
Supplementary material
A Notations and Definitions

Throughout this appendix, we will use the following notations:

• we denote the vectors in bold letters.

• ∇f(x) denotes the gradient of f at x.

• [d] denotes the set of all integers between 1 and d: {1, .., d}.

• ui denotes the i-th coordinate of vector u, and ∇if(x) the i-th coordinate of ∇f(x).

• ∥ · ∥0 denotes the ℓ0 norm (which is not a proper norm).

• ∥ · ∥ denotes the ℓ2 norm.

• ∥ · ∥∞ denotes the maximum absolute component of a vector.

• x ∼ P denotes that the random variable X (denoted as x), of realization x, follows a
probability distribution P (we abuse notation by denoting similarly a random variable and
its realization).

• x1, ..,xn
i.i.d∼ P denotes that we draw n i.i.d. samples of a random variable x, each from

the distribution P .

• P (x) denotes the value of the probability of x according to its probability distribution.

• Ex∼P (or simply Ex if there is no possible confusion) to denote the expectation of x which
follows the distribution P .

• We denote by supp(x) the support of a vector x, that is the set of its non-zero coordinates.

• |F | the cardinality (number of elements) of a set F .

• All the sets we consider are subsets of [d]. So for a given set F , F c denotes the complement
of F in [d]

• Sd(R) (or Sd(R) for simplicity if R = 1) denotes the d-sphere of radius R, that is Sd(R) =
{u ∈ Rd/∥u∥ = R}.

• U(Sd) the uniform distribution on that unit sphere.

• β(d) is the surface area of the unit d-sphere defined above.

• Sd
S denotes a set that we call the restricted d-sphere on S, described as: {uS/u ∈ {v ∈

Rd/∥vS∥ = 1}}, that is the set of unit vectors supported by S.

• U(Sd
S) denotes the uniform distribution on that restricted sphere above.

• We denote by uF (resp. ∇F f(x)) the hard-thresholding of u (resp. ∇f(x)) over the support
F , that is, a vector which keeps u (resp. ∇f(x)) untouched for the set of coordinates in F ,
but sets all other coordinates to 0.

•
(
[d]
s

)
denotes the set of all subsets of [d] that contain s elements:

(
[d]
s

)
= {S : |S| = s, S ⊆

[d]}.

• U(
(
[d]
s

)
) denotes the uniform distribution on the set above.

• I denotes the identity matrix Id×d.

• IS denotes the identity matrix with 1 on the diagonal only at indices belonging to the support
S: Ii,i = 1 if i ∈ S, and 0 elsewhere.

• S ∋ e denotes that set S contains the element e.

• (ui)
n
i=1 denotes the n-uple of elements u1, ..,un.

• Γ denotes the Gamma function [1].

•
∫
A
f(u)du denotes the integral of f over the set A.

• log denotes the natural logarithm (in base e).

14

B Auxilliary Lemmas

Lemma B.1 ([38] (10)). Let p ∈ Nd, and denote p :=
∑d

i=1 pi, we have:∫
Sd

d∏
i=1

upi

i du = 2

∏n
i=1 Γ(pi + 1/2)

Γ(p+ d/2)

Proof. The proof is given in [38].

Lemma B.2. Let F be a subset of [d], of size s, with (s, d) ∈ N2
∗. We have the following:

Eu∼U(Sd)∥uF ∥ ≤
√

s

d
(5)

Eu∼U(Sd)∥uF ∥2 =
s

d
(6)

Eu∼U(Sd)∥uF ∥4 =
(s+ 2)s

(d+ 2)d
(7)

Proof. We start by proving (6). Decomposing the norm onto every component, we get:

Eu∼U(Sd)∥uF ∥2 = Eu∼U(Sd)

∑
i∈F

u2
i =

∑
i∈F

Eu∼U(Sd)u
2
i (8)

By symmetry, each ui has the same marginal probability distribution, so:

∀i ∈ [d] : Eu∼U(Sd)u
2
i =

1

d

d∑
i=1

Eu∼U(Sd)u
2
i (9)

We also know, from the definition of the ℓ2 norm, and the fact that u is a unit vector, that:
d∑

i=1

Eu∼U(Sd)u
2
i = Eu∼U(Sd)

d∑
i=1

u2
i = Eu∼U(Sd)∥u∥2 = Eu∼U(Sd)1 = 1 (10)

Therefore, combining (9) and (10):

∀i ∈ [d] : Eu∼U(Sd)u
2
i =

1

d
Plugging this into (8), we get (6):

Eu∼U(Sd)∥uF ∥2 =
s

d
Using Jensen’s inequality, (5) follows from (6). Let us now prove (7). By definition of the expectation
for a uniform distribution on the unit sphere:

Eu∼U(Sd)∥uF ∥4 =
1

β(d)

∫
Sd

∥uF ∥4du

We further develop the integral as follows:∫
Sd

∥uF ∥4du =

∫
Sd

(∥uF ∥2)2du =

∫
Sd

(
∑
i∈F

u4
i +

∑
(i,j)∈F,j ̸=i

u2
iu

2
j)du

= s

∫
Sd

u4
1du+ 2

(
s

2

)∫
Sd

u2
1u

2
2du (by symmetry)

Using Lemma B.1 in the expression above, with p(a) := (2, 0, ..., 0), and p(b) := (1, 1, 0, ..., 0), we
obtain: ∫

Sd

∥uF ∥4du = s

∏d
i=1 Γ(p

(a)
k + 1

2)

Γ(2 + d/2)
+ 2

s(s− 1)

2
2

∏d
i=1 Γ(p

(b)
k + 1/2)

Γ(2 + d/2)

(a)
=

6s
√
π
d

(d+ 2)dΓ(d/2)
+

2s(s− 1)
√
π
d

(d+ 2)dΓ(d/2)
=

2(s+ 2)s
√
π
d

(d+ 2)dΓ(d/2)

15

Where in (a) we used the fact that Γ(12) =
√
π and Γ(32) =

√
π
2 . So:

Eu∼U(Sd)∥uF ∥4 =
1

β(d)

∫
Sd

∥uF ∥4du
(b)
=

s+ 2

d+ 2

s

d

Where (b) comes from the closed form for the area of a d unit sphere: β(d) = 2
√
πd

Γ(d
2)

Lemma B.3 ([12], Lemma 7.3.b).

Eu∼U(Sd)uu
T =

1

d
I

Proof. The proof is given in [12].

Lemma B.4 ([36], Theorem 1; [45], Lemma 17). Let b ∈ Rd be an arbitrary d-dimensional vector
and a ∈ Rd be any k-sparse vector. Denote k̄ = ∥a∥0 ≤ k, and bk the vector b with all the d− k
smallest components set to 0 (that is, bk is the best k-sparse approximation of b). Then, we have the
following bound:

∥bk − a∥2 ≤ δ∥b− a∥2, δ = 1 +
β +

√
(4 + β)β

2
, β =

min{k̄, d− k}
k − k̄ +min{k̄, d− k}

Proof. The proof is given in [36].

Corollary B.1. With the notations and variables above in Lemma B.4, we also have the following,
simpler bound, from [45]:

∥bk − a∥ ≤ γ∥b− a∥
with

γ =

√
1 +

(
k̄/k +

√(
4 + k̄/k

)
k̄/k

)
/2

Proof. There are two possibilities for β in Lemma B.4: either β = k̄
k (if d− k > k̄) or β = d−k

d−k̄
(if

d− k ≤ k̄). In the latter case:

d−k ≤ k̄ =⇒ d− k̄ ≤ k =⇒ k − k̄

d− k̄
≥ k − k̄

k
=⇒ 1− k − k̄

d− k̄
≤ 1− k − k̄

k
=⇒ d− k

d− k̄
≤ k̄

k

Therefore, in both cases, β ≤ k̄
k , which, plugging into Lemma B.4, gives Corollary B.1.

C Proof of Proposition 1

With an abuse of notation, let us denote by f any function fξ for some given value of the noise ξ.
First, we derive in section C.1 the error of the gradient estimate if we sample only one direction
(q = 1). Then, in section C.2, we show how sampling q directions reduces the error of the gradient
estimator, producing the results of Proposition 1.

C.1 One direction estimator

Throughout all this section, we assume that q = 1 for the gradient estimator ∇̂f(x) defined in (2).

C.1.1 Expected deviation from the mean

Lemma C.1. For any (Ls2 , s2)-RSS function f , using the gradient estimator ∇̂f(x) defined in (2)
with q = 1, we have, for any support F ∈ [d], with |F | = s:∥∥∥E [∇̂F f(x)

]
−∇F f(x)

∥∥∥2 ≤ εµµ
2

with εµ = L2
s2sd

16

Proof. From the definition of the gradient estimator in (2):

∥E[∇̂F f(x)]−∇F f(x)∥ =

∥∥∥∥Edf(x+ µu)− f(x)

µ
uF −∇F f(x)

∥∥∥∥
Now, (Ls2 , s2)-RSS implies continuous differentiability over an s2-sparse direction (since (Ls2 , s2)-
RSS actually equals Lipschitz continuity of the gradient over any s2-sparse set, which implies
continuity of the gradient over those sets). Therefore, from the mean value theorem, , we have, for
some c ∈ [0, µ]: f(x+µu)−f(x)

µ = ⟨∇f(x+ cu),u⟩. We now use the following result:

EuuT = E
S∼([d]s2

)Eu∼U(Sd
S)uu

T (a)
= E

S∼([d]s2
)
1

s2
IS =

1

s2
E
S∼([d]s2

)IS
(b)
=

1

s2

s2
d
I =

1

d
I

Where for (a) comes from applying Lemma B.3 to the unit sub-sphere on the support S, and (b)
follows by observing that each diagonal element of index i actually follows a Bernoulli distribution
of parameter s2

d , since there are
(
d−1
s2−1

)
arrangements of the support which contain i, over

(
d
s2

)
total

arrangements, which gives a probability p =
(d−1
s2−1)
(d
s2
)

= (d−1)!s2!(d−s2)!
(s2−1)!(d−1−(s2−1))!d! =

s2
d to get the value 1

at i.

This allows to factor the true gradient into the scalar product:

∥E[∇̂F f(x)]−∇F f(x)∥ = d∥E⟨∇f(x+ cu)−∇f(x),u⟩uF ∥
≤ dE∥uFu

T [∇f(x+ cu)−∇f(x)]∥

where the last inequality follows from the property E∥X−EX∥2 = E∥X∥2−∥EX∥2, which implies
∥EX∥ =

√
E∥X∥2 − E∥(X − EX)∥2 ≤ E∥X∥, for any multidimensional random variable X .

Using the Cauchy-Schwarz inequality, we obtain:

∥E[∇̂F f(x)]−∇F f(x)∥ ≤ E
S∼([d]s2

)Eu∼U(Sd
S)∥uF ∥∥u∥∥∇Sf(x+ cu)−∇Sf(x)∥

Since f ∈ (Ls2 , s2)-RSS and ∥us∥0 ≤ s2, we have: ∥∇Sf(x+ cu)−∇Sf(x)∥ ≤ Ls2∥cu∥. We
also have c ∈ [0, µ], which implies ∥cu∥ ≤ µ∥u∥. Therefore:

∥E[∇̂F f(x)]−∇F f(x)∥ ≤ ESEudLs2µ∥uF ∥∥u∥∥u∥ = ESEudLs2µ∥uF ∥∥u∥2 = ESEudLs2µ∥uF ∥

(a)

≤ dLs2µESEu

√
|S ∩ F |

s2

(b)

≤ dLs2µ

√
ES

|S ∩ F |
s2

= dLs2µ

√
EkES||S∩F |=k

k

s2

= dLs2µ

√
ss2
ds2

= Ls2µ
√
sd

Where (a) follows from Lemma B.2, restricted to the support S, and (b) follows from Jensen’s
inequality.

C.1.2 Expected norm

Lemma C.2. For any (Ls2 , s2)-RSS function f , using the gradient estimator ∇̂f(x) defined in (2)
with q = 1, we have, for any support F ∈ [d], with |F | = s:

E∥∇̂F f(x)∥2 = εF ∥∇F f(x)∥2 + εF c∥∇F cf(x)∥2 + εabsµ
2

with:
(i) εF = 2d

(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)

(ii) εF c = 2d
(s2+2)

(
s(s2−1)
d−1

)
(iii) εabs = 2dL2

sss2

(
(s−1)(s2−1)

d−1 + 1
)

17

Proof.

E∥∇̂F f(x)∥2 = E
∥∥∥∥df(x+ µu)− f(x)

µ
uF

∥∥∥∥2
= E

d2

µ2
|f(x+ µu)− f(x)|2∥uF ∥2

=
d2

µ2
E[f(x+ µu)− f(x)− ⟨∇f(x), µu⟩+ ⟨∇f(x), µu)]2∥uF ∥2

Using the mean value theorem, we obtain that for a certain c ∈ (0, µ), we have:

f(x+ µu)− f(x) = ⟨∇f(x+ c), µu⟩

Therefore, plugging this in the above:

E∥∇̂F f(x)∥2 ≤ d2E[⟨∇f(x+ cu)−∇f(x),u⟩+ ⟨∇f(x),u⟩]2∥uF ∥2

(a)

≤ d2E
[
2⟨∇f(x+ cu)−∇f(x),u⟩2∥uF ∥2 + ⟨∇f(x),u⟩2∥uF ∥2

]
≤ 2d2E[∥∇f(x+ cu)−∇f(x)∥2∥u∥2∥uF ∥2 + ⟨∇f(x),u⟩2∥uF ∥2]
≤
(b)2d2E[L2

sµ
2∥u∥2∥u∥2∥uF ∥2 + ⟨∇f(x),u⟩2∥uF ∥2]

(c)
= 2d2E[L2

sµ
2∥uF ∥2 + ⟨∇f(x),u⟩2∥uF ∥2]

= 2d2[L2
sµ

2E∥uF ∥2 +∇f(x)
T (EuuT ∥uF ∥2

)
∇f(x)]

= 2d2[L2
s2µ

2E∥uF ∥2 +∇f(x)
T
(E

S∼([d]s2
)Eu∼U(Sd

S)uu
T ∥uF ∥2)∇f(x)]

(d)
= 2d2[L2

s2µ
2E∥uF ∥2 + E

S∼([d]s2
)[∇f(x)

T
(Eu∼U(Sd

S)uu
T ∥uF ∥2)∇f(x)]] (11)

Where (a) follows from the fact that for any (a, b) ∈ R2 : (a + b)2 ≤ 2a2 + 2b2, (b) follows
from the Cauchy-Schwarz inequality, (c) follows from the fact that ∥u∥ = 1 since u ∈ Sd

S , and
(d) follows by linearity of expectation. Let us turn to computing the following expression above:
Eu∼U(Sd

S)uu
T ∥uF ∥2. We start by distinguishing the indices that belong to F and those that do not.

By symmetry, denoting i1, ..., is the elements of F :

Eu∼U(Sd
S)u

2
i1∥uF ∥2 = ... = Eu∼U(Sd

S)u
2
is∥uF ∥2

Therefore, for all i ∈ F :

Eu∼U(Sd
S)u

2
i ∥uF ∥2 =

1

|S ∩ F |

s∑
j=1

Eu∼U(Sd
S)u

2
ij∥uF ∥2

=
1

|S ∩ F |
Eu∼U(Sd

S)

s∑
j=1

u2
ij∥uF ∥2 =

1

|S ∩ F |
Eu∼U(Sd

S)∥uF ∥4 (12)

By definition of the restricted d-sphere on F (see section A), for all u ∈ Sd
S , if i ̸∈ S: ui = 0.

Therefore, since the exact indices of the elements of F do not matter in the expected value (12), but
only their cardinality, (12) can be rewritten using a simpler expectation over a unit |S|-sphere as
follows :

Eu∼U(Sd
S)∥uF ∥4 = Eu∼U(S|S|)∥u[|S∩F |]∥4

Using Lemma B.2 to get a closed form expression of the expected value above, we further obtain:

∀i ∈ F : Eu∼U(Sd)u
2
i ∥uF ∥2 =

1

|S ∩ F |
|S ∩ F |(|S ∩ F |+ 2)

d(d+ 2)
=

|S ∩ F |+ 2

d(d+ 2)
(13)

Similarly, by symmetry, denoting i1, ..., id−s the elements of F c:

Eu∼U(Sd
S)u

2
ij∥uF ∥2 = ... = Eu∼U(Sd

S)u
2
ij∥uF ∥2

18

Therefore, for all i ̸∈ F :

Eu∼U(Sd
S)u

2
i ∥uF ∥2 =

1

d− s

d−s∑
j=1

Eu∼U(Sd
S)u

2
ij∥uF ∥2 =

1

d− s
Eu∼U(Sd

S)

d−s∑
j=1

u2
ij∥uF ∥2

(a)
=

1

d− s
Eu∼U(Sd

S)(∥u∥2 − ∥uF ∥2)∥uF ∥2

(b)
=

1

d− s
(Eu∼U(Sd

S)∥uF ∥2 − Eu∼U(Sd
S)∥u∥4)

Where (a) follows from the Pythagorean theorem and (b) follows from ∥u∥ = 1. Similarly as before,
rewriting those expected values and using Lemma B.2, we obtain:

∀i ̸∈ F : Eu∼U(Sd)u
2
i ∥uF ∥2 =

1

d− |S ∩ F |
|S ∩ F |(d+ 2− (|S ∩ F |+ 2))

d(d+ 2)
=

|S ∩ F |
d(d+ 2)

(14)

Finally, by symmetry of the distribution U(Sd
S), we have, for all (i, j) ∈ [d]2 with i ̸= j:

Eu∼U(Sd
S)uiuj∥uF ∥2 = Eu∼U(Sd

S)(−ui)uj∥uF ∥2 = −Eu∼U(Sd
S)uiuj∥uF ∥2

Therefore, for all (i, j) ∈ [d]2, i ̸= j:

Eu∼U(Sd
S)uiuj∥uF ∥2 = 0 (15)

Therefore, combining (13), (14) and (15), we obtain:

Eu∼U(Sd
S)uu

T ∥uF ∥2 =


a1

a2
. . .

ad


With, for all i ∈ [d] : ai =

{ |S∩F |+2
d(d+2) if i ∈ F
|S∩F |
d(d+2) if i ̸∈ F

. Plugging this back into (11), we obtain:

A := E
S∼([d]s2

)[∇f(x)
T
(
Eu∼U(Sd

S)uu
T ∥uF ∥2

)
∇f(x)]

= E
S∼([d]s2

)

[
|S ∩ F |+ 2

s2(s2 + 2)
∥∇S∩F f(x)∥2 +

|S ∩ F |
s2(s2 + 2)

∥∇S\(S∩F)f(x)∥2
]

=
1

s2(s2 + 2)

[
E
S∼([d]s2

)
[
|S ∩ F | ∥∇F∩Sf(x)∥2

]
+2E

S∼([d]s2
)
[
∥∇F∩Sf(x)∥2 + |S ∩ F | ∥∇S\(S∩F)f(x)∥2

]]
(16)

We will now develop the expected values above using the law of total expectation, to exhibit the
role of the random variable k denoting the size of S ∩ F . Given that we sample s2 indices from
[d] without replacement, k follows a hypergeometric distribution with, as parameters, population
size d, number of success states s and number of draws s2, which we denote H(d, s, s2). For
simplicity, we will use the following notations for the expected values: Ek[·] := Ek∼H(d,s,s2)[·], and
ES||S∩F |=k[·] = E

S∼([d]s2
)||S∩F |=k

[·]. Therefore, rewriting (16) using the law of total expectation, we

obtain:

A =
1

s2(s2 + 2)

[
EkES||S∩F |=kk∥∇S∩F f(x)∥2 + 2EkES||S∩F |=k∥∇S∩F f(x)∥2

+EkES||S∩F |=kk∥∇S\(S∩F)f(x)∥2
]

=
1

s2(s2 + 2)

[
EkkES||S∩F |=k∥∇S∩F f(x)∥2 + 2ESES||S∩F |=k∥∇S∩F f(x)∥2

+EkkES||S∩F |=k∥∇S\(S∩F)f(x)∥2
]

(17)

19

To compute the conditional expectations above, let us consider the first of them (the other ones will
follow similarly) : ES||S∩F |=k∥∇S∩F f(x)∥2. Given some k, from the multiplication principle in
combinatorics, we can have

(
d
k

)(
d−s
s2−k

)
arrangements of supports such that k elements of that support

are in F (because it means there are k elements in F and s2 − k elements outside of F). So the
conditional probability of each of those supports S, assuming they indeed have at least one element

in common with F , is
((

d
k

)(
d−s
s2−k

))−1

. Otherwise it is 0. To rewrite it:

P (S||S ∩ F | = k) =

{((
d
k

)(
d−s
s2−k

))−1

if S ∩ F ̸= ∅
0 if S ∩ F ̸= ∅

So, developing ES||S∩F |=k∥∇S∩F f(x)∥2 using the definition of conditional probability, we have:

ES||S∩F |=k∥∇S∩F f(x)∥2 =
∑
S

P (S| |S ∩ F | = k)
∑

i∈S∩F

∇if(x)
2

=
∑

S/|S∩F |=k

((
d

k

)(
d− s

s2 − k

))−1 ∑
i∈S∩F

∇if(x)
2

=

((
d

k

)(
d− s

s2 − k

))−1 ∑
S/|S∩F |=k

∑
i∈S∩F

∇if(x)
2

(a)
=

((
d

k

)(
d− s

s2 − k

))−1∑
i∈F

∑
S/((|S∩F |=k),(S∋i))

∇if(x)
2

(b)
=

((
d

k

)(
d− s

s2 − k

))−1∑
i∈F

(
s− 1

k − 1

)(
d− s

s2 − k

)
∇if(x)

2

=
s

k

∑
i∈F

∇if(x)
2

=
s

k
∥∇F f(x)∥2 (18)

Where (a) follows by re-arranging the sum, and (b) follows by observing that by the multiplication
principle, there are

(
s−1
k−1

)(
d−s
s2−k

)
possible arrangements of support such that: (|S ∩ F | = k), (S ∋ i),

since one element of S is already fixed to be i, so there remains k − 1 indices to arrange over s− 1
possibilities, and still s2 − k indices to arrange over d− s possibilities. Similarly, to (18) we have,
for the second expectation:

ES||S∩F |=k∥∇S\(S∩F)f(x)∥2 =
s2 − k

d− s
∥∇F cf(x)∥2 (19)

Therefore, plugging (18) and (19) into (17)

A =
1

s2(s2 + 2)

[
Ekk

k

s
∥∇F f(x)∥2 + 2Ek

k

s
∥∇F f(x)∥2 + Ekk

s2 − k

d− s
∥∇F cf(x)∥2

]
=

1

s2(s2 + 2)

[
1

s
∥∇F f(x)∥2

[
Ekk

2 + 2Ekk
]
+ ∥∇F cf(x)∥2

[
s2

d− s
(Ekk)−

1

d− s
Ekk

2

]]
(20)

Since k follows a hypergeometric distribution H(d, s, s2), its expected value is given in closed form
by: Ekk = ss2

d (see [43], section 2.1.3). We can also express the non-centered moment of order 2,
using the formula for Var(X) = E[X2] − (E[X])2, which holds for a random variable X , where
V ar(X) denotes the variance of X:

Ekk
2 = V ar(k) + (Ek[k])

2 (a)
=

ss2
d

d− s

d

d− s2
d− 1

+
(ss2

d

)2
=

ss2
d

(
d− s

d

d− s2
d− 1

+
ss2
d

)
=

ss2
d

(
d2 − sd− s2d+ ss2 + ss2d− ss2

d(d− 1)

)
=

ss2
d

(
d− s− s2 + ss2

d− 1

)
=

ss2
d

(
(s− 1)(s2 − 1)

d− 1
+ 1

)

20

Where (a) follows by the closed form for the variance of a hypergeometric variable given in [43].
Therefore, plugging in into (20):

ES∇f(x)
T (EUS |Suu

T ∥uF ∥2
)
∇f(x)

=
1

s2(s2 + 2)

[
1

s
∥∇F f(x)∥2

[
ss2
d

(
(s− 1)(s2 − 1)

d− 1
+ 1

)
+ 2

ss2
d

]]
+

1

s2(s2 + 2)
∥∇F cf(x)∥2

[
s2

d− s

ss2
d

− 1

d− s

ss2
d

(
(s− 1)(s2 − 1)

d− 1
+ 1

)]
=

1

s2 + 2

[
∥∇F f(x)∥2

[
1

d

(
(s− 1)(s2 − 1)

d− 1
+ 3

)]
+ ∥∇F cf(x)∥2

[
s

(d− s)d

(
s2 −

(
(s− 1)(s2 − 1)

d− 1
+ 1

))]]
=

1

d(s2 + 2)

[
∥∇F f(x)∥2

[(
(s− 1)(s2 − 1)

d− 1
+ 3

)]
+∥∇F cf(x)∥2

[
s

(d− s)

(
s2 −

(
(s− 1)(s2 − 1)

d− 1
+ 1

))]]
(21)

Let us simplify the rightmost term:

s

(d− s)

(
s2 −

(
(s− 1)(s2 − 1)

d− 1
+ 1

))
=

s(s2 − 1)

d− s

[
1− s− 1

d− 1

]
=

s(s2 − 1)

(d− s)

[
d− s

d− 1

]
=

s(s2 − 1)

d− 1

Plugging it back into (21):

ES∇f(x)
T (EUS |Suu

T ∥uF ∥2
)
∇f(x)

=
1

d(s2 + 2)

[
∥∇F f(x)∥2

(
(s− 1)(s2 − 1)

d− 1
+ 3

)
+ ∥∇F cf(x)∥2

(
s(s2 − 1)

d− 1

)]

Finally, plugging this back into (11):

E∥∇̂F f(x)∥2 = 2d2
[
L2
s2µ

2E∥uF ∥2 +∇f(x)
T (EuuT ∥uF ∥2

)
∇f(x)

]
= 2d2

[
L2
s2µ

2EkEu||S∩F |=k∥uF ∥2 +∇f(x)
T (EuuT ∥uF ∥2

)
∇f(x)

]
= 2d2

[
L2
s2µ

2Ekk
2 +∇f(x)

T (EuuT ∥uF ∥2
)
∇f(x)

]
= d2L2

s2µ
2ss2

(
(s− 1)(s2 − 1)

d− 1
+ 1

)
+

2d

(s2 + 2)

[
∥∇F f(x)∥2

(
(s− 1)(s2 − 1)

d− 1
+ 3

)
+ ∥∇F cf(x)∥2

(
s(s2 − 1)

d− 1

)]

C.2 Batched-version of the one-direction estimator

We now describe how sampling q ≥ 1 random directions improves the gradient estimate. Our proof is
similar to the proof of Lemma 2 in [24], however we make sure that it works for our random support
gradient estimator, and with our new expression in C.2, which depends on the two terms ∥∇F f(x)∥2
and ∥∇F cf(x)∥2. We express our results here in the form of a general lemma, depending only on
the general bounding factors εF , εF c , εabs and εµ defined below, in such a way that the proof of
Proposition 1 follows immediately from plugging the results of Lemma C.1 and C.2 into Lemma C.3
below.

21

Lemma C.3. For any (Ls2 , s2)-RSS function f , we use the gradient estimator ∇̂f(x) defined in (2)
with q ≥ 1. Let us suppose that the estimator ∇̂f(x) is such that for q = 1, it verifies the following
bounds for some εF , εF c , εabs and εµ in R∗

+, for any support F ∈ [d], with |F | = s:
(i) ∥E∇̂F f(x)−∇F f(x)∥2 ≤ εµµ

2, and
(ii) ∥E∇̂F f(x)∥2 ≤ εF ∥∇F f(x)∥2 + εF c∥∇F cf(x)∥2 + εabsµ

2

Then, the estimator ∇̂f(x) also verifies, for arbitrary q ≥ 1 :
(a) ∥E∇̂F f(x)−∇F f(x)∥2 ≤ εµµ

2

(b) E
∥∥∥∇̂F f(x)

∥∥∥2 ≤
(

εF
q + 2

)
∥∇F f(x)∥2 + εFc

q ∥∇F cf(x)∥2 +
(

εabs

q + 2εµ

)
µ2

Proof. Let us denote by ∇̂f(x; (ui)
q
i=1) the gradient estimate from (2) along the i.i.d. sampled

directions (ui)
q
i=1 (we simplify it into ∇̂f(x;u) if there is only one direction u). We can first see

that, since the random directions ui are independent identically distributed (i.i.d.) we have:

E∇̂f(x; (ui)
q
i=1) = E

1

q

q∑
i=1

∇̂f(x;ui) =
1

q

q∑
i=1

E∇̂f(x;u1) = E∇̂f(x;u1)

This proves C.3 (a). Let us now turn to C.3 (b). We have:

E
[∥∥∥∇̂F f(x; (ui)

q
i=1)

∥∥∥2] = E

∥∥∥∥∥1q
q∑

i=1

∇̂F f(x;ui)

∥∥∥∥∥
2

=
1

q2
E

(
q∑

i=1

∇̂F f(x;ui)

)⊤(q∑
i=1

∇̂F f(x;ui)

)

=
1

q2

q∑
i=1

q∑
j=1

E
[
∇̂F f(x;ui)

⊤∇̂F f(x;uj)
]

(a)
=

1

q2

qE∥∇̂F f(x;u1)∥2 +
q∑

i=1

q∑
j=1(j ̸=i)

(E∇̂F f(x;ui))
⊤(E∇̂F f(x;uj))


=

1

q2

[
qE||∇̂F f(x;u1)∥2 + q(q − 1)∥E∇̂F f(x;u1)||2

]
(b)

≤ 1

q2

[
q
[
εF ∥∇F f(x)∥2 + εF c∥∇F cf(x)∥2 + εabsµ

2
]
+ q (q − 1)

∥∥∥E∇̂F f(x;u1)
∥∥∥2] (22)

Where (a) comes from the fact that the random directions are i.i.d. and (b) comes from assumptions
(i) and (ii) of the current Lemma (Lemma C.3). Assumption (ii) also allows to bound the last term
above in the following way:

∥E∇̂F f(x;u1)∥2 ≤ 2∥∇F f(x;u1)− E∇̂F f(x;u1)∥2 + 2∥∇F f(x;u1)∥2

≤ 2εµµ
2 + 2∥∇F f(x;u1)∥2 (23)

Plugging (23) into (22), we obtain:

E
[∥∥∥∇̂F f(x)

∥∥∥2] ≤ 1

q
[εF + 2(q − 1)] ∥∇F f(x)∥2 +

εF c

q
∥∇F cf(x)∥2

+
1

q

[
εabsµ

2 + 2 (q − 1) εµµ
2
]

≤
(
εF
q

+ 2

)
∥∇F f(x)∥2 +

εF c

q
∥∇F cf(x)∥2 +

(
εabs
q

+ 2εµ

)
µ2

C.3 Proof of Proposition 1

Proof. Proposition 1 (a) and (b) follow by plugging the values of εF , εF c , εabs and εµ from Lemma
C.1 and Lemma C.2 into Lemma C.3. Proposition (c) follows from the inequality ∥a + b∥2 ≤
2∥a∥2 + 2∥b∥2, for a and b in Rp with p ∈ N∗.

22

D Proofs of section 4

D.1 Proof of Theorem 1

Proof. We will combine the proof from [45] and [30], using ideas of the proof of Theorem 8 from
Nesterov to deal with zeroth order gradient approximations, and ideas from the proof of [45] (Theorem
2 and 5, Lemma 19), to deal with the hard thresholding operation in the convergence rate. Let us call
η an arbitrary learning rate, that will be fixed later in the proof. Let us call F the following support
F = F (t−1) ∪F (t) ∪ supp(x∗), with F (t) = supp(xt). We have, for a given random direction u and
function noise ξ, at a given timestep t of SZOHT:

∥xt − x∗ − η∇̂F fξ(x
t) + η∇F fξ(x

∗)∥2 = ∥xt − x∗∥2 − 2η⟨xt − x∗, ∇̂F fξ(x
t)−∇F fξ(x

∗)⟩
+ η2∥∇̂F fξ(x

t)−∇F fξ(x
∗)∥2

Taking the expectation with respect to ξ and to the possible random directions u1, ...,uq (that we
denote with a simple u, abusing notations) at step t, we get:

Eξ,u∥xt − x∗ − η∇̂F fξ(x
t) + η∇F fξ(x

∗)∥2

= ∥xt − x∗∥2 − 2η⟨xt − x∗,Eξ,u[∇̂F fξ(x
t)−∇F fξ(x

∗)]⟩+ η2Eξ,u∥∇̂F fξ(x
t)−∇F fξ(x

∗)∥2

= ∥xt − x∗∥2 − 2η⟨xt − x∗,Eξ,u[∇F fξ(x
t)−∇F fξ(x

∗)]⟩
− 2η⟨xt − x∗,Eξ[Eu∇̂F fξ(x

t)−∇F fξ(x
t)]⟩+ Eξ,uη

2∥∇̂F fξ(x
t)−∇F fξ(x

∗)∥2

= ∥xt − x∗∥2 − 2η⟨xt − x∗,∇F f(x
t)−∇F f(x

∗)⟩

− 2η⟨√ηLs′
(
xt − x∗) , 1

√
ηLs′

(EξEu[∇̂F fξ(x
t)−∇F fξ(x

t))]⟩

+ Eξ,uη
2∥∇̂F fξ(x

t)−∇F fξ(x
∗)∥2

(a)

≤ ∥xt − x∗∥2 − 2η⟨xt − x∗,∇F f(x
t)−∇F f(x

∗)⟩+ η2L2
s′∥xt − x∗∥2

+
1

L2
s′
Eξ∥Eu∇̂F fξ(x

t)−∇F fξ(x
t))∥2 + η2Eξ,u∥∇̂F fξ(x

t)−∇F fξ(x
∗)∥2 (24)

Where (a) follows from the inequality 2⟨u,v⟩ ≤ ∥u∥2 + ∥v∥2 for any (u,v) ∈ (Rd)2. From
Proposition 1 (b), since almost each fξ is (Ls′ , s

′)-RSS (hence also (Ls′ , s2)-RSS), we know that
for the εF , εF c and εabs defined in Proposition 1 (b), we have for almost all ξ: Eu∥∇̂F fξ(x

t)∥2 ≤
εF ∥∇F fξ(x

t)∥2 + εF c∥∇F cfξ(x
t)∥2 + εabsµ

2. This allows to develop the last term of (24) into the
following:

Eξ.u∥∇̂F fξ(x
t)−∇F fξ(x

∗)∥2 ≤ 2Eξ,u∥∇̂F fξ(x
t)∥2 + 2Eξ∥∇F fξ(x

∗)∥2

≤ 2εFEξ∥∇F fξ(x
t)∥2 + 2εF cEξ∥∇F cfξ(x

t)∥2

+ 2εabsµ
2 + 2Eξ∥∇F fξ(x

∗)∥2

≤ 2εF
[
2Eξ∥∇F fξ(x

t)−∇F fξ(x
∗)∥2 + 2Eξ∥∇F fξ(x

∗)∥2
]

+ 2εF c

[
2Eξ∥∇F cfξ(x

t)−∇F cfξ(x
∗)∥2 + 2Eξ∥∇F cfξ(x

∗)∥2
]

+ 2εabsµ
2 + 2Eξ∥∇F fξ(x

∗)∥2

Just like the proof in [45], we will express our result in terms of the infinity norm of ∇f(x∗). For
that, we will plug above the two following inequalites: Same as their proof of Lemma 19, we have
∥∇F f(x

∗)∥ ≤ ∥∇sf(x
∗)∥ (that is because we will have equality if the sets in the definition of F ,

namely F (t−1), F (t) and supp(x∗), are disjoints (because their cardinality is respectively k, k and
k∗), but they may intersect). And we also have ∥∇sf(x

∗)∥22 ≤ s∥∇f(x∗)∥2∞ (by definition of the
ℓ2 norm and of the ℓ∞ norm). Similarly, we also have: ∥∇F cf(x∗)∥22 ≤ (d− k)∥∇f(x∗)∥2∞, since
|F c| ≤ d− k.

23

Therefore, we obtain:

Eξ,u∥∇̂F fξ(x
t)−∇F fξ(x

∗)∥2

≤ 4εFEξ∥∇F fξ(x
t)−∇fξ(x

∗)∥2 + 4εF cEξ∥∇F cfξ(x
t)−∇fξ(x

∗)∥2

+ ((4εF s+ 2) + εF c(d− k))Eξ∥∇fξ(x
∗)∥2∞ + 2εabsµ

2

(a)

≤ 4εFEξ∥∇fξ(x
t)−∇fξ(x

∗)∥2 + ((4εF s+ 2) + εF c(d− k))Eξ∥∇fξ(x
∗)∥2∞ + 2εabsµ

2

Where (a) follows by observing in Proposition 1 (b) that εF c ≤ εF , and using the definition of the
Euclidean norm. Let us plug the above into (24), and use the fact that, from Proposition 1 (a), since
each fξ is (Ls′ , s

′ := max(s2, s))-RSS, it is also (Ls′ , s2)-RSS, so for the εµ from Proposition 1
(a), we have, for almost any given ξ: ∥Eu∇̂F fξ(x

t) −∇F fξ(x
t))∥2 ≤ εµµ

2, and let us also use
the fact that since each fξ is (Ls′ ,max(s2, s))-RSS , it is also (Ls′ , |F |)-RSS (since |F | ≤ s) which
gives that for almost any ξ: fξ: ∥∇fξ(x

t)−∇fξ(x
∗)∥2 ≤ L2

s′∥xt − x∗∥2, to finally obtain:

Eξ,u∥xt − x∗ − η∇̂F fξ(x
t) + η∇F fξ(x

∗)∥2

≤ (1 + η2L2
s′ + 4εF η

2L2
s′)∥xt − x∗∥2 − 2η⟨xt − x∗,Eξ[∇fξ(x

t)−∇fξ(x
∗)]⟩

+
εµ
L2
s′
µ+ 2η2εabsµ

2 + η2((4εF s+ 2) + εF c(d− k))Eξ∥∇f(x∗)∥2∞

= (1 + η2L2
s′ + 4εF η

2L2
s′)∥xt − x∗∥2 − 2η⟨xt − x∗,∇f(xt)−∇f(x∗)⟩

+
εµ
L2
s′
µ+ 2η2εabsµ

2 + η2((4εF s+ 2) + εF c(d− k))Eξ∥∇f(x∗)∥2∞

Since f is (νs, s)-RSC, it is also (νs, |F |)-RSC, since |F | ≤ 2k + k∗ ≤ s, therefore, we have:
⟨xt −x∗,∇f(xt)−∇f(x∗)⟩ ≥ νs∥xt −x∗∥2 (this can be proven by adding together the definition
of (νs, s)-RSC written respectively at x = xt,y = x∗, and at x = x∗,y = xt). Plugging this into
the above:

Eξ,u∥xt − x∗ − η∇̂F fξ(x
t) + η∇F fξ(x

∗)∥2

≤
(
1− 2ηνs + (4εF + 1)L2

s′η
2
)
∥xt − x∗∥2

+
εµ
L2
s′
µ2 + 2η2εabsµ

2 + η2((4εF s+ 2) + εF c(d− k))Eξ∥∇fξ(x
∗)∥2∞

The value of η that minimizes the left term in η is equal to νs

(4εF+1)L2
s′

(because the optimum of the

quadratic function ax2 + bx+ c is attained in − b
2a and its value is − b2

4a + c). Let us choose it, that is,
we fix η = νs

(4εF+1)L2
s′

. Let us now define the following ρ:

ρ2 = 1− 4ν2s
4(4εF + 1)L2

s′
= 1− ν2s

(4εF + 1)L2
s′

We therefore have:

Eξ,u∥xt − x∗ − η∇̂F fξ(x
t) + η∇F fξ(x

∗)∥2

≤ ρ2∥xt − x∗∥2 + εµ
L2
s′
µ2 + 2η2εabsµ

2 + η2((4εF s+ 2) + εF c(d− k))Eξ∥∇fξ(x
∗)∥2∞

We can now use the fact that for all (a, b) ∈ (R+)
2 :

√
a+ b ≤

√
a +

√
b, as well as Jensen’s

inequality, to obtain:

Eξ,u∥xt − x∗ − η∇̂F fξ(x
t) + η∇F fξ(x

∗)∥

≤ ρ∥xt − x∗∥+
√
εµ

Ls′
µ2 + η

√
2εabsµ2 + η

√
((4εF s+ 2) + εF c(d− k)))Eξ∥∇fξ(x∗)∥2∞

We can now formulate a first decrease-rate type of result, before the hard thresholding operation, as
follows, using for η the value previously defined, and with:

yt := xt − η∇̂F fξ
(
xt
)

(25)

24

Eξ,u∥yt − x∗∥ = Eξ,u

∥∥∥xt − η∇̂F fξ
(
xt
)
− x∗

∥∥∥
≤ Eξ,u

∥∥∥xt − x∗ − η∇̂F fξ
(
xt
)
+ η∇F fξ(x

∗)
∥∥∥+ ηEξ ∥∇F fξ(x

∗)∥

= Eξ,u

∥∥∥xt − x∗ − η∇̂F fξ
(
xt
)
+ η∇F fξ(x

∗)
∥∥∥+ ηEξ

√
∥∇F fξ(x∗)∥2

≤ Eξ,u

∥∥∥xt − x∗ − η∇̂F fξ
(
xt
)
+ η∇F fξ(x

∗)
∥∥∥+ η

√
Eξ ∥∇F fξ(x∗)∥2

≤ ρ
∥∥xt − x∗∥∥+ η(

√
((4εF s+ 2) + εF c(d− k))Eξ ∥∇f(x∗)∥2∞

+
√
s

√
Eξ ∥∇fξ(x∗)∥2∞) +

√
εµ

Ls′
µ2 + η

√
2εabsµ2

= ρ
∥∥xt − x∗∥∥+ η(

√
(4εF s+ 2) + εF c(d− k) +

√
s)

√
Eξ ∥∇fξ(x∗)∥2∞

+

√
εµ

Ls′
µ+ η

√
2εabsµ2

(a)

≤ ρ
∥∥xt − x∗∥∥+ η(

√
(4εF s+ 2) + εF c(d− k) +

√
s)σ

+

√
εµ

Ls′
µ+ η

√
2εabsµ2

≤ ρ
∥∥xt − x∗∥∥+ η(

√
(4εF s+ 2) + εF c(d− k) +

√
s)σ

+

√
εµ

Ls′
µ+ η

√
2εabsµ2 (26)

Where (a) follows from the σ-FGN assumption. We now consider xt+1, that is, the best-k-sparse
approximation of zt := xt − η∇̂fξ (x

t) from the hard thresholding operation in SZOHT. We can
notice that xt

F = xt (because supp(xt) = F (t) ⊂ F), which gives yt = zt
F . Since F (t+1) ⊂ F , the

coordinates of the top k magnitude components of zt are in F , so they are also those of the top k
magnitude components of zt

F = yt. Therefore, xt+1 is also the best k-sparse approximation of yt.
Therefore, using Corollary B.1, we obtain:

∥xt+1 − x∗∥ ≤ γ∥yt − x∗∥

with:

γ :=

√
1 +

(
k∗/k +

√
(4 + k∗/k) k∗/k

)
/2 (27)

Where k∗ = ∥x∗∥0. Plugging this into (26) gives:

Eξ,u∥xt+1 − x∗∥ ≤ γρ
∥∥xt − x∗∥∥+ γη(

√
(4εF s+ 2) + εF c(d− k)) +

√
s)σ

+ γ

√
εµ

Ls′
µ+ η

√
2εabsµ

This will allow us to obtain the following final result:

E∥xt+1 − x∗∥ ≤ γρ
∥∥xt − x∗∥∥+ γ η

(√
(4εF s+ 2) + εF c(d− k) +

√
s
)

︸ ︷︷ ︸
:=a

σ

+ γ

(√
εµ

Ls′
+ η

√
2εabs

)
︸ ︷︷ ︸

:=b

µ (28)

with η = νs

(4εF+1)L2
s′

and ρ2 = 1− 2ν2
s

(4εF+1)L2
s′

. We need to have ργ < 1 in order to have a contraction

at each step. Let us suppose that k ≥ ρ2k∗/(1− ρ2)2: we will show that this value for k allows to
verify that condition on ργ. That implies k∗

k ≤ (1−ρ2)2

ρ2 . We then have, from the definition of γ in

25

(27):

γ2 ≤ 1 +

(
(1− ρ2)2

ρ2
+

√(
4 +

(1− ρ2)2

ρ2

)
(1− ρ2)2

ρ2

)
1

2

= 1 +

(
(1− ρ2)2

ρ2
+

√(
4ρ2 + 1 + ρ4 − 2ρ2

ρ2

)
(1− ρ2)2

ρ2

)
1

2

= 1 +

(
(1− ρ2)2

ρ2
+

√
(1 + ρ2)2(1− ρ2)2

ρ4

)
1

2

= 1 +

(
(1− ρ2)2

ρ2
+

(1 + ρ2)(1− ρ2)

ρ2

)
1

2
= 1 +

(
(1− ρ2)(1− ρ2 + 1 + ρ2)

ρ2

)
1

2

= 1 +
(1− ρ2)

ρ2
=

1

ρ2
(29)

Therefore, we indeed have ργ ≤ 1 when choosing k ≥ ρ2k∗/(1− ρ2)2.

Unrolling inequality (28) through time, we then have, at iteration t + 1, and denoting by ξt+1 the
noise drawn at time step t+ 1 and ut+1 the random directions u1, ...,uq chosen at time step t+ 1,
from the law of total expectations:

E∥xt+1 − x∗∥ = Eξt,ut,..,ξ1,u1Eξt+1,ut+1|ξt,ut,..,ξ1,u1∥xt+1 − x∗∥
≤ Eξt,ut,..,ξ1,u1 [γρ∥xt − x∗∥+ γaσ + γbµ]

= γρEξt,ut,..,ξ1,u1 [∥xt − x∗∥] + γaσ + γbµ

≤ (γρ)2Eξt−1,ut−1,..,ξ1,u1 [∥xt−1 − x∗∥] + (γρ)2aσ

+ γaσ + (γρ)2bµ+ γbµ

≤ (γρ)t+1∥x(0) − x∗∥+

(
t∑

i=0

(γρ)i

)
γaσ +

(
t∑

i=0

(γρ)i

)
γbµ

= (γρ)t+1∥x(0) − x∗∥+ 1− (γρ)t

1− γρ
γaσ +

1− (γρ)t

1− γρ
γbµ

≤ (γρ)t+1∥x(0) − x∗∥+ 1

1− γρ
γaσ +

1

1− γρ
γbµ

Where the last inequality follows from the fact that ργ < 1.

D.2 Proof of Remark 4

Proof. We show below that, due to the complex impact of q and k on the convergence analysis in our
ZO + HT (hard-thresholding) setting (compared to ZO only), q cannot be taken as small as we want
here (in particular we can never take q = 1, which is different from classical ZO algorithms such as
[23, Corollary 3]), if we want Theorem 1 to apply with ργ < 1. In other words, there is a necessary
(but not sufficient) minimal (i.e. > 1) value for q.

A necessary condition for Theorem 1 to describe convergence of SZOHT is that ργ < 1. From the
expressions of ρ and γ We have ρ = ρ(q, k), and γ = γ(k). We recall those expressions below:

γ =

√
1 +

(
k∗/k +

√
(4 + k∗/k) k∗/k

)
/2

ρ2 = 1− ν2
s

(4εF+1)L2
s′

= 1− 1
(4εF+1)κ2 with κ = Ls′

νs
.

with: εF = 2d
q(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)
+ 2, with s = 2k + k∗ (we consider the smallest s possible

from Theorem 1)

26

So therefore:

ρ2 = 1− 1[
8d

q(s2+2) (
(s−1)(s2−1)

d−1 + 3) + 9
]
κ2

= 1− 1[
8d

q(s2+2) (
(2k+k∗−1)(s2−1)

d−1 + 3) + 9
]
κ2

Let us define a := 16dκ2(s2−1)
q(s2+2)(d−1) and b := κ2

[
8d

q(s2+2) [
(s2−1)(k∗−1)

d−1 + 3] + 9
]

We then have:

ρ2 = 1− 1

ak + b

To ensure convergence, we need to have ργ < 1, therefore (following the same derivation as in (29))
a necessary condition that we need to verify is k ≥ ρ2k∗/(1− ρ2)2.

Which means we need:

k ≥

(
1− 1

ak+b

)
k∗(

1
ak+b

)2 (30)

k ≥
[
(ak + b)2 − (ak + b)

]
k∗ (31)

k ≥ k∗
[
a2k2 + 2abk + b2 − ak − b

]
(32)

0 ≥ k∗a2k2 +

(
2ab− 1

k∗
− a

)
k∗k +

(
b2 − b

)
k∗ (33)

If we want that there exist a k such that this is true, we need (since k∗ ≥ 0):
∆ ≥ 0

with:

∆ := k∗2(2ab− 1

k∗
− a)2 − 4k∗

2

a2
(
b2 − b

)
= k∗

2

(
4a2b2 +

(
1

k∗
+ a

)2

− 4ab

(
1

k∗
+ a

))
− 4k∗2a2

(
b2 − b

)
= k∗2

[
4a2b2 +

1

k∗2 + a2 +
2a

k∗
− 4ab

k∗
− 4a2b− 4a2b2 + 4a2b

]
= 1 + a2k∗2 + 2ak∗ − 4abk∗

∆ ≥ 0 ⇒ 1 + a2k∗2 + 2ak∗ ≥ 4abk∗ (34)
Let us express a and b in terms of q, as:

a =
A

q
with A =

16dκ2 (s2 − 1)

(s2 + 2) (d− 1)
(35)

b =
B

q
+ C with B = κ2

[
8d

(s2 + 2)

(
(s2 − 1) (k∗ − 1)

d− 1
+ 3

)]
(36)

and with C = 9κ2 (37)
So plugging in (34), what we need is:

1 +
A2

q2
k∗

2

+ 2
A

q
k∗ ≥ 4

A

q

(
B

q
+ C

)
k∗

q2 +A2k∗2 + 2Ak∗q ≥ 4ABk∗ + 4CAqk∗

q2 + q (2Ak∗ − 4CAk∗) +A2k∗2 − 4ABk∗ ≥ 0

27

To ensure that, we need to compute ∆′, defined as:

∆′ := (2Ak∗ − 4CAk∗)
2 − 4

(
A2k∗2 − 4ABk∗

)
= 4A2k∗2 + 16C2A2k∗2 − 16CA2k∗2 − 4A2k∗2 + 16ABk∗

= 16CA2k∗2(C − 1) + 16ABk∗ = 16Ak∗ [k∗C(C − 1)A+B]

We now have:
C = 9κ2 ⇒ C ≥ 1 ⇒ ∆′ ≥ 0

Therefore, there is a minimal value for q, and it is:

q ≥ qmin

With:

qmin =
− (2Ak∗ − 4CAk∗) +

√
16CA2k∗2(C − 1) + 16ABk∗

2
(38)

=
2Ak∗ (2C − 1) +

√
16A2k∗2

[
C(C − 1) + B

Ak∗

]
2

(39)

Case s2 > 1: Assuming s2 > 1 gives A > 0, and since A = 16dκ2(s2−1)
(s2+2)(d−1) and B =

8κ2d
s2+2 (

(s2−1)(k∗−1)
d−1 + 3)

This gives: B
Ak∗ = 1

2 − 1
2k∗ + 3

2
d−1

k∗(s2−1)

Therefore: qmin = Ak∗
[
2C − 1 + 2

√
C(C − 1) + 1

2 − 1
2k∗ + 3

2
d−1

k∗(s2−1)

]
with C = 9κ2, which reads:

qmin =
16d(s2 − 1)k∗κ2

(s2 + 2) (d− 1)

[
18κ2 − 1 + 2

√
9κ2(9κ2 − 1) +

1

2
− 1

2k∗
+

3

2

d− 1

k∗(s2 − 1)

]
Case s2 = 1: In the case s2 = 1, we have A = 0, so therefore, from (38), qmin = 0, so the
necessary condition on q as above so that there exist k such that: k ≥ ρ2k∗/(1− ρ2)2 does not apply
here. We may therefore think that it may be possible to take q = 1 in that case. However, there
is another condition on k that should also be enforced, which is that k ≤ d (since we cannot keep
more components than d). And in that s2 = 1 case, we have a = 0, and b = κ2[8d

q + 9] (from
(35) and (36)). Now, enforcing the condition k ≥ k∗[(ak + b)2 − (ak + b)] = k∗b(b− 1) leads to
the following chain of implications (i.e. each downstream assertion is a necessary condition for the
upstream assertion):

k

k∗
≥ b(b− 1) and k ≤ d =⇒ d

k∗
≥ (b− 1)2 =⇒

√
d

k∗
+ 1 ≥ b =⇒

√
d

k∗
+ 1 ≥ B

q
+ C

=⇒
√

d

k∗
+ 1− C ≥ B

q

=⇒ q ≥ B√
d
k∗ + 1− C

and C −
√

d

k∗
+ 1 > 0

=⇒ q ≥ B√
d
k∗ + 1

=⇒ q ≥ 8κ2d√
d
k∗ + 1

(40)

Where the last inequality follows from the expression of B in (36) when s2 = 1.

So the right hand side in (40) is also a minimal necessary value for q in this case, though for a
different reason than in the case s2 > 1.

28

D.3 Proof of Corollary 1

Proof. We first restrict the result of Theorem 1 to a particular q. By inspection of Proposition 1 (b),
we choose q such that the part of εF that depends on q becomes 1: we believe this will allow to better
understand the dependence between variables in our convergence rate result, although other choices
of q are possible. Therefore, we choose:

q′ :=
2d

s2 + 2

(
(s− 1)(s2 − 1)

d− 1
+ 3

)
(41)

so that we obtain: ε′F := 1 + 2 = 3 (from Proposition 1 (b)), which also implies :

η′ :=
νs

(4ε′F + 1)L2
s′

=
νs

13L2
s′

and:

ρ′
2
:= 1− 2ν2s

(4ε′F + 1)L2
s′

= 1− 2ν2s
13L2

s′
(42)

Now, regarding the value of q, we also note that any value of random directions q′′ ≥ q′ can be taken
too, since the bound in Proposition 1 (b) would then still be verified for ε′F (that is, we would still
have E∥∇̂F fξ(x)∥2 ≤ ε′F ∥∇F fξ(x)∥2 + ε′F c∥∇F cfξ(x)∥2 + εabsµ

2) (with ε′F c the value of εF c

for q = q′).
Therefore, we will choose a value q′′ so that our result is simpler. First, notice that
s ≤ d =⇒ 1 − 1

s ≤ 1 − 1
d =⇒ s−1

s ≤ d−1
d =⇒ s−1

d−1 ≤ s
d . Therefore, if we take

q ≥ 2s+ 6 d
s2

, we will also have q ≥ 2d
s2+2

(
(s−1)(s2−1)

d−1 + 3
)
= q′.

Let us now impose a lower bound on k that is slightly (twice) bigger than the lower bound from
Theorem 1. As will become clear below, this allows us to have a ργ enough bounded away from 1,
which guarantees a reasonable constant in the O notation for the query complexity (see the end of the
proof). Let us therefore take:

k ≥ 2k∗
ρ2

(1− ρ2)2
(43)

and plug the value of ρ above into the expression:

k ≥ 2k∗
ρ′

2

(1− ρ′2)2
⇐⇒ k ≥ 2k∗

1− 2ν2
s

13L2
s′

(
2ν2

s

13L2
s′
)2

⇐⇒ k ≥ 2k∗

((
13L2

s′

2ν2s

)2

− 13L2
s′

2ν2s

)

⇐⇒ k ≥ 2k∗(
13

2
κ2)(

13

2
κ2 − 1)

With κ denoting Ls′
νs

. Therefore, if we take:

k ≥ (86κ4 − 12κ2)k∗

we will indeed verify the formula above k ≥ 2k∗(132 κ2)(132 κ2 − 1).
We now turn to describing the query complexity of the algorithm: To ensure that (γρ)t∥x(0)−x∗∥ ≤
ε, we need:

t ≥ 1

log 1
γρ

log(
1

ε
) log(∥x(0) − x∗∥) (44)

with γρ belonging to the interval (0, 1). Let us compute more precisely an upper bound to ργ in this
case, to show that it is reasonably enough bounded away from 1: Taking k as described in (43), and

29

plugging that value into the expression of γ from Theorem 1, we obtain:

γ2 = 1 +

(
(1− ρ2)2

2ρ2
+

√(
4 +

(1− ρ2)2

2ρ2

)
(1− ρ2)2

2ρ2

)
/2

≤ 1 +
1√
2

(
(1− ρ2)2

ρ2
+

√(
4 +

(1− ρ2)2

ρ2

)
(1− ρ2)2

ρ2

)
/2

(a)
= 1 +

1√
2

1− ρ2

ρ2

Where the simplification in (a) above follows similarly to (29). Therefore, in that case, we have:

ρ2γ2 ≤ ρ2 +
1√
2
(1− ρ2) =

1√
2
+ ρ2(1− 1√

2
)

=
1√
2
+ (1− 2

13κ2
)(1− 1√

2
) = 1−

2(1− 1√
2
)

13κ2

(a)

≤ 1− 1

26κ2

Where (a) follows because (1− 1√
2
) ≈ 0.29 ≥ 1/4 Therefore:

1

(ργ)2
≥ 1

1− 1
26κ2

(45)

Given that log(1
1−x) ≥ x for all x ∈ [0, 1), we have:

log

(
1

(ργ)2

)
≥ 1

26κ2

Therefore:
1

log(1
ργ)

=
2

log(1
(ργ)2)

≤ 52κ2

Therefore, plugging this into (44), we obtain that with t ≥ 52κ2 log(1ε) log(∥x
(0) − x∗∥) =

O(κ2 log(1ε)) iterations, we can get (γρ)t∥x− x∗∥ ≤ ε.

To obtain the query complexity (QC), we therefore just need to multiply the number of iterations by
the number of queries per iteration q = 2s+6 d

s2
: to ensure (γρ)t∥x−x∗∥ ≤ ε, we need to query the

zeroth-order oracle at least the following number of times: (2s+6 d
s2
)52κ2 log(1ε) log(∥x

(0)−x∗∥) =
O((k + d

s2
)κ log(1ε)), since s = 2k + k∗.

D.4 Proof of Corollary 2

Almost all fξ are L-smooth, which is equivalent to saying that they are (L, d)-RSS. So we can
directly plug s2 = d in equation (41), which gives a necessary value for q of:

q =
2d

d+ 2
(s+ 2) (46)

Since any value of q larger than the one in (46) is valid, we choose q ≥ 2(s+ 2)(≥ 2d
d+2 (s+ 2)) for

simplicity. The query complexity is obtained similarly as in the proof of Corollary 1 above, with that
new value for q (the number of iterations needed is unchanged from the proof of Corollary 1), only
the query complexity q per iteration changes), which means we need to query the zeroth-order oracle
the following number of times: 2(s+ 2)52κ2 log(1ε) log(∥x

(0) − x∗∥) = O(kκ log(1ε))

E Projection of the gradient estimator onto a sparse support

Below we plot the true gradient ∇f(x) and its estimator ∇̂f(x) (for q = 1), as well as their respective
projections ∇F f(x) and ∇̂F f(x), with F = {0, 1} (i.e. F is the hyperplane z = 0), for ndir random
directions. In Figure 5(b), due to the large number of random directions, we plot them as points not
vectors. For simplicity, the figure is plotted for µ → 0, and s2 = d. We can see that even though
gradient estimates ∇̂f(x) are poor estimates of ∇f(x), ∇̂F f(x) is a better estimate of ∇F f(x).

30

(a) ndir = 1 (b) ndir = 106

Figure 5: ∇f(x) and ∇̂f(x) and their projections ∇F f(x) and ∇̂F f(x) onto F

Remark 5. An interesting fact that can be observed in Figure 5(b) above is that when µ → 0 and
s2 = d, the ZO gradient estimates belong to a sphere. This comes from the fact that, in that case,
the ZO estimate using the random direction u is actually a directional derivative (scaled by d):
∇̂f(x) = d⟨∇f(x),u⟩u, for which we have :

∥∇̂f(x)− d

2
∇f(x)∥2 = d2(⟨∇f(x),u⟩)2⟨u,u⟩+ d2

4
∥∇f(x)∥2

− d2⟨∇f(x),u⟩⟨u,∇f(x)⟩

=
d2

4
∥∇f(x)∥2

(since ∥u∥ = 1). That is, gradient estimates belong to a sphere of center d
2∇f(x) and radius

d
2∥∇f(x)∥. However, the distribution of ∇̂f(x) is not uniform on that sphere: it is more concentrated
around 0 as we can observe in Figure 5(b).

F Value of ργ depending on q and k∗

In this section, we further illustrate the importance on the value of q as discussed in Remark 4, by
showing in Figure 6 that if q is too small, then there does not exist any k that verifies the condition
k ≥ k∗ρ2

(1−ρ2)2 , no matter how small is k∗ (i.e., even if k∗ = 1). However, if q is large enough, then
there exist some k∗ such that this condition is true. To generate the curves below, we simply use the
formulas for γ = γ(k, k∗) and ρ = ρ(s, q) with s = 2k + k∗ from Theorem 1, and with d = 30000
and s2 = d.

(a) q = 200 (b) q = 5000 (c) q = 30000

Figure 6: ργ (y axis) as a function of k (x axis) for several values of q and k∗

31

G Dimension independence/weak-dependence

In this section, we show the dependence of SZOHT on the dimension. To that end, we consider
minimizing the following synthetic problem:

min
x

f(x) s.t. ∥x∥0 ≤ k

with k = 500, and f chosen as: f(x) = 1
2∥x− y∥2, with yi = 0 if i < d− k∗ and yi =

1
(k∗−(d−i))

if i > d− k∗ with k∗ = 5. In other words, the k∗ last components of y are regularly spaced from
1/k∗ to 1: in a way, this simulates the recovery of a k∗-sparse vector y by observing only the squared
deviation of some queries x. In that case, we can easily check that f verifies the following properties:

• f is L-smooth with L = 1, as well as (Ls′ , s
′)-RSS for any s′ such that 1 ≤ s′ ≤ d, with

Ls′ = 1, and (νs, s)-RSC with s = 2k + k∗ and νs = 1 (so κ = L
νs

= Ls′
νs

= 1)

• y = x∗ = argminx f(x) s.t. ∥x∥0 ≤ k∗

• f(y) = f(x∗) = 0

• ∇f(y) = 0 so f is σ-FGN with σ = 0

We also note that the above setting of k and k∗ verifies k ≥ (86κ4 − 12κ2)k∗ (since κ = 1). Finally,
we initialize x0 such that x0

i = 1/d if d − k∗ ≥ i and 0 otherwise. We choose this initialization
and not x0 = 0, just to ensure that ∇f(x0)i ̸= 0 for any i: this way the optimization is really done
over all d variables, not just the k∗ last ones. In addition, this initialization ensures that ∥x0 − x∗∥
is constant no matter the d, which makes the convergence curves comparable. We consider several
settings of s2 to showcase the dependence on the dimension below.

Dimension Independence

• s2 = d: As from Corollary 2, we take q = 2(s + 2) with s = 2k + k∗ (i.e. q = 2014).
We choose µ = 1e − 8, to have the smallest possible system error due to zeroth-order
approximations. As we can see in Figure 7, all curves are superimposed, which shows that
the query complexity is indeed dimension independent, as described by Corollary 2

• s2 = O(dk) (We choose s2 = ⌊ d
k ⌋): As from Corollary 1, we take q = 2s + 6 d

s2
with

s = 2k + k∗. In that case, from Corollary 1, the query complexity will still be O(k) (i.e.
dimension independent), as a sum of two O(k) terms, although larger than in the case
s2 = d above (since the constant from the O notation in Corollary 1 will be larger here).
We can observe that this is indeed the case in Figure 8.

Dimension weak-dependence We now turn to the case where s2 is fixed. We choose q as in
Corollary 1 (q = 2s+6 d

s2
with s = 2k+ k∗): the query now depends on d in that case, as predicted

by Corollary 1, which can indeed be observed in Figure 9.

H Additional results on adversarial attacks

In this section, we provide additional results for the adversarial attacks problem in 5.3, in Figure
11. The parameters we used for SZOHT to generate that table are the same as in 5.3, except for
MNIST, for which we choose k = 20, q = 10, and s2 = 10, and for ImageNet, for which we choose
k = 100000, s2 = 20000 and q = 100. As we can see, SZOHT allows to obtain sparse attacks,
contrary to the other algorithms, and with a smaller ℓ2 distance and a larger success rate, using less
iterations: this shows that SZOHT allows to enforce sparsity, and efficiently exploits that sparsity in
order to have a lower query complexity than vanilla sparsity constrained ZO algorithms.

32

(a) f(x)

(b) ∥x− x∗∥

Figure 7: s2 = d

(a) f(x)

(b) ∥x− x∗∥

Figure 8: s2 = ⌊ d
k
⌋

(a) f(x)

(b) ∥x− x∗∥

Figure 9: s2 = 50

Figure 10: Dependence on the dimensionality of the query complexity

Method ASR ℓ0 dist. ℓ2 dist. Iter
RSPGF 78% 100% 10.9 67

ZORO 75% 100% 15.1 550

ZSCG 79% 100% 10.3 252

SZOHT 79% 2.5% 8.5 36
(a) MNIST

Method ASR ℓ0 dist. ℓ2 dist. Iter
RSPGF 83% 100% 4.1 326

ZORO 86% 100% 62.9 592

ZSCG 86% 100% 8.4 126

SZOHT 91% 1.9% 2.6 26
(b) CIFAR

Method ASR ℓ0 dist. ℓ2 dist. Iter.
RSPGF 91% 100% 19.9 137

ZORO 90% 100% 111.9 674

ZSCG 76% 100% 111.3 277

SZOHT 95% 37.3% 10.5 61
(c) ImageNet

Figure 11: Summary of results on adversarial attacks

33

	Notations and Definitions
	Auxilliary Lemmas
	Proof of Proposition 1
	One direction estimator
	Expected deviation from the mean
	Expected norm

	Batched-version of the one-direction estimator
	Proof of Proposition 1

	Proofs of section 4
	Proof of Theorem 1
	Proof of Remark 4
	Proof of Corollary 1
	Proof of Corollary 2

	Projection of the gradient estimator onto a sparse support
	Value of depending on q and k*
	Dimension independence/weak-dependence
	Additional results on adversarial attacks

