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A Surrogate Models and Acquisition Function

In this appendix, we provide additional details about the surrogate models used in our active learning
experiments, as well as about the acquisition function.

A.1 Gaussian Processes

In our multi-fidelity active learning experiments, we model the posterior of f given x, m and
the current data set D;, assuming that observations are perturbed by noise from a normal distri-
bution A/(0,0?). The assumption of normally distributed noise with constant variance is widely
used in the BO literature. Consider a set of n points z(1.,) = (21,m1), (T2, M2), ..., (Tn, My)
with observed values y(1.,) = ¥1,%2,...,Yn. We can then use Gaussian Processes such that
f \2(1:71), Yan) ~ GP(pin, Ky) with mean 11, and covariance function or kernel K, evaluated at
point z = (z,m) as
,un(x) = ,u(x) + K(JZ‘, xl:n)(K(xl:na xl:n) + 02])71(ylzn - ,U(-rlzn))
Kn(21,22) = K((21,22) — K(21, 21:0) (K (21:00, 21 : 1) + 0°1) "' K (21, T2).
We adapt the multi-fidelity kernel as proposed in [68]], such that the kernel function of the GP is
K(Zl, ZQ) = Kl(l'l, 1'2) X Kg(ml, m2),
where K1 (-, -) is a square-exponential kernel and

Ka(ma,ma) = e+ (1= ma) (1 = my) 1+,

where ¢, § > 0 are hyper-parameters.

A.2 Deep Kernel Learning

While for the synthetic (simpler) tasks we use exact GPs, for the benchmark tasks we implement
deep kernel learning [DKL;67]]. In DKL, the inputs are transformed by

k(xwxj|e> — k(g(wsz)7g($Jaw)|97w)a

where the non-linear mapping g(x, w) is a low-dimensional continuous embedding, learnt via a deep
neural network—a transformer in our tasks. To scale the GP to large datasets, we implement the
stochastic variational GP based on the greedy inducing point method [13]]. We adopt the deep kernel
learning experimental setup from [61]].

A.3 Acquisition Function

Max Value Entropy Search (MES) [65] is an information-theoretic acquisition function. The stan-
dard, single-fidelity MES seeks to query the objective function at locations that reduce our current
uncertainty in the maximum value of f*. It aims to maximise the mutual information between the
value of the objective function f when choosing point x and the maximum of the objective function,
f*. This contrasts with previously proposed entropy search (ES) criterion, which instead considers
the arg max of the objective function. The MES criterion is defined as follows:

a=I(f"yD;) = H(y|D;) — Ep[H(y|Dj, f*)| Dyl
where y is the outcome of experiment & and D; is the data set at the j th active learning iteration. and

H(Y) =Ey[—log(p(Y))] is the differential entropy of random variable Y.

The information gain is defined as the reduction in entropy of y provided by knowing the maximal
value f*
1G(y, m|Dy) = H(y|Dy) — H(y|f* < m,Dy)

It follows that the MES acqusition function can be expressred in terms of IG:

a=Ep~p [IG(y, m|Dy)],
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where y ~ N(ua,04), f(z) ~ N(ug, o) and the difference between y and f(z) is just indepen-
dent Gaussian noise.

Replacing the maximisation of an intractable quantity with the maximisation of a lower bound is a
well-established strategy. Instead of attempting to evaluate the intractable quantity, /G, we evaluate
its lower bound 1GAPPToT,

Thus, the acquisition function becomes

1 Approx
o= M Z IGPPT% (y, m|Dy)
meM

IGAPProT — og|R| — L Z log(1 — 2 #(v(m)) [v(m) + i((z((:))))]),

where ¢ and @ are the standard normal cumulative distribution and probability density functions (as

arising from the expression for the differential entropy of a truncated Gaussian), v(m) = %("x()‘)
. . o sY
and R is the correlation matrix with elements R; ; = 75—

45,7

This construction is called the General Information-Based Bayesian OptimisatioN (GIBBON) acqui-
sition function [43]].

Multi-Fidelity Formulation Let the maximum of the highest fidelity function fy; (when M
different fidelities are available to querying) be f},. We obtain a pair (x, m) which maximally gains
information of the optimal value f* of the highest fidelity per unit cost.

1
ale,m) = 3= T(figs D) )

where )\, is the cost of the oracle at fidelity m.

B Experimental Details

This appendix presents the details about the experiments presented in the main Section |4 First,
we provide general details about all tasks and then present details specific to each task in separate
sections.

Policy model architecture For all tasks, the architecture of the forward policy model to train
GFlowNet is multi-layer perceptron with 2 hidden layers and 2048 units per layer. The backward
policy model was set to share the parameters with the forward model, except for the parameters of
the output layer, which were trained. We use LeakyReL U as our activation function as in [6]. All
models are trained with the Adam optimiser [35]].

GFlowNet reward As discussed in Section [3.2] the reward for GFlowNet in our multi-fidelity
GFlowNet algorithm is the acquisition function max entropy search (MES) (and its multi-fidelity
variant) for all experiments. In order to increase the relative reward of higher values of the acquisition

j—1
function, we transform the MES value « with the the reward function R(«) = % where j is

the active learning round.

Budget and initial data set For each task, we assign a total budget B = v x C, where C'is the
cost if the highest fidelity oracle. The cost of the lower fidelity oracles are as specified in Section 4]
The initial data sets were constructed according to an initial budget. Depending on this initial budget,
we set the number of training data points for the single-fidelity baseline, as well as the number of
points from each oracle in the multi-fidelity experiments. Task specific information is summarized in
Table 2] The initial data set is split into train-validation in the ratio of 9:1 for all tasks.

All the above details for all tasks are summarized in Table[I|and Table[2] Our models are implemented
in pytorch [47], and rely on botorch [3]] and GPytorch [].
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Table 1: Implementation details of multi-fidelity experiments of all tasks

Task Surrogate 3 p vy
Branin Exact GP 1 1 300
Hartmann 6D Exact GP  le-2 1 100
DNA DKL le-5 1.5 5120
Antimicrobial Peptides DKL le-5 1 320
Molecules DKL le-6 1.5 1280

Table 2: Oracle costs, initial budget and initial training data sets. Oracles are indexed by increasing

level of fidelity.
Initial training examples
Task Oracle costs SF Multi-Fidelity
m=1 m=2 m=M Budget m=1 m=2 m=M

Branin 0.01 0.1 1 42 4 20 20 2
Hartmann 6D  0.125 0.25 1 200 25 80 40 5
AMP - 0.2 20 2500 50 2000 2000 10

DNA 0.5 0.5 50 1600 80 - 3000 50
Molecules 1 3 7 1050 150 700 68 16

B.1 Branin

The Branin function is evaluated in the domain [—5, 10] x [0, 15] using the following expression:

fla) = (o2 = =5

—~1.2522 By

5
+ — 6)? + (10 — E) cos(x1) + 10.

This corresponds to the modification introduced in [58]. As lower fidelity functions, we used the
expressions from [50]], which involve non-linear transformations of the true function as well as shifts
and non-uniform scalings. The functions, indexed by increasing level of fidelity, are the following:

fi(@) = f2(1.2(x +2)) — 322 + 1

fa(z) =104/ f(z — 2) + 2(x1 — 0.5)

— 33z —1)— 1

On the discrete set of points obtained after mapping the continuous domain to a 100 x 100 grid, the
explained variance of the oracles are 0.1125, 0.825 and 1, in increasing level of fidelity.

We use the botorch implementation of an exact multi-fidelity gaussian process as described in[A.T]
for regression. The active learning batch size B is 30 in the Branin task.

B.2 Hartmann 6D

The true Hartmann function is given by

4

fl@) =Y aieap(= ) Aij(z; — Py)?),

i=1 j=1

where o = [1.0,1.2,3.0,3.2] and A, P € R**S are the following fixed matrices:

0 3 17 35
4|00 10 17 0n
=13 35 17 10
17 8 005 10

3689 1170

4| 4699 4387
P=107" x| 1591 8732
381 5743

16

1.7 8
8§ 1
17 8
0.1 1

267
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To simulate the lower fidelities, we modify a to a(m) where a(m) = a + (M — m)d where
§ = [0.01,-0.01,—0.1,0.1] and M = 3. The domain is X = [0, 1]°. This implementation was
adopted from [32]. For the surrogate, we use the same exact multi-fidelity GP implementation as of
Branin. The active learning batch size is 10.

B.3 DNA

We conduct experiments using a two-oracle setup with costs 20 and 0.2 for the high and low fidelity
oracles, respectively. As objective function (highest fidelity oracle) we used the free energy of
the secondary structure of DNA sequences obtained via the software NUPACK [72]], setting the
temperature at 310 K. The free energy can be seen as a proxy of the stability of the sequences. To
construct a lower fidelity oracle, we train a transformer with 8 layers, 1024 hidden units per layer and
16 heads. We sampled 1 million random sequences for the training set. The explained variance of the
transformer model is 0.8. For the probabilistic surrogate, we implement deep kernel learning. The
parameters of the surrogate as well as other details about the DNA task are provided in Table 3

Table 3: Deep Kernel hyperparameters for the DNA and Antimicrobial tasks

Hyperparameter Value
Architecture Num. of Layers 8
Num. of Heads 8
Latent dimension 64
GP likelihood variance init 0.25
GP lengthscale prior N(0.7,0.01)
Num. of inducing points (SVGP head) 64
Optimisation Batch Size 128
Learning Rate le-3
Adam EMA params (1, 52) 0., 1e-2)
Max Num. of Epochs 512
Early stopping patience (Num. of Epochs) 15
Early stopping holdout ratio 0.1

B.4 Antimicrobial Peptides

We construct a three-oracle setup where the oracle corresponding to the highest fidelity is trained
on data from DBAASP [51]. Each antimicrobial peptide belongs to a group. For the lower fidelity
oracles. we divide the datapoints into two halves such the the set of groups present in one half is
mutually exclusive of the other. This simulated a setup wherein the lower fidelity oracles specialised
only in a specific subregion of the entire sample space. The configurations of the oracle models are
present in Table[d We assigned a cost of 50 to the highest fidelity oracle and 0.5 to both lower fidelity
oracles. The explained variance of the oracles was 0.1435, 0.099 and 1 respectively. As for DNA, we
implement deep kernel learning with hyperparameters in Table 5]

B.5 Small Molecules

We implement the oracles using RDKit 2023.03 [1]] and the semiempirical quantum chemistry package
xTB. We use GFN2-xTB [4] method for the single point calculation of ionization potential and electron
affinity with empirical correction terms. In the cheapest oracle, we consider one conformer obtained
by RDKit with its geometry optimised via force-field (MMFF94[25]]), this geometry is used to calculate
(vertical) IP/EA. In the second fidelity, we consider two conformers obtained by RDKit, and take
the lowest energy conformer after optimisation by MMFF94, and further optimise it via GFN2-xTB to

Table 4: Oracles for the antimicrobial peptides task (indexed by increasing level of fidelity)
Fidelity # Training points Model # Layers # Hidden units Epoch

1 3447 MLP 2 512 51
2 3348 MLP 2 512 51
3 6795 MLP 2 1024 101
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Table 5: Deep Kernel hyperparameters for the molecular tasks

Hyperparameter Value
Architecture Num. of Layers 8
Num. of Heads 8
Latent dimension 32
GP likelihood variance init 0.25
GP lengthscale prior N(0.7,0.01)
Num. of inducing points (SVGP head) 64
Optimisation Batch Size 128
Learning Rate le-3
Adam EMA params (51, 52) 0., 1e-2)
Max Num. of Epochs 512
Early stopping patience (Num. of Epochs) 15
Early stopping holdout ratio 0.1

obtain the ground state geometry; this remains a vertical IP/EA calculation. In the highest fidelity
oracle, we consider four conformers obtained by RDKit, and take the lowest energy conformer
after optimisation by MMFF94, and further optimise it via GFN2-xTB; the corresponding ion is then
optimised by GFN2-xTB, and the adiabatic energy difference is obtained via total electronic energy.
The fidelities are based on the fact that vertical IP/EA approximates that of adiabatic ones (to varying
degrees, depending on the molecule). On a test dataset of 1400 molecules of length<64, the explained
variance of the oracles is 0.1359, 0.279, 1 and 0.79, 0.86, 1 for the EA and IP tasks respectively.

We note that this is proof-of-concept and hence we do not conduct a full search of conformers, and
nor do we use Density Functional Theory calculations, but the highest fidelity oracle has a good
correlation with experiments [44].

In the environment for GFN, we consider a set of SELFIES vocabularies containing aliphatic and
aromatic carbon, boron, nitrogen, oxygen, fluorine, sulfur, phosphrous, chlorine, and bromine, subject
to standard valency rules. We do not consider synthesizability in this study and we note it may
negatively impact GFN as unphysical molecules could produce false results for the semiempirical
oracle.

C DMetrics

In this section, we provide additional details about the metrics used for the evaluation of the proposed
MEF-GEN as well as the baselines.

Mean Top-K Score We adapt this metric from [6]. At the end of an active learning round,
we sample N (x,m) candidates and then select the top-K candidates (K < N) according to
the acquisition function value. In the experiments, we score these top-K candidates with the
corresponding oracle. In the figures, we report the mean score according to the highest-fidelity oracle.

Mean Diverse Top-K Score This is a version of the previous metric by which we restricts the
selection of the K candidates to examples that are diverse between each other. We use similarity
measures (vide infra) such that we sample the top-K candidates where each candidate it at most
similar to each other by a certain threshold. For antimicrobial peptides, the sequence identity threshold
is 0.35; for DNA apatmers, the sequence identity threshold is 0.60; for molecules, the Tanimoto
similarity distance threshold is 0.35.

Diversity In order to measure the diversity of a set of candidates, we use the similarity index with
the following details for each of the tasks:

* DNA apatmers: The similarity measure is calculated by the mean of pairwise sequence
identity between a set of DNA sequences. We utilize global alignment with Needleman-
Waunsch algorithm and standard nucleotide substitution matrix, as calculated by biotite
package [37].
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* Antimicrobial peptides: The similarity measure is calculated by the mean of pairwise se-
quence identity between a set of peptide sequences. We utilize global alignment with
Needleman-Wunsch algorithm and BLOSUMS62 substitution matrix, as calculated by
biotite package [37].

* Molecules: The similarity measure is calculated by the mean of pairwise Tanimoto distances
between a set of molecules. Tanimoto distances are calculated from Morgan Fingerprints
(radius of two, size of 2048 bits) as implemented in RDKit package [[1].

D Additional Results

D.1 Impact of Oracle Costs

As discussed in Section [3.2} a multi-fidelity acquisition function like the one we use (defined in
Eq. @)) is a cost cost-adjusted utility function. Therefore, the cost of each oracle has a crucial impact
in the values of the acqusition function. In our tasks with small molecules (Section4.4.3), we used
oracles with costs proportional to their computational demands and we observed that multi-fidelity
active learning largely outperfomed single-fidelity active learning. However, depending on the set of
costs of the oracles, the advantage of multi-fidelity methods can significantly diminish.

In order to analyse the impact of the oracle costs in the performance of MF-GFN, we run several
experiments on the DNA task (Section @, which consists of two oracles, with various sets of
oracles. In particular, besides the costs used in the experiments presented in the main paper, with
costs (0.2, 20) for the lowest- and highest-fidelity oracles, we trained with costs (1,20) and (10, 20).
We present the results in Fig. f} We can indeed confirm that the advantage of MF-GFN over SF-GFN
decreases as the cost of the lowest-fidelity oracle becomes closer to the cost of the highest-fidelity
oracle. However, it is remarkable that even with a ratio of costs as small as 1 : 2, MG-GFN still
outperforms not SF-GFN but also MF-PPO in terms of cost effectiveness, without diversity being
negatively impacted . It is important to note that practical scenarios of scientific discovery, the cost of
lower fidelity oracles is orders of magnitude small than the cost of the most accurate oracles, since
the latter correspond to wet-lab experiments or expensive computer simulations.

(-) Diversity (+)

16| SF-GFN

------ MF-PPO
14 MF-GFN (0.2, 20)
12| — MF-GFN (1, 20)

]
- MF-GFN (10, 20)

Mean Top-100 energy
—_
(@)

o~

102 101 109
Fraction of total SF-GFN budget (log)

Figure 4: Analysis of the impact of the oracle costs on the performance of MG-GFN. We observe
that the advantage over SF-GFN and MF-PPO (0.2, 20) decreases as the cost of the lower fidelity
oracle becomes closer to the cost of the highest fidelity oracle. Nonetheless, even with a cost ratio of
1 : 2 MF-GFN displays remarkable performance with respect to other methods.
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D.2 Energy of Diverse Top-K

In this section we complement the results presented in Section ] with the mean diverse top-K scores,
as defined in Appendix [C} This metric combines that mean top-K score and the measure of diversity.
Figure E] shows the results on the DNA, AMP and the molecular tasks.

The results with this metric allow us to further confirm that multi-fidelity active learning with
GFlowNets is able to discover sets of diverse candidates with high mean scores, as is sought in
many scientific discovery applications. In contrast, methods that do not encourage diversity such as
RL-based algorithms (MF-PPO) obtain comparatively much lower results with this metric.

gl SF-GFN - MF-PPO
Random ~—— MF-GFN 0.8
= Rand. fid. GFN
— . g
SO 1T ==t T 30.6
o g
= 3
a4 204
= ]
o =
g, 3
= 0.2
P o
10° 1073 10-2 10-1 100
Fraction of total SF-GFN budget (log) Fraction of total SF-GFN budget (log)
(a) DNA task (b) Anti-microbial peptides (AMP) task
5
--------- SF-GFN “+ MF-PPO - SF-GFN
S Random —— MF-GFN z Random
2 Rand. fid. GFN -4 Rand. fid. GFN
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= —6 ]
& =1
5] ©3
S ]
S -7 a
=, &,
& li 2
i=1
g -8 3
= =
1
-9
1071 100 107! 10°
Fraction of total SF-GFN budget (log) Fraction of total SF-GFN budget (log)
(c) Molecules ionisation potential (IP) task (d) Molecules electron affinity (EA) task

Figure 5: Mean scores (energy) of diverse top- K candidates on the DNA (top left), AMP (top right)
and molecular (bottom) tasks. The mean energy is computed across the top-K examples at each
active learning round that also satisfy the criteria of diversity. Consistent with the diversity metrics
observed in Fig.[2] we here see that GFlowNet-based methods, and especially MF-GFN, obtain good
results according to this metric, while MF-PPO achieves comparatively much lower mean energy.
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