ties, providing a comprehensive assessment of the models’ abilities across different domains. By
using these benchmarks, we can evaluate the effectiveness of COSD and the baselines in fusing
complementary knowledge across diverse tasks and model configurations.

Baselines. We use tree baselines in the experiment: (1) Speculative Decoding: It also uses a draft
model and an assistant model to generate the output. However, it adopts a different verification
algorithm that replaces the draft token when Mp(x̃i)

Mq(x̂i)
< U(0, 1) (2) Average Decoding: It averages

the predicted probabilities of the draft model and the assistant model and chooses the final output
from the averaged probabilities. (3) Co-LLM (Shen et al., 2024): It trains a single layer to classify
the hidden state of a base model. The output probability of the layer decides to use the base model
generation or evoke an assistant model to help generation.

Hyperparameters. We run COSD with the following settings. For Rule-Based COSD, we set
α = 0.5 and β = 0.5, which were determined to be the optimal and most transferable parameters
based on our analysis in Figure 2. For Tree-Based COSD, we randomly select three samples from the
AlpacaEval dataset to train the decision tree. It is important to note that we use MMLU, GSM8K, and
HumanEval as our benchmarks. Consequently, the training data for the decision tree do not overlap
with the test data, creating a more realistic scenario to evaluate the decision tree’s transferability
across different tasks and domains.

4.2 EXPERIMENTAL RESULTS

Fusing LLMs with Complementary Domain Knowledge. We first evaluated the performance of
different methods for fusing LLMs with complementary knowledge, with results shown in the pair
1 and pair 2 columns of Table 2. Both CoSD-Rule and CoSD-Tree consistently outperformed the
baseline methods in terms of overall performance. For instance, in pair 1, CoSD-Rule and CoSD-Tree
achieved scores of 56.97 and 58.37 on MMLU, respectively, surpassing all the baselines. Besides,
CoSD-Rule also achieves the best performance on GSM8K and HumanEval. Notably, CoSD can
match the performance of the better model for each task across all tasks. For example, in pair 1, CoSD
achieves a similar MMLU performance to the draft model and a similar performance on GSM8K and
HumanEval to the assistant model. A similar conclusion can be drawn from pair 2 as well. Compared
with our COSD, Speculative Decoding only performs similarly to the assistant model, thus will be
more suitable to the scenario when the assistant model is much stronger than the draft model. Average
Decoding can fuse model knowledge. However, it can only achieve an average accuracy across tasks,
unlike CoSD, which integrates the strengths of different LLMs. Co-LLM’s performance is the closest
to COSD, but since it requires training on specific datasets, its transferability across different datasets
is inferior to COSD.

It is also interesting to see that CoSD-Rule outperforms CoSD-Tree in GSM8K and HumanEval. We
attribute this phenomenon to the fact that the rules exhibit greater generalizability compared to the
decision tree. Since our decision tree is trained on AlpacaEval, it performs better on some general
QA tasks (e.g., MMLU), but does not have an advantage in math (e.g., GSM8K) and coding (e.g.,
HumanEval). CoSD-Rule is relatively general and performs well across three domains; however, it is
not as effective as the decision tree on MMLU (e.g., 56.97 for CoSD-Rule and 58.37 for CoSD-Tree
in pair 1).

These results highlight the effectiveness of COSD, particularly the superior fusion capabilities
across multiple benchmarks and model pairs. The clear improvements in accuracy demonstrate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: The results of fusing LLMs with complementary knowledge and the same tokenizer. Pair 1
and pair 2 are complementary knowledge fusion results. Pair 3 simulates a catastrophic forgetting
healing scenario, and pair 4 is a disparate capacity LLM fusion result.

Models Benchmarks Draft Assist. Spec. Avg. Co-LLM CoSD-Rule CoSD-TreeDecoding Decoding

Pair 1
MMLU 54.81 52.02 53.20 52.31 55.25 56.97 58.37
GSM8K 39.79 51.02 43.85 43.89 41.04 45.72 41.89

HumanEval 21.34 43.90 39.02 38.41 37.25 39.10 36.22

Pair 2
MMLU 65.82 59.26 59.33 62.22 60.40 65.06 63.71
GSM8K 31.20 42.19 33.36 38.33 38.85 36.81 37.24

HumanEval 28.66 31.10 14.02 25.60 29.91 31.34 28.29

Pair 3
MMLU 61.45 46.59 43.39 56.60 58.78 62.41 63.87
GSM8K 25.01 35.43 33.10 36.61 37.15 45.47 33.85

HumanEval 27.44 9.76 10.97 18.90 21.88 25.61 23.17

Pair 4
MMLU 32.13 47.65 47.30 42.62 47.47 47.84 48.15
GSM8K 3.36 15.63 14.63 12.12 11.97 12.52 12.29

HumanEval 8.53 12.20 10.39 12.55 11.73 12.80 10.54

Table 3: Fusing LLMs with different tokenizers.
Models Benchmarks Draft Assist. Char-ED CoSD-Rule CoSD-Tree

Pair 5 MMLU 47.65 40.61 44.29 50.65 52.13
GSM8K 15.63 51.13 37.54 44.88 37.01

Pair 6 MMLU 47.65 59.63 52.51 57.33 55.20
HumanEval 8.53 73.17 59.04 59.88 51.42

that our methods not only efficiently fuse LLMs with complementary knowledge but also enhance
performance across a wide range of tasks.

Catastrophic Forgetting Recovery. We select a Mistral base model and a fine-tuned math Mistral
model for pair 3 in Table 2 to simulate the catastrophic forgetting recovery. We found that CoSD-
Rule performs particularly well on this type of task. It not only recovers from forgetting across all
benchmarks but also outperforms both the draft and assistant models on MMLU and GSM8K. These
results suggest that COSD can further enhance the original performance of both models by enabling
collaboration between them.

Fusing LLMs with disparate capacity. When the assistant model has a much larger capacity than
the draft model, the model fusion system is supposed to achieve a similar performance to the draft
model. Speculative Decoding is more suited for this task because its verification strategy tends to
replace more draft tokens with assistant tokens. However, COSD results in pair 4, Table 2 are still
comparable to Speculative Decoding. For instance, CoSD-Rule has higher MMLU and HumanEval
scores than Speculative Decoding and has comparable GSM8K performance to Speculative Decoding.
These results on LLMs with disparate capacities indicate that COSD is not only applicable to
complementary knowledge LLM fusion but also to efficient inference tasks. When the draft model is
smaller and the assistant model is larger, our COSD can achieve performance similar to the assistant
model. At the same time, since the assistant model only performs parallel verification, COSD still
has more efficient inference compared to using the assistant model alone.

Fusing LLMs with Different Tokenizers. Although COSD needs to decode and then encode the
sequences during the verification when the models have different tokenizers, which sacrifices some
efficiency, it can still effectively fuse the model knowledge. In the experiments, we fuse a Llama
2 Chat and a WizardMath to evaluate the COSD performance on MMLU and GSM8K. We fuse a
Llama 2 Chat and a Deepseek Coder to evaluate COSD on MMLU and HumanEval. Results are
shown in Table 3. COSD outperforms the character-wise averaging method CharED (Gu et al., 2024)
in both model pairs and benchmarks. We do not include other baselines since they are not applicable
to the different tokenizer settings.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Training the decision tree with different datasets. Each column represents a decision tree
trained by the dataset in the column header. Experiments are done by pair 3. We use 10 samples of
MMLU, 3 samples of each other datasets to train the decision tree.

Benchmarks MMLU GSM8K HumanEval AlpacaEval

MMLU 63.94 60.88 61.23 63.87
GSM8K 35.04 37.17 30.08 33.85

HumanEval 25.62 23.04 23.09 23.17

Table 5: Efficiency of LLM Knowledge Fusion. Token latency represents the average time to
generate a single token, and acceptance rate refers to the proportion of draft tokens that were not
replaced. Typically, the higher the latter, the lower the former, as fewer tokens require replacement
and regeneration. Experiments are done by pair 3.

Methods Token Acceptance
Latency (ms) Rate

Spec. Decoding 131.22 0.89
CoSD-Rule 132.31 0.81
CoSD-Tree 135.82 0.77

𝛼

𝛽 𝛽

𝛼
Figure 2: The sum score of MMLU and GSM8K with various α, β
settings on pair 1 (left figure) and pair 2 (right figure).

Ablation Studies. We
have several tunable hy-
perparameters in COSD.
In Rule-Based COSD, we
have α and β that determine
the rules to replace the
draft tokens. In Tree-Based
COSD, the training data
and hyperparameters influ-
ence the performance of
the decision tree. Thus, we
use ablation experiments to
identify the impact of these
hyperparameters on the
final model performance,
allowing us to determine
the optimal and transferable
hyperparameter settings.
Figure 2 shows the relationship between α, β values in Rule-Based COSD and model performance.
The x-axis represents the values of α, and the y-axis represents the values of β. The numbers in
the small squares represent the sum score of MMLU and GSM8K, which reflect the overall model
performance of COSD. We can see that with α = 0.5, 0.75 and β = 0.5, 0.75, Rule-Based COSD
perform consistently well in the two model pairs. We ultimately selected α = 0.5, β = 0.5 as
the general hyperparameters in our experiments. We believe this setting effectively integrates the
knowledge of the models.

Table 4 displays the impact of the tree training dataset on Tree-Based COSD. The decision tree
trained on different datasets performs relatively consistently, even when the training set is not in
the same distribution with any benchmark (e.g., AlpacaEval, which achieved good results across all
three benchmarks.). When the decision tree’s training set shares the same distribution as a particular
benchmark, Tree-Based COSD tends to perform slightly better on that benchmark. Therefore, if
users are aware of the model’s application scenario, they can use the corresponding benchmark from
that task to train the decision tree. This would result in a domain-adapted tree that is better suited to
the specific task. In addition, as mentioned in the table title, we use very few samples to train the
decision tree, thus training decision trees introduces almost no additional computational overhead.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Case Studies. We use an example in GSM8K to demonstrate how CoSD effectively combines the
knowledge of two models in Table 6. CoSD replaces the red tokens generated by the draft model
with the green tokens from the assistant model. Neither the draft model nor the assistant generates
the correct result when used alone. The main issue with the draft model is its weak mathematical
calculation ability (e.g., in the fourth line, it calculates the tax as 20% of 20 to be 10, instead of the
correct answer 4). On the other hand, the assistant model performs well in terms of mathematical
calculations but lacks the logical rigor of the draft model (it fails to compute the subtotal of $24
without the tip, leading to the incorrect final calculation of 15+3+2+5).

COSD effectively integrates the strengths of both models. For instance, in CoSD-Rule, in the fifth
line, the assistant model rejects the draft model’s incorrect computation of 20% of 20 = 10 and instead
uses the correct calculation of 20 * 0.2 = 4, successfully avoiding the error in the draft model’s tax
calculation. In the sixth line, the draft model correctly leads to generate the subtotal of $24, so in the
final step, CoSD-Rule computes the simpler 24 + 5 instead of the more complicated 15 + 3 + 2 + 5,
resulting in the correct answer.

Also, there are situations that COSD makes wrong decisions. As shown in Table 9 in Appendix A,
COSD does not always select the correct answer. In the above example, the draft model made the
correct choice with high confidence, so the final generation retained the correct answer. However, in
the example below, while the draft model also made the correct choice, the assistant model provided
an incorrect answer with higher confidence, leading to the final output being changed to the wrong
answer. This demonstrates that using confidence as the criterion does not guarantee selecting the
correct option but can only aim to choose the correct answer with a higher probability.

Efficiency. Since we perform fusion during the inference stage, efficiency is a major advantage of
our approach. We compared the time overhead of our method with the baselines. We use token latency
and acceptance rate as the metrics for efficiency. As displayed in Table 5, Speculative Decoding
has the lowest latency among all methods, since it makes the least token replacement. However,
although COSD methods replace a few more tokens, the increase in total latency is almost negligible.
Considering that COSD has the best knowledge fusion performance, we have achieved a better
balance between efficiency and effectiveness.

5 CONCLUSION

In this paper, we fuse the LLMs’ knowledge in a simple yet effective way. Our proposed algorithm
COSD takes the probabilities of predicted tokens from two LLMs as the feature to verify whether to
keep the draft token or adopt the assistant token. The verification strategy can be either a rule-based
or a pre-trained decision tree. Our extensive experiments show that COSD performs better than the
state-of-the-art methods across 6 LLM pairs and 3 benchmarks. Compared to previous works, COSD
has superior knowledge fusion ability, a broader range of application scenarios, and comparable
efficiency. It works well in scenarios including complementary knowledge fusion, catastrophic
forgetting recovery, knowledge fusion with disparate model capacity, and knowledge fusion with
different tokenizers. COSD makes it possible for ordinary users to fuse the LLM knowledge with
only the API queries, without any training or fine-tuning of LLMs, or requirements of white-box
LLM information such as hidden states. It provides users with better tools to manipulate LLMs in
wider application scenarios.

6 LIMITATION

While COSD demonstrates strong performance across various scenarios, it is important to acknowl-
edge its limitations. This section highlights cases where COSD may not be applicable and tasks that
it fails to address. Identifying these constraints provides clarity on its scope of use and helps guide
future improvements. Below, we outline two specific limitations:

(1) When the two collaborating models are of similar size and one significantly outperforms the other,
COSD offers no advantage over using only the better model. In this case, using the better model
only is sufficient. This also requires the user to have prior knowledge of the performance of the two
models on different benchmarks and to determine that one model is significantly better than the other.
If the user is uncertain, we still recommend using COSD to ensure the best results.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Example

Question
Rory orders 2 subs for $7.50 each, 2 bags of chips for $1.50 each and 2 cookies for $1.00
each for delivery. There’s a 20% delivery fee added at check out and she wants to add a
$5.00 tip. What will her delivery order cost? Correct answer: 29

Draft
Model

The cost of the subs is 2 * $7.50 = «2*7.5=15»15
The cost of the chips is 2 * $1.50 = «2*1.5=3»3
We add the total cost of the food items by $15 + $3 + $2 = $«15+3+2=20»20
The cost of the delivery fee is 20% of the total cost of the order,
so 20% of 20 = «20% of 20=10»10
The total cost of the food items and delivery fee is $20 + $10 = $«20+10=30»30
The cost of the tip is $5.00
The total cost of the order is 15 + 3 + 2 + 10 + 5 = «15+3+2+10+5=45»45.

Assist.
Model

The cost of the subs is 2 x $7.5 = $«2*7.5=15»15
The cost of the chips is 2 x $1.5 = $«2*1.5=3»3
The total cost of her order without any fees is $15 + $3 + $2 = $«15+3+2=20»20
The delivery fee is 20% of the total order, so $20 * 0.20 = $«20*0.20=4»4
The tip is an additional $5
Therefore, her delivery order will cost $15 + $3 + $2 + $4 + $5 = $«15+3+2+4+5=35»35.

CoSD
Rule

The cost of the subs is 2 * x $7.50 = «2*7.50=15»15
The cost of the bags of chips is 2 x $1.50 = «2*1.50=3»3
We The delivery total final sub is before tax the tax delivery fee is

15 $ 15 + $3 + $2 = $«15+3+2=20»20
The delivery fee is 20% of $20 = , so the delivery fee is $20 x 0.20 = «20*0.20=4»4
The total cost before the tip is $20 + $4 = $«20+4=24»24 The tip is $5.00
The total of delivery is order will cost is $24 + $5 = $«24+5=29»29

CoSD
Tree

The cost of the subs is 2 * x $7.50 = «2*7.5=15»15
The cost of the bags chips is 2 x $1.50 = «2*1.5=3»3
The cost of the cookies: 2 x $1.00 = «2*1=2»2
The cost subtotal of before the delivery fee: 15 + 3 + 2 = «15+3+2=20»20
The 20% delivery fee: 20% of 20 = «20 % * 2 . 2=4»4
The total cost of the order before the tip: 20 + 4 = «20+4=24»24
The total cost of the order is by adding all the tip: 24 + 5 = «24+5=29»29

Table 6: An example of how COSD polish the draft generation in GSM8K dataset. The table shows
the different outputs for the same question generated by the Draft Model, Assistant Model, and two
CoSD algorithms. In the CoSD outputs, tokens that are not highlighted represent accepted draft
tokens, while tokens marked in pink are rejected draft tokens, followed by the assistant tokens that
replace the rejected ones highlighted in green.

(2) Another limitation of COSD is that it cannot guarantee the replaced assistant token is always better
than the discarded draft one. It relies on the confidence scores of the models, which are not always
perfectly aligned with token quality. The algorithm selects the output of the more confident model,
aiming to maximize the likelihood of choosing a better token, but this approach may occasionally
lead to suboptimal results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Malothu Amru, Raju Jagadeesh Kannan, Enthrakandi Narasimhan Ganesh, Surulivelu Muthumari-
lakshmi, Kuppan Padmanaban, Jeyaprakash Jeyapriya, and Subbiah Murugan. Network intrusion
detection system by applying ensemble model for smart home. International Journal of Electrical
& Computer Engineering (2088-8708), 14(3), 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Kevin Gu, Eva Tuecke, Dmitriy Katz, Raya Horesh, David Alvarez-Melis, and Mikhail Yurochkin.
Chared: Character-wise ensemble decoding for large language models. arXiv preprint
arXiv:2407.11009, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Akira Ito, Masanori Yamada, and Atsutoshi Kumagai. Analysis of linear mode connectivity via
permutation-based weight matching. arXiv preprint arXiv:2402.04051, 2024.

Shashank Mohan Jain. Hugging face. In Introduction to transformers for NLP: With the hugging
face library and models to solve problems, pp. 51–67. Springer, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeonwoo
Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. Solar 10.7 b: Scaling large language models with
simple yet effective depth up-scaling. arXiv preprint arXiv:2312.15166, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen, Jimmy Lin, Wen-tau Yih, and Xi Victoria
Lin. Nearest neighbor speculative decoding for llm generation and attribution. arXiv preprint
arXiv:2405.19325, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Adnan Mazraeh, Meysam Bagherifar, Saeid Shabanlou, and Reza Ekhlasmand. A novel committee-
based framework for modeling groundwater level fluctuations: A combination of mathematical and
machine learning models using the weighted multi-model ensemble mean algorithm. Groundwater
for Sustainable Development, 24:101062, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating generative
large language model serving with tree-based speculative inference and verification. arXiv preprint
arXiv:2305.09781, 2023.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
tinybenchmarks: evaluating llms with fewer examples. arXiv preprint arXiv:2402.14992, 2024.

Ramesh Chandra Poonia and Halah A Al-Alshaikh. Ensemble approach of transfer learning and
vision transformer leveraging explainable ai for disease diagnosis: An advancement towards smart
healthcare 5.0. Computers in Biology and Medicine, 179:108874, 2024.

Shannon Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, and David Sontag. Learning to decode
collaboratively with multiple language models. arXiv preprint arXiv:2403.03870, 2024.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. arXiv preprint arXiv:2401.10491, 2024.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
Fusing models with complementary expertise. arXiv preprint arXiv:2310.01542, 2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ping Luo, and Ying Shan.
Llama pro: Progressive llama with block expansion. arXiv preprint arXiv:2401.02415, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decod-
ing: Exploiting speculative execution for accelerating seq2seq generation. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 3909–3925, 2023.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris Papailiopoulos, and Kangwook Lee. Pre-
dictive pipelined decoding: A compute-latency trade-off for exact llm decoding. arXiv preprint
arXiv:2307.05908, 2023.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. arXiv preprint
arXiv:2406.16554, 2024.

A ADDITIONAL EXPERIMENTS AND DISCUSSION

The Average Iterations in COSD. The number of iterations required during collaborative decoding
depends on the maximum length of the model output. Table 7 reports the average number of iterations
on the GSM8K dataset for different maximum lengths.

Max Length CoSD-Rule CoSD-Tree Spec. Dec.
128 11.41 13.58 9.77
256 15.29 16.01 14.20
512 21.23 21.95 18.51

Table 7: Average number of iterations for different maximum output lengths.

Although the number of iterations scales with the output length, it does not directly imply a propor-
tional increase in generation time. As the number of accepted tokens grows, the number of tokens
requiring regeneration decreases significantly. For instance, with a maximum output length of 128,
the average number of iterations is 11, but the total generated output length remains around 300
tokens. This highlights the efficiency of our approach in reducing redundant generation.

Collaborate with More LLMs. Our COSD also supports multiple collaborating models. Table 8
presents the results when three models are used for collaboration:

Dataset Draft Assist. 1 Assist. 2 CoSD-Rule CoSD-Tree
MMLU 32.13 47.65 35.62 44.14 46.48
GSM8K 3.36 15.63 8.33 15.85 14.02

Table 8: Performance of three collaborator LLMs.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Example

Question
The Yang-shao culture gave way to the Lung-Shan sometime after:
A. 6,000 B.P. B. 5,000 B.P. C. 4,000 B.P. D. 3,000 B.P.
Correct answer: B

Answer Draft Assist. CoSD-Rule CoSD-Tree
B D (wrong) B B

Question

Rowena can paint a room in 14 hours, while Ruby can paint it in 6 hours.
If Rowena paints for x hours and Ruby paints for y hours, they will finish
half of the painting, while if Rowena paints for y hours and Ruby paints
for x hours they will paint the whole room. Find the ordered pair (x, y).
A. (1110 ,

11
10) B. (23120 , 21

20) C. (23140 , 21
40) D. (1,1)

Correct answer: C

Answer Draft Assist. CoSD-Rule CoSD-Tree
C D (wrong) D (wrong) D (wrong)

Table 9: Two examples of how COSD modify the generation in MMLU dataset. The example above
demonstrates how COSD helps improve generation quality, while the example below shows instances
where COSD sometimes selects incorrect answers.

In this setup, the draft model is TinyLlama, while the assistant models are Llama 2 Chat 7b and
Llama-7b. Our findings demonstrate that involving additional models improves prediction accuracy.
Table 8 demonstrates that when three models collaborate if one significantly outperforms the other
two, the final system will achieve performance close to that of the best model. This indicates that our
algorithm is effective when applied to more than two models. With sufficient LLMs, we can also
better utilize training data, even when certain samples are excluded.

The Case Study of MMLU. While COSD is effective in many cases, there are instances where it
makes incorrect decisions, highlighting its limitations. As shown in Table 9, COSD does not always
select the correct answer when the draft model and the assistant model disagree. In the first example,
the draft model correctly identified the answer with high confidence, which allowed the final output
to retain the accurate result. This showcases the potential of COSD to preserve correct answers when
confidence aligns with accuracy.

However, in the second example, the draft model once again made the correct prediction, but the
assistant model, despite being incorrect, provided an answer with higher confidence. Consequently,
the final output was altered to the wrong answer, overriding the draft model’s correct prediction.
This illustrates a shortcoming of the COSD approach: relying solely on confidence scores as the
decision-making criterion does not guarantee correctness. Confidence may reflect certainty but not
necessarily accuracy, leading to situations where errors from the assistant model dominate the final
outcome.

This limitation suggests that while COSD can improve generation quality by prioritizing higher-
confidence predictions, it does so with the assumption that confidence correlates with correctness. In
practice, this assumption does not always hold, especially when the assistant model is overconfident
in its incorrect predictions. To address this, future improvements could explore additional heuristics
or cross-validation mechanisms to better balance confidence with accuracy, ensuring that correct
answers are more consistently selected.

14

	Introduction
	Related Work
	Collaborative Speculative Decoding
	Generation.
	Verification

	Experiment
	Experimental Settings
	Experimental Results

	Conclusion
	Limitation
	Additional Experiments and Discussion

