
1 THEOREMS

Theorem 1 (Upper Bound). For a problem instance with states S = Sn ∪ So, denote

Rn =
{
s′′ ∈ Sn | ∃s′ ∈ S0 ∧ (g(s′) + hθ(s

′) ≥ g(s′′) + hθ(s
′′))

}
, (1)

the quantity |Rn| is an upper bound on the number of non-optimal states A* expands during its
search.

Proof. A* algorithm always expands states with the lowest cost g(s′) + hθ(s
′). If a state from s′′

is inserted in the open list, then A* might expand it, since the state on the optimal path might have
higher cost. But since every state is expanded exactly once, each state from Rn can increase the
number of non-optimal expanded states just once.

The proposed loss function minimizes the upper bound on |Rn| as

|Rn| =
∑

s′′∈Sn

Jmax
s′∈So

(g(s′) + hθ(s
′)) ≥ g(s′′) + hθ(s

′′)K

≤
∑
s′∈So

∑
s′′∈Sn

Jg(s′) + hθ(s
′) ≥ g(s′′) + hθ(s

′′)K.

The rationale behind optimizing the upper bound on |Rn| are following: (i) we expect parameters of
h to be optimized using iterative algorithm, hence those s′ ∈ Sn violating constraint

(∀s′ ∈ So)(∀s′′ ∈ Sn)(g(s′) + hθ(s
′) < g(s′′) + hθ(s

′′)) (2)

but not being the maximum might continue violating in upcoming iterations, (ii) decreasing the total
number of s′ ∈ Sn violating constraint (2) decreases the probability of A* expanding corresponding
non-optimal state.

Theorem 2 (Optimality on Training Set). If a loss function is zero for a given problem instance S
with an optimal solution So, then for all states si ∈ So, we have f(si) = f∗.

Proof. Let’s denote the (optimal) shortest path from si to sj gi→j for any si, sj ∈ S. We break the
proof into two parts. then we assume both si, sj ∈ So.

1. First we show that ∀si ∈ So and ∀sj ∈ Sn, hθ(si) ≤ gi→j + hθ(sj). Since the loss is
zero, it holds that g(si) + hθ(si) < g(sj) + hθ(sj) due to requirement in Equation(2).
Subtracting g(si) we arrive to hθ(si) < (g(sj)− g(si)) + hθ(sj) ≤ gi→j + hθ(sj). The
fact that g(sj) − g(si) ≤ gi→j stems from the fact that either the optimal path from the
initial state to sj goes over si, in which the equality holds, otherwise gi + gi→j > gj , hence
gj − gi < gi→j , which completes this part of the proof.

2. Second, we show monotonicity ∀si, sj ∈ So. Without loss of generality, we assume i < j.
From Equation

(∀si, sj ∈ So)(i < j)(g(si) + hθ(si) ≤ g(sj) + hθ(sj), (3)

it holds that g(si) + hθ(si) < g(sj) + hθ(sj). We again subtract g(si) and since si and
sj are on the optimal path, it holds that g(sj) − g(si) = gi→j , and therefore hθ(si) <
gi→j + hθ(sj).

1

From the above, it should be clear that if the loss is zero on a given problem instance for hθ, such
a heuristic is optimal, which further implies that A* will find an optimal solution while expanding
the minimal number of states. But, the constraints on a single problem instance are very narrow,
which means that the very same hθ might be poor on other problem instances, or in the same if for
some reason a non-optimal state is expanded. Therefore, the loss is minimized on a large number of
problem instances (the training set T) which should minimize these cases as dictated by statistical
learning theory.

1.1 SMOOTH APPROXIMATION OPTIMIZATION

The L∗ loss defined as
1

|So||Sn|
∑
s′∈So

∑
s′′∈Sn

Jg(s′) + hθ(s
′) ≥ g(s′′) + hθ(s

′′)K+

1

|So|(|So| − 1)

|So|∑
i=2

i∑
j=1

Jg(si) + hθ(si) ≤ g(sj) + hθ(sj)K, (4)

does not have an informative gradient (the gradient is either zero or does not exist), hence the
parameters θ of the heuristic function hθ can be optimized by only using zero-order optimization
functions. To make it differentiable, the Iverson bracket therefore replaced by the differentiable
surrogate, which in case of this work is logistic loss function Ll(x) = log(1 + exp(−x)). Using Ll,
which we have used in experiments below, the optimized loss functions become

L∗(Γ̄, hθ) =
1

|So||Sn|
∑
s′∈So

∑
s′′∈Sn

Ll (g(s
′′) + hθ(s

′′)− g(s′)− hθ(s
′))+

+
1

|So|(|So| − 1)

|So|∑
i=2

i∑
j=1

Ll (g(sj) + hθ(sj)− g(si)− hθ(si)) ,

While the implementation of L2 distance is straightforward, the implementation of L∗ loss might be
puzzling and is explained below in detail. When training a NN with L∗, all states (s1, . . . , sb) in the
minibatch are from one problem instance, such that the states can be comparable as in Equations (2)
and (3). When the states in the minibatch are projected by the neural network, they are represented
by a vector of dimension ĥ ∈ Rb, where ĥi = hθ(si). We now form a matrix H ∈ {−1, 0,+1}b,c
encoding constraints, where c is their total count in the given minibatch of size b. lth constraint is
encoded in the matrix, as follows: if we want hθ(si) ≤ hθ(sj), then the Hi,l = −1, Hj,l = 1,
remaining values in the column are zeros and l ∈ {1, . . . , c} is the index of the constraint. The L∗

with logistic loss (used in experiments below), is computed as

1

c

∑
l=1c

log(1 + exp(ĥTH·,l), (5)

where H·,l denotes lth column. A source of confusion might be that on a minibatch of size b, the
output of (hθ(s1), . . . , hθ(sb))

TH has dimension c ≫ b.

1.2 GOAL-AWARENESS

One question to address is, how important is goal-awareness, i.e., the condition hθ(sn) = 0 where sn
is the goal. While possible, we haven’t encoded that the heuristic is goal-aware in the loss function.
Goal-awareness is, of course, an implication of hθ being a lower bound (i.e., admissible), which, in
turn, is always true for consistent heuristics.

But also for inconsistent heuristics, it is not a strict necessity to encode this requirement. As
said, the heuristic hθ re-weights the problem graph by setting the new weights from state s to
s′ to the old weights plus the difference hθ(s

′) − hθ(s) Edelkamp and Schrödl (2012). In this
setting, the weights of the new edges are non-negative, if and only if the heuristic is consistent so
that A* simulates Dijkstra’s shortest-path algorithm on the re-weighted problem graph. Another
consequence is that the graph weights, and, thus, the order of nodes explored in the A* algorithm

2

does not change; if we have hθ(sn) = c and adapt hθ by subtracting c from all the nodes, we
get (hθ(s) − c) − (hθ(s

′) − c) = hθ(s) − hθ(s
′). In other words, to learn A* ’s behavior is

translation-independent in hθ, we have skipped to hard-wire this information in the loss function.

2 THE STRUCTURE OF THE NEURAL NETWORK

The structure of the neural networks implemented in the experiments is shown in Figure 1

Figure 1: The structure of used neural network taken from Chrestien et al. (2021). A state S is
processed through 7 convolution layers, P1..P7 of the same shape 3× 3 with 64 filters. The output is
passed to four blocks, where each block contains a convolution layer (C) followed by a multi-head
attention operation with 2 heads (A) and a positional encoding layer (E). There are 180 filters in
each of these convolution layers in the blocks. At all stages, the original dimension of the input is
preserved. The output from block 4 is flattened by global average pooling along x and y coordinates
before being passed onto a fully connected layer (FC) and a single heuristic prediction output hθ. For
the sake of picture clarity, skip connections are not shown in the neural network.

3 AVERAGE PLAN LENGTHS AND ADMISSIBILITY RESULTS ON SOKOBAN

The results of the Sokoban experiments in section 5.2 state that the solutions found by CoAt optimizing
L∗were close to optimum and longer by 1 step on an average . Table 1 shows the average plan length
for the Sokoban mazes in the testing set. Here, we see that the average plan lengths generated by
L∗ (CoAt− L∗) closely follow the optimal plan lengths (see S(ym)BA* results in Table 1). Table 2
shows the number of times the heuristics generated by L* are admissible. Notice that admissibility is
better for network optimizing L∗.

CNN CoAt
n SBA* Merc FD Stone Soup L2 L∗ L2 L∗

3 21.40 29.32 27.89 30.56 28.67 22.90 22.02
4 34.00 41.00 37.00 43.42 41.33 35.11 35.03
5 38.82 45.76 42.37 45.34 44.83 40.12 40.12
6 41.11 - - 49.82 46.32 42.11 41.65
7 - - - 58.23 56.33 53.33 53.19

Table 1: Average plan length of S(ym)BA* , Merc(ury14), Fast-Downward Stone Soupe, and all
variants of A* with CoAt and CNN architectures optimizing L∗ and L2 loss functions. Column
captioned #b indicates the number of boxes in different categories. The averages are over instances,
where all planners solved the problem. The standard deviation of all repeated experiments was
between 0.004 and 0.008 and it is not shown.

4 ROTATION RESULTS ON MAZE WITH TELEPORTS

The mazes in the testing set from Table 2 (see original paper) are rotated by 90◦, 180◦ and 270◦ and
the results are shown in Table 3.

3

#b 3 4 5 6 7 8 9
L∗-CoAt 97 96 93 94 93 92 95
L2-CoAt 95 96 90 93 91 89 91

Table 2: Average number of admissible heuristic values of CoAt network optimizing L∗and L2 loss
functions. The number is estimated on mazes from the testing set solved in Table 1a (see original
paper) from states on the founded path. The standard deviation of all repeated experiments was
between 0.02 and 0.001 and it is not shown.

90◦ rotation 180◦ rotation 270◦ rotation
n CNN CoAt CNN CoAt CNN CoAt

L2 L∗ L2 L∗ L2 L∗ L2 L∗ L2 L∗ L2 L∗

50 90 92 97 98 91 92 97 98 91 92 96 97
55 77 78 84 87 75 77 83 88 75 76 85 86
60 67 69 74 76 66 69 72 74 68 69 71 74

Table 3: Average fraction of solved mazes with teleports (coverage) A* algorithm with convolution
network (denoted as CNN), with the proposed Convolution-Position-Attention (CoAt) network and
CoAt*. Only non-rotated mazes (No Rotation) of size 15 × 15 were used to train the heuristic
function. On mazes rotated by 90◦, 180◦, 270◦, the heuristic function has to extrapolate outside its
training set. All approaches have solved all mazes of size 15–40, therefore we have omitted them
from the table.

5 5× 5 SLIDING TILES PUZZLES

Table 4 shows the fraction of solved sliding tile puzzles (in percents) when the network is optimized
only on puzzles it has solved previously. The protocol, neural networks, and all settings are exactly the
same as in Section 5.3 of the manuscript. As in Table 3 in the original paper, the 0th row corresponds
to A* with the heuristic function provided by an untrained network. The set of problem instances
consists of 5000 puzzles downloaded from 1. According to the results, A* with a heuristic function
optimized with respect L∗consistently outperforms that optimized with respect to L2 loss.

n L∗ L2

0 5 5
1 11 8
2 20 18
3 32 22
4 43 30
5 54 39
6 63 42
7 68 54

Table 4: Fraction of solved sliding Tiles puzzles (in percents), where the heuristic functions (imple-
mented by CoAt networks) are optimized exclusively on previously solved puzzles.

6 PDDL DOMAINS

We have further compared L∗to L2 on four problems encoded in PDDL taken from:2 Blocksworld
contains 732 problem instances of size 3–15, N-Puzzle contains 80, Gripper contains 50, and lastly
Ferry contains 48. Since PDDL is a relational language, we adapted representation from Janisch
et al. (2020), where each object in PDDL corresponds to one vertex in graph. Binary predicates are
represented by edges between involved vertices. Binary vectors of vertices are used to encode unary
and nullary predicates, where each predicate corresponds to a particular item of the vector. When
unary predicate evaluates to true on an object, an item of the feature vector is set to one at the vertex

1https://github.com/levilelis/h-levin/
2https://github.com/williamshen-nz/STRIPS-HGN

4

https://github.com/levilelis/h-levin/
https://github.com/williamshen-nz/STRIPS-HGN

Blocks Ferry Gripper N-Puzzle
epoch L∗ L2 L∗ L2 L∗ L2 L∗ L2

1 98 73 33 33 14 14 14 14
2 100 75 48 44 15 15 52 34
3 100 76 53 48 16 15 55 36
4 100 76 54 49 17 16 55 38
5 100 78 54 51 17 16 58 42
6 100 78 54 51 17 16 58 43
7 100 79 54 51 17 16 60 44
8 100 80 54 52 18 16 60 44
9 100 80 55 52 18 16 60 46
10 100 81 55 52 19 16 62 46

Table 5: Fraction of solved puzzles (in percents) encoded in PDDL. Heuristic functions implemented
by a two-layer graph neural networks are optimized exclusively on previously solved puzzles.

corresponding to the object. When nullary predicate is true, a corresponding item of all vectors of all
vertices is set to one. Since in a domain there can be multiple types of binary predicates, we represent
them as multi-graph, i.e. there was a dedicated graph encoding exactly one type of binary predicates.
The graph neural network projecting PDDL encoded in graph to a scalar value (heuristic) contained
two graph attention layers Veličković et al. (2018) with output dimension 8, followed by reduction
of vectors of vertices reduced to a single vector by mean and maximum, one Dense layer with relu
non-linearity of dimension 32, and a linear dense layer with scalar output.

All neural networks were trained by a bootstrap protocol, where the neural network trains on problems
that have been solved with A* that uses that particular network as heuristic functions. Inspired
by Orseau and Lelis (2021), the protocol from Section 5.3 was adapted, such that the network was
allowed to perform 1000 gradient steps of AdaBelief algorithm after every 32 new solved problems.
In every epoch, A* algorithm tried to solve only unsolved problems for a total of 10 epochs. A*
algorithm had a time limit 30s.

The fraction of solved problem instances is shown below. We again observe that A* with heuristic
optimized with respect to L∗performs better than that with respect to L2. In case of Blocks and
n-puzzle problems, the improvement is large, in case of Ferry and Gripper, the improvement is small.
We admit to not knowing the reason(s) behind this poor performance. One possible cause can be due
to the small number of problems instances of Ferry and Gripper. The complete implementation of
this experiment including problems is attached to clear any doubts. All experiments were repeated
three times with a fixed random seed.

REFERENCES

Stefan Edelkamp and Stefan Schrödl. Heuristic Search - Theory and Applications. Academic Press,
2012.

Leah Chrestien, Tomáš Pevný, Antonín Komenda, and Stefan Edelkamp. Heuristic search planning
with deep neural networks using imitation, attention and curriculum learning. arXiv:2112.01918,
2021.

Jaromír Janisch, Tomás Pevný, and Viliam Lisý. Symbolic relational deep reinforcement learning
based on graph neural networks. CoRR, abs/2009.12462, 2020. URL https://arxiv.org/
abs/2009.12462.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Laurent Orseau and Levi HS Lelis. Policy-guided heuristic search with guarantees. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 12382–12390, 2021.

5

https://arxiv.org/abs/2009.12462
https://arxiv.org/abs/2009.12462

	Theorems
	Smooth approximation optimization
	Goal-Awareness

	The Structure of the Neural Network
	Average plan lengths and admissibility results on Sokoban
	Rotation results on maze with teleports
	55 Sliding Tiles puzzles
	PDDL domains

