
A Surrogate Models and Acquisition Function546

In this appendix, we provide additional details about the surrogate models used in our active learning547

experiments, as well as about the acquisition function.548

A.1 Gaussian Processes549

In our multi-fidelity active learning experiments, we model the posterior of f given x, m and550

the current data set Dj , assuming that observations are perturbed by noise from a normal distri-551

bution N (0, σ2). The assumption of normally distributed noise with constant variance is widely552

used in the BO literature. Consider a set of n points z(1:n) = (x1,m1), (x2,m2), . . . , (xn,mn)553

with observed values y(1:n) = y1, y2, . . . , yn. We can then use Gaussian Processes such that554

f |z(1:n), y(1:n) ∼ GP (µn,Kn) with mean µn and covariance function or kernel Kn evaluated at555

point z = (x,m) as556

µn(x) = µ(x) +K(x, x1:n)(K(x1:n, x1:n) + σ2I)−1(y1:n − µ(x1:n))
557

Kn(x1, x2) = K((x1, x2)−K(x1, x1:n)(K(x1:n, x1 : n) + σ2I)−1K(x1:n, x2).

We adapt the multi-fidelity kernel as proposed in [68], such that the kernel function of the GP is558

K(z1, z2) = K1(x1, x2)×K2(m1,m2),

where K1(·, ·) is a square-exponential kernel and559

K2(m1,m2) = c+ (1−m1)
1+δ(1−m2)

(1+δ),

where c, δ > 0 are hyper-parameters.560

A.2 Deep Kernel Learning561

While for the synthetic (simpler) tasks we use exact GPs, for the benchmark tasks we implement562

deep kernel learning [DKL; 67]. In DKL, the inputs are transformed by563

k(xi, xj |θ) → k(g(xi, w), g(xj , w)|θ, w),

where the non-linear mapping g(x,w) is a low-dimensional continuous embedding, learnt via a deep564

neural network—a transformer in our tasks. To scale the GP to large datasets, we implement the565

stochastic variational GP based on the greedy inducing point method [13]. We adopt the deep kernel566

learning experimental setup from [61].567

A.3 Acquisition Function568

Max Value Entropy Search (MES) [65] is an information-theoretic acquisition function. The stan-569

dard, single-fidelity MES seeks to query the objective function at locations that reduce our current570

uncertainty in the maximum value of f∗. It aims to maximise the mutual information between the571

value of the objective function f when choosing point x and the maximum of the objective function,572

f⋆. This contrasts with previously proposed entropy search (ES) criterion, which instead considers573

the arg max of the objective function. The MES criterion is defined as follows:574

α = I(f⋆; y|Dj) = H(y|Dj)− Ef⋆ [H(y|Dj , f
⋆)|Dj ],

where y is the outcome of experiment x and Dj is the data set at the jth active learning iteration. and575

H(Y ) = EY [− log(p(Y ))] is the differential entropy of random variable Y .576

The information gain is defined as the reduction in entropy of y provided by knowing the maximal577

value f⋆578

IG(y,m|Dn) = H(y|Dn)−H(y|f⋆ < m,Dn)

It follows that the MES acqusition function can be expressred in terms of IG:579

α = Em∼f⋆ [IGn(y,m|Dn)],
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where y ∼ N (µA, σA), f(x) ∼ N (µB, σB) and the difference between y and f(x) is just indepen-580

dent Gaussian noise.581

Replacing the maximisation of an intractable quantity with the maximisation of a lower bound is a582

well-established strategy. Instead of attempting to evaluate the intractable quantity, IG, we evaluate583

its lower bound IGApprox.584

Thus, the acquisition function becomes585

α =
1

M
∑

m∈M
IGApprox(y,m|Dn)

IGApprox =
1

2
log|R| − 1

2M
∑

m∈M
log(1− ρ2

ϕ(γ(m))

Φ(γ(m))
[γ(m) +

ϕ(γ(m))

Φ(γ(m))
]),

where ϕ and Φ are the standard normal cumulative distribution and probability density functions (as586

arising from the expression for the differential entropy of a truncated Gaussian), γ(m) = m−µn(x)
σn(x)

587

and R is the correlation matrix with elements Ri,j =
Σy

i,j

Σy
i,iΣ

y
j,j

.588

This construction is called the General Information-Based Bayesian OptimisatioN (GIBBON) acqui-589

sition function [43].590

Multi-Fidelity Formulation Let the maximum of the highest fidelity function fM (when M591

different fidelities are available to querying) be f⋆
M . We obtain a pair (x,m) which maximally gains592

information of the optimal value f⋆ of the highest fidelity per unit cost.593

α(x,m) =
1

λm
I(f⋆

M ; fm|Dj). (3)

where λm is the cost of the oracle at fidelity m.594

B Experimental Details595

This appendix presents the details about the experiments presented in the main Section 4. First,596

we provide general details about all tasks and then present details specific to each task in separate597

sections.598

Policy model architecture For all tasks, the architecture of the forward policy model to train599

GFlowNet is multi-layer perceptron with 2 hidden layers and 2048 units per layer. The backward600

policy model was set to share the parameters with the forward model, except for the parameters of601

the output layer, which were trained. We use LeakyReLU as our activation function as in [6]. All602

models are trained with the Adam optimiser [35].603

GFlowNet reward As discussed in Section 3.2, the reward for GFlowNet in our multi-fidelity604

GFlowNet algorithm is the acquisition function max entropy search (MES) (and its multi-fidelity605

variant) for all experiments. In order to increase the relative reward of higher values of the acquisition606

function, we transform the MES value α with the the reward function R(α) = α×ρj−1

β , where j is607

the active learning round.608

Budget and initial data set For each task, we assign a total budget B = γ × C, where C is the609

cost if the highest fidelity oracle. The cost of the lower fidelity oracles are as specified in Section 4.610

The initial data sets were constructed according to an initial budget. Depending on this initial budget,611

we set the number of training data points for the single-fidelity baseline, as well as the number of612

points from each oracle in the multi-fidelity experiments. Task specific information is summarized in613

Table 2. The initial data set is split into train-validation in the ratio of 9:1 for all tasks.614

All the above details for all tasks are summarized in Table 1 and Table 2. Our models are implemented615

in pytorch [47], and rely on botorch [3] and GPytorch [].616
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Table 1: Implementation details of multi-fidelity experiments of all tasks
Task Surrogate β ρ γ

Branin Exact GP 1 1 300
Hartmann 6D Exact GP 1e-2 1 100

DNA DKL 1e-5 1.5 5120
Antimicrobial Peptides DKL 1e-5 1 320

Molecules DKL 1e-6 1.5 1280

Table 2: Oracle costs, initial budget and initial training data sets. Oracles are indexed by increasing
level of fidelity.

Initial training examples
Task Oracle costs SF Multi-Fidelity

m = 1 m = 2 m = M Budget m = 1 m = 2 m = M
Branin 0.01 0.1 1 42 4 20 20 2

Hartmann 6D 0.125 0.25 1 200 25 80 40 5
AMP – 0.2 20 2500 50 2000 2000 10
DNA 0.5 0.5 50 1600 80 – 3000 50

Molecules 1 3 7 1050 150 700 68 16

B.1 Branin617

The Branin function is evaluated in the domain [−5, 10]× [0, 15] using the following expression:618

f(x) = (x2 −
−1.25x2

1

π2
+

5x1

π
− 6)2 + (10− 5

4π
) cos(x1) + 10.

This corresponds to the modification introduced in [58]. As lower fidelity functions, we used the619

expressions from [50], which involve non-linear transformations of the true function as well as shifts620

and non-uniform scalings. The functions, indexed by increasing level of fidelity, are the following:621

f1(x) = f2(1.2(x+ 2))− 3x2 + 1
622

f2(x) = 10
√
f(x− 2) + 2(x1 − 0.5)− 3(3x2 − 1)− 1

On the discrete set of points obtained after mapping the continuous domain to a 100× 100 grid, the623

explained variance of the oracles are 0.1125, 0.825 and 1, in increasing level of fidelity.624

We use the botorch implementation of an exact multi-fidelity gaussian process as described in A.1625

for regression. The active learning batch size B is 30 in the Branin task.626

B.2 Hartmann 6D627

The true Hartmann function is given by628

f(x) =

4∑
i=1

αiexp(−
3∑

j=1

Aij(xj − Pij)
2),

where α = [1.0, 1.2, 3.0, 3.2] and A,P ∈ R4×6 are the following fixed matrices:629

A =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 1
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 1



P = 10−4 ×

 3689 1170 267
4699 4387 7470
1091 8732 5547
381 5743 8828


16



To simulate the lower fidelities, we modify α to α(m) where α(m) = α + (M − m)δ where630

δ = [0.01,−0.01,−0.1, 0.1] and M = 3. The domain is X = [0, 1]6. This implementation was631

adopted from [32]. For the surrogate, we use the same exact multi-fidelity GP implementation as of632

Branin. The active learning batch size is 10.633

B.3 DNA634

We conduct experiments using a two-oracle setup with costs 20 and 0.2 for the high and low fidelity635

oracles, respectively. As objective function (highest fidelity oracle) we used the free energy of636

the secondary structure of DNA sequences obtained via the software NUPACK [72], setting the637

temperature at 310 K. The free energy can be seen as a proxy of the stability of the sequences. To638

construct a lower fidelity oracle, we train a transformer with 8 layers, 1024 hidden units per layer and639

16 heads. We sampled 1 million random sequences for the training set. The explained variance of the640

transformer model is 0.8. For the probabilistic surrogate, we implement deep kernel learning. The641

parameters of the surrogate as well as other details about the DNA task are provided in Table 5.642

Table 3: Deep Kernel hyperparameters for the DNA and Antimicrobial tasks
Hyperparameter Value

Architecture Num. of Layers 8
Num. of Heads 8

Latent dimension 64
GP likelihood variance init 0.25

GP lengthscale prior N (0.7, 0.01)
Num. of inducing points (SVGP head) 64

Optimisation Batch Size 128
Learning Rate 1e-3

Adam EMA params (β1, β2) (0., 1e-2)
Max Num. of Epochs 512

Early stopping patience (Num. of Epochs) 15
Early stopping holdout ratio 0.1

B.4 Antimicrobial Peptides643

We construct a three-oracle setup where the oracle corresponding to the highest fidelity is trained644

on data from DBAASP [51]. Each antimicrobial peptide belongs to a group. For the lower fidelity645

oracles. we divide the datapoints into two halves such the the set of groups present in one half is646

mutually exclusive of the other. This simulated a setup wherein the lower fidelity oracles specialised647

only in a specific subregion of the entire sample space. The configurations of the oracle models are648

present in Table 4. We assigned a cost of 50 to the highest fidelity oracle and 0.5 to both lower fidelity649

oracles. The explained variance of the oracles was 0.1435, 0.099 and 1 respectively. As for DNA, we650

implement deep kernel learning with hyperparameters in Table 5.651

B.5 Small Molecules652

We implement the oracles using RDKit 2023.03 [1] and the semiempirical quantum chemistry package653

xTB. We use GFN2-xTB [4] method for the single point calculation of ionization potential and electron654

affinity with empirical correction terms. In the cheapest oracle, we consider one conformer obtained655

by RDKit with its geometry optimised via force-field (MMFF94[25]), this geometry is used to calculate656

(vertical) IP/EA. In the second fidelity, we consider two conformers obtained by RDKit, and take657

the lowest energy conformer after optimisation by MMFF94, and further optimise it via GFN2-xTB to658

Table 4: Oracles for the antimicrobial peptides task (indexed by increasing level of fidelity)
Fidelity # Training points Model # Layers # Hidden units Epoch

1 3447 MLP 2 512 51
2 3348 MLP 2 512 51
3 6795 MLP 2 1024 101
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Table 5: Deep Kernel hyperparameters for the molecular tasks
Hyperparameter Value

Architecture Num. of Layers 8
Num. of Heads 8

Latent dimension 32
GP likelihood variance init 0.25

GP lengthscale prior N (0.7, 0.01)
Num. of inducing points (SVGP head) 64

Optimisation Batch Size 128
Learning Rate 1e-3

Adam EMA params (β1, β2) (0., 1e-2)
Max Num. of Epochs 512

Early stopping patience (Num. of Epochs) 15
Early stopping holdout ratio 0.1

obtain the ground state geometry; this remains a vertical IP/EA calculation. In the highest fidelity659

oracle, we consider four conformers obtained by RDKit, and take the lowest energy conformer660

after optimisation by MMFF94, and further optimise it via GFN2-xTB; the corresponding ion is then661

optimised by GFN2-xTB, and the adiabatic energy difference is obtained via total electronic energy.662

The fidelities are based on the fact that vertical IP/EA approximates that of adiabatic ones (to varying663

degrees, depending on the molecule). On a test dataset of 1400 molecules of length<64, the explained664

variance of the oracles is 0.1359, 0.279, 1 and 0.79, 0.86, 1 for the EA and IP tasks respectively.665

We note that this is proof-of-concept and hence we do not conduct a full search of conformers, and666

nor do we use Density Functional Theory calculations, but the highest fidelity oracle has a good667

correlation with experiments [44].668

In the environment for GFN, we consider a set of SELFIES vocabularies containing aliphatic and669

aromatic carbon, boron, nitrogen, oxygen, fluorine, sulfur, phosphrous, chlorine, and bromine, subject670

to standard valency rules. We do not consider synthesizability in this study and we note it may671

negatively impact GFN as unphysical molecules could produce false results for the semiempirical672

oracle.673

C Metrics674

In this section, we provide additional details about the metrics used for the evaluation of the proposed675

MF-GFN as well as the baselines.676

Mean Top-K Score We adapt this metric from [6]. At the end of an active learning round,677

we sample N (x,m) candidates and then select the top-K candidates (K ≪ N ) according to678

the acquisition function value. In the experiments, we score these top-K candidates with the679

corresponding oracle. In the figures, we report the mean score according to the highest-fidelity oracle.680

Mean Diverse Top-K Score This is a version of the previous metric by which we restricts the681

selection of the K candidates to examples that are diverse between each other. We use similarity682

measures (vide infra) such that we sample the top-K candidates where each candidate it at most683

similar to each other by a certain threshold. For antimicrobial peptides, the sequence identity threshold684

is 0.35; for DNA apatmers, the sequence identity threshold is 0.60; for molecules, the Tanimoto685

similarity distance threshold is 0.35.686

Diversity In order to measure the diversity of a set of candidates, we use the similarity index with687

the following details for each of the tasks:688

• DNA apatmers: The similarity measure is calculated by the mean of pairwise sequence689

identity between a set of DNA sequences. We utilize global alignment with Needleman-690

Wunsch algorithm and standard nucleotide substitution matrix, as calculated by biotite691

package [37].692
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• Antimicrobial peptides: The similarity measure is calculated by the mean of pairwise se-693

quence identity between a set of peptide sequences. We utilize global alignment with694

Needleman-Wunsch algorithm and BLOSUM62 substitution matrix, as calculated by695

biotite package [37].696

• Molecules: The similarity measure is calculated by the mean of pairwise Tanimoto distances697

between a set of molecules. Tanimoto distances are calculated from Morgan Fingerprints698

(radius of two, size of 2048 bits) as implemented in RDKit package [1].699

D Additional Results700

D.1 Impact of Oracle Costs701

As discussed in Section 3.2, a multi-fidelity acquisition function like the one we use (defined in702

Eq. (2)) is a cost cost-adjusted utility function. Therefore, the cost of each oracle has a crucial impact703

in the values of the acqusition function. In our tasks with small molecules (Section 4.4.3), we used704

oracles with costs proportional to their computational demands and we observed that multi-fidelity705

active learning largely outperfomed single-fidelity active learning. However, depending on the set of706

costs of the oracles, the advantage of multi-fidelity methods can significantly diminish.707

In order to analyse the impact of the oracle costs in the performance of MF-GFN, we run several708

experiments on the DNA task (Section 4.4.1), which consists of two oracles, with various sets of709

oracles. In particular, besides the costs used in the experiments presented in the main paper, with710

costs (0.2, 20) for the lowest- and highest-fidelity oracles, we trained with costs (1, 20) and (10, 20).711

We present the results in Fig. 4. We can indeed confirm that the advantage of MF-GFN over SF-GFN712

decreases as the cost of the lowest-fidelity oracle becomes closer to the cost of the highest-fidelity713

oracle. However, it is remarkable that even with a ratio of costs as small as 1 : 2, MG-GFN still714

outperforms not SF-GFN but also MF-PPO in terms of cost effectiveness, without diversity being715

negatively impacted . It is important to note that practical scenarios of scientific discovery, the cost of716

lower fidelity oracles is orders of magnitude small than the cost of the most accurate oracles, since717

the latter correspond to wet-lab experiments or expensive computer simulations.718
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Figure 4: Analysis of the impact of the oracle costs on the performance of MG-GFN. We observe
that the advantage over SF-GFN and MF-PPO (0.2, 20) decreases as the cost of the lower fidelity
oracle becomes closer to the cost of the highest fidelity oracle. Nonetheless, even with a cost ratio of
1 : 2 MF-GFN displays remarkable performance with respect to other methods.
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D.2 Energy of Diverse Top-K719

In this section we complement the results presented in Section 4 with the mean diverse top-K scores,720

as defined in Appendix C. This metric combines that mean top-K score and the measure of diversity.721

Figure 5 shows the results on the DNA, AMP and the molecular tasks.722

The results with this metric allow us to further confirm that multi-fidelity active learning with723

GFlowNets is able to discover sets of diverse candidates with high mean scores, as is sought in724

many scientific discovery applications. In contrast, methods that do not encourage diversity such as725

RL-based algorithms (MF-PPO) obtain comparatively much lower results with this metric.726

10 2 10 1 100

Fraction of total SF-GFN budget (log)

0

2

4

6

8

M
ea

n 
To

p-
10

0 
en

er
gy

SF-GFN
Random
Rand. fid. GFN

MF-PPO
MF-GFN

(a) DNA task
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(b) Anti-microbial peptides (AMP) task
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(c) Molecules ionisation potential (IP) task
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(d) Molecules electron affinity (EA) task

Figure 5: Mean scores (energy) of diverse top-K candidates on the DNA (top left), AMP (top right)
and molecular (bottom) tasks. The mean energy is computed across the top-K examples at each
active learning round that also satisfy the criteria of diversity. Consistent with the diversity metrics
observed in Fig. 2, we here see that GFlowNet-based methods, and especially MF-GFN, obtain good
results according to this metric, while MF-PPO achieves comparatively much lower mean energy.
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