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APPENDIX

A RELATED WORKS

We now present a survey of related works in DP accounting.

Moments Accountant and Rényi DP. Abadi et al. (2016) proposed “moments accountant" that uses
Rényi DP (Mironov, 2017) to give an upper bound for the DP guarantee of composition of DP algo-
rithms. With the help of moments accountant, Abadi et al. (2016) proposed the differentially private
stochastic gradient descent (DP-SGD) algorithm, whose privacy loss can be bounded effectively.
However, as mentioned before, Rényi DP can only yield lossy conversion to (ε, δ)-DP, making the
upper bound often impractical to use. The runtime of the accountant is independent of m, the number
of composition, for DP-SGD, and is O(m) for the composition of general algorithms.

Numerical Composition via FFT. Another line of work (Koskela et al., 2020; Gopi et al., 2021)
approximated the privacy loss of compositions using fast Fourier transform to the convolutions of
privacy-loss random variables (PRVs). This notion is closely related to our definition of PLLRs.
Though both definitions allow for computing compositions via understanding convolutions of random
variables, we note that the two concepts stem from a different analysis framework. Specifically,
PRV amounts to finding a pair of random variables that reparameterizes the privacy curve, which
is dual to the trade-off function. On the other hand, PLLRs are defined naturally from the f -DP’s
hypothesis testing perspective, hence the random variables have a direct decomposition into sum of
the log-likelihood ratios. As a result, our Proposition 3.2 is a strict generalization which encompasses
their Theorem 3.2 as a special case when m = 1. Note that their FFT accountant is the first algorithm
that can approximate the privacy loss up to arbitrary precision, and the runtime of their algorithm is
Õ(
√
m) for DP-SGD and O(m2.5) for general compositions.

Analytical Composition via Characteristic Functions. Recently, Zhu et al. (2021) proposed using
characteristic function to analytically compute composition of privacy algorithms. Their algorithm,
Analytical Fourier Accountant, yields tight privacy accounting but fails to perform efficient computa-
tion for the sub-sampled mechanisms. Their time complexity is O(1) if the characteristic function of
their dominating PLD of m-fold is simple enough for closed-form composition, and is at least Ω(m2)
when no closed-form solution is available.

f -DP accountant via Edgeworth expansion. It is worth mentioning that Zheng et al. (2020) also
uses Edgeworth expansion for DP guarantees. Specifically, they use Edgeworth approximation as a
refinement to the CLT to better approximate the f -DP trade-off curve. The most important difference
between the two approaches is that we provide a finite-sample error bound that allows for an exact
DP accountant, while they focus solely on an asymptotic approximation to the trade-off curves. Also,
we use Edgeworth approximation on PLLRs to get an estimate of the exact characterization of (ε,
δ)-DP (the lower path in Figure 1), while they directly approximate trade-off function f (the same as
GDP, using the upper path in Figure 1). Therefore, we focus more on the practical side (finite-sample
guarantee), and interpretability (directly deal with (ε, δ)-DP).

B ANALYSIS OF NOISYSGD

We present the algorithms we considered in Section 1.1. To start with, suppose we have a neural
network h that is governed by weights w, with samples xi and labels yi (i = 1, ..., n). The prediction
for each example is h(xi,w), and the per-sample loss is given by `(h(xi,w), yi) for some loss
function `. We define the objective function L to be the average of per-sample losses

L(w) =
1

n

n∑
i=1

`(h(xi,w), yi).

Stochastic Gradient Descent (SGD) algorithm uses a mini-batch as a proxy to this objective function.
To control the potential privacy leak in each step of SGD, we need to clip the gradients to control the
sensitivity, after which a Gaussian noise is added to it. The details of the algorithm is shown below.
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Algorithm 1 NoisySGD (with local or global flat per-sample clipping)
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of iterations m,
noise scale σ, gradient norm bound R.

for t = 0, . . . ,m− 1 do
Subsample a batch It ⊆ {1, . . . , n} from training set with probability p
for i ∈ It do

v
(i)
t ← ∇w`(f(xi,wt), yi)

v̄
(i)
t ← min

{
1, R/‖v(i)

t ‖2
}
· v(i)
t . Clip the gradient

V̄t ←
∑
i∈It v̄

(i)
t . Sum over batch

wt+1 ← wt − ηt
|It|
(
V̄t + σR · N (0, I)

)
. Apply Gaussian mechanism and descend

Output wm

Recall that in Section 3.1, in order to transfer the bounds from CDF approximations to privacy
parameters, we need to find a range that contains all possible roots of δ = g+(ε), δ = g−(ε). Here
we showcase how to find such bound in the case of NoisySGD.
Remark B.1. For NoisySGD, we can express such range analytically. Specifically, for any α ∈ {1, 2}
(the index of the sequence of PLLRs), we focus on finding roots in the range [0, C] for ε(α)+ and
ε(α)−, where C is the smallest value of ε such that

C ≥ sup
S⊂R,P(Y (α)∈S)≥δ

log

(
P(Y (α) ∈ S)

P(X(α) ∈ S)

)
.

This is clearly a (sub-optimal) upper bound. A loose bound of the range can be easily proved to be

C = min

m log

(
p

δ

1− Φ(zδ + µ)

)
, log

 δ

1− Φ
(
zδ/
√
m+µ
√
m

)
 ,

where zδ is the upper δ quantile of a standard normal distribution. We can find 0 < ε(α)− ≤ ε(α)+ in
the range defined above.

C FULL DEFINITION OF AEA AND EEAI

Recall that in Section 4.1, the AEA and EEAI are defined for a specific trade-off function f (α). This
is only for the simplicity of notations. We now demonstrate how to generalize the definitions to the
general trade-off function of the form

(
infα f

(α)
)∗∗

.

Definition C.1 (AEA for general trade-off function). The k-th order AEA of
(
infα f

(α)
)∗∗

-DP that
defines δ(ε) for ε > 0 is given by δ(·) = supα δ

(α)(·), where

δ(α)(ε) = 1−Gm,k,Y (α)(ε)− eε(1−Gm,k,X(α)(ε)), (C.1)

for any α.

Definition C.2 (EEAI for general trade-off function). The k-th order EEAI of
(
infα f

(α)
)∗∗

-DP
associated with privacy parameter δ(ε) for ε > 0 is given by [δ−, δ+], where δ−(·) = supα δ

(α)−(·),
δ+(·) = supα δ

(α)+(·), and

δ(α)−(ε) ≡ 1−Gm,k,Y (α)(ε)−∆m,k,Y (α)(ε)− eε(1−Gm,k,X(α)(ε) + ∆m,k,X(α)(ε)),

δ(α)+(ε) ≡ 1−Gm,k,Y (α)(ε) + ∆m,k,Y (α)(ε)− eε(1−Gm,k,X(α)(ε)−∆m,k,X(α)(ε)).
(C.2)

For completeness, we also provide the formal definition of general k-th order Edgeworth Expansion
Em,k,X . More details can be found, for example, in Hall (2013).
Definition C.3 (Definition of k-th order Edgeworth Expansion). For any sequence of m distributions
X1, ..., Xm, let Sm =

∑m
i=1Xi−

∑m
i=1 EXi

B̄m
be the standardized sum, where B̄m =

√
Var
∑m
i=1Xi.

13



Under review as a conference paper at ICLR 2023

Define λr = 1
m

∑m
j=1 κr,j

B̄rm
, where κr,j is the r-th cumulant of Xj . Assume Xi’s have (k + 2)-th

cumulant. We define the k-th Edgeworth expansion Em,k,X as

Em,k,X(x) = Φ(x) +

k∑
r=1

1

nr/2
Pr(−D)

D
φ(x), (C.3)

where D is the differential operator, and Pr(−D) is a polynomial of degree 3r. The explicit form of
Pr(−D) can be written as

Pr(−D) =
∑(∏

i

1

ki!

(
λi+2

(i+ 2)!

)ki
(−D)ki(i+2)

)
,

where the summation is over all the integer partitions of m such that
∑
i iki = m.

D IMPLEMENTATION OF EDGEWORTH ACCOUNTANT

We now present the detailed implementation of AEA and EEAI.

Algorithm 2 AEA
Parameters: m general mechanisms M1, ...,Mm. An epsilon ε ≥ 0, and an order k ≥ 1.

for i = 1, . . . ,m do
Analytically encode all the corresponding PLLRs for Mi, {(X(α)

i , Y
(α)
i )}α for all α.

Numerically calculate the cumulants up to order k + 2 for X(α)
i and Y (α)

i for all α.
Calculate Gm,k,X(α)(ε) and Gm,k,Y (α)(ε) for each α using k-th order Edgeworth expansion.
Calculate δ(α)(ε) for each α by (C.1).
Output supα δ

(α)(ε).

And similarly, we present the algorithm for the general EEAI.

Algorithm 3 EEAI
Parameters: m general mechanisms M1, ...,Mm. An epsilon ε ≥ 0, and fix the order k = 1.

for i = 1, . . . ,m do
Analytically encode all the corresponding PLLRs for Mi, {(X(α)

i , Y
(α)
i )}α for all α.

Numerically calculate the cumulants up to order 4 for X(α)
i , and Y (α)

i for all α.
Calculate Gm,1,X(α)(ε) and Gm,1,Y (α)(ε) for each α using first order Edgeworth expansion.
Calculate ∆m,1,X(α)(ε) and ∆m,1,Y (α)(ε) for each α using Lemma 4.3 or Theorem 1.
Calculate δ(α)+(ε) and δ(α)−(ε) for each α by (C.2).
Output [supα δ

(α)−(ε), supα δ
(α)+(ε)].

Note that Algorithm 2 (Algorithm 3) is an algorithm to find an estimate (bounds) of δ given an ε.
And both algorithms run in constant/linear time for m identical/general compositions. In practice,
people often would like to find an estimate or bounds on ε given an δ. To get such an estimate of ε
given δ, we can directly inverse the Algorithm 24. And to get upper and lower bounds of ε given δ,
we can use the inversion method discussed in Section 3.1, and specifically, the equations in (3.2).

E ADDITIONAL EXPERIMENTS

In this section, we perform more numerical experiment. Specifically, we found that in the current
implementation of the FFT method5, they may suffer from numerical issues from heterogeneous

4Note that if we substitute Edgeworth approximation with the true CDF of PLLRs , it is direct to show (by
taking derivative) that δ(α)(ε) is always a decreasing function of ε, and the supremum of decreasing functions is
still a decreasing function. Therefore, we can always take inversion.

5In all experiments, we use the update-to-date package (v0.2.0) at the time of this submission
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Figure 4: With δ = 0.1, σ = 0.8, p1 = 0.35/
√
m1, p2 = 0.02/

√
m2, m2 = 10m1, and

m = m1+m2, the FFT method suffers from numerical issues and fails to correctly evaluate the
ε for large m. The left subplot demonstrates that as m grows larger, the FFT method provides
negative ε bounds. And the right subplot truncates all epsilon bounds to be positive, showing
that our EEAI provides stable bounds even for such large m. This numerical instability may be
inherent to the fact that FFT has polynomial dependence on m, and as m grows very large, the
numerical stability is an important issue to address. In this case, our EEAI is still numerically
stable and useful even when m is very large.

composition with large m. The issue could either prevents the code to run at all, or, in the case that
the code successfully executed, have incorrect privacy guarantee. We demonstrate one such example
in Figure 4, where we find the FFT method could succeed in running, yet producing incorrect results.
We consider two different subsampled Gaussian mechanisms: M1 with noise multiplier σ = 0.8 and
subsample rate p1, and M2 with noise multiplier σ = 0.8 and subsample rate p2, we consider the case
when we need to compose m1 times of M1 with m2 times of M2. Similar to the setting in Figure 3,
we still set the same precision of ε of FFT method as 0.1 (and if we tune down the precision further,
even more severe numerical issue will occur). The privacy guarantees computed by our method and
their method are shown in Figure 4. Since the FFT method requires discrete convolution for each
mechanism, it can be numerically unstable as m grows larger. In contrast, our analytical finite-sample
Edgeworth bounds could be more stable in those scenarios.

F PROOFS IN SECTION 3

F.1 PROOF OF PROPOSITION 3.2

We present the proof of Proposition 3.2 in this section. The proof relies on two Lemmas that are of
self-interest and we first present the lemmas. The proof of Proposition 3.2 is straightforward from
results of Lemmas. Recall that the trade-off functions fi = T (Pi, Qi) we consider are realized by
the two following hypotheses:

H0,i : wi ∼ Pi vs. H1,i : wi ∼ Qi,

where Pi, Qi are two distributions. To evaluate the trade-off function f =
⊗m

i=1 fi, we are essentially
distinguishing between the two composite hypotheses

H0 : w ∼ P1 × P2 × · · · × Pm vs. H1 : w ∼ Q1 ×Q2 × · · · ×Qm, (F.1)

where w = (w1, ..., wm) is the concatenation of all the wi’s. The following lemma shows how to
connect PLLRs of each fi to the trade-off function f .
Lemma F.1. Let X1, . . . , Xm be the PLLR under the null hypothesis and, likewise, Y1, . . . , Ym
be the PLLR under the alternative. Let FX,m, FY,m be the CDFs of x ≡ X1 + . . . + Xm and
Y ≡ Y1 + · · · + Ym, respectively. Then we have the following relationship between privacy
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parameters and privacy-loss log-likelihood ratios

ε = log
F ′Y,m(c)

F ′X,m(c)
,

δ =
F ′X,m(c) (1− FY,m(c))− F ′Y,m(c) (1− FX,m(c))

F ′X,m(c)
,

(F.2)

where c is some constant.

Proof of Lemma F.1. To distinguish between H0 : P1×P2× ...×Pm vs. H1 : Q1×Q2× ...×Qm,
By the Neyman-Pearson lemma, we know that each point of the trade-off function f is realized by a
likelihood ratio test (cut-off at some threshold c). So, the trade-off function takes a parametric form
f(α) = β, where α is the type-I error of the test, and β is type-II error of the test:

α = PH0

(
log

(
dP1 × P2 × · · · × Pm
dQ1 ×Q2 × · · · ×Qm

(w)

)
> c

)
β = PH1

(
log

(
dP1 × P2 × · · · × Pm
dQ1 ×Q2 × · · · ×Qm

(w)

)
≤ c
)

Note that under H0, we have

log

(
dP1 × P2 × · · · × Pm
dQ1 ×Q2 × · · · ×Qm

(w)

)
= log

(
dP1

dQ1
(w1)× · · · × dPm

dQm
(wm)

)
= log

(
dP1

dQ1
(w1)

)
+ · · ·+ log

(
dPm
dQm

(wm)

)
= X1 + · · ·+Xm = X.

and similaly under H1,

log

(
dP1 × P2 × · · · × Pm
dQ1 ×Q2 × · · · ×Qm

(w)

)
= Y1 + · · ·+ Ym = Y.

So, we can simplfy the parametric form of f by f(α) = β, where

α = P (X1 + · · ·+Xm > c) = 1− FX,m(c)

β = P (Y1 + · · ·+ Ym ≤ c) = FY,m(c).

This allows us to simply write

f(α) = FY,m ◦ F−1
X,m(1− α).

For a point (α, β) on the trade-off function f , where

β = FY,m(c) = FY,m

(
F−1
X,m(1− α)

)
,

and α is small. By the equivalence given in Proposition 2.5 in Dong et al. (2022), we know that the
slope of the tangent line passing through (α, β) (for small α) is given by

−eε =
df

dα
(α) = F ′Y,m

(
F−1
X,m(1− α)

)
· 1

F ′X,m

(
F−1
X,m(1− α)

) · (−1) = −
F ′Y,m

(
F−1
X,m(1− α)

)
F ′X,m

(
F−1
X,m(1− α)

) ,
which gives

ε = log
F ′Y,m

(
F−1
X,m(1− α)

)
F ′X,m

(
F−1
X,m(1− α)

) = log
F ′Y,m(c)

F ′X,m(c)
.

The equation of the tangent line takes the form of

y = −
F ′Y,m(c)

F ′X,m(c)
(x− 1 + FX,m(c)) + FY,m(c).
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Using the same proposition,we know the intercept of the line is 1− δ, so we should have

1− δ =
F ′Y,m(c) (1− FX,m(c))

F ′X,m(c)
+ FY,m(c) =

F ′Y,m(c) (1− FX,m(c)) + F ′X,m(c)FY,m(c)

F ′X,m(c)
,

which gives

δ = 1−
F ′Y,m(c) (1− FX,m(c)) + F ′X,m(c)FY,m(c)

F ′X,m(c)

=
F ′X,m(c) (1− FY,m(c))− F ′Y,m(c) (1− FX,m(c))

F ′X,m(c)
.

Therefore, ε and δ takes the following parametric form as in the statement of the lemma,

ε = log
F ′Y,m(c)

F ′X,m(c)

δ =
F ′X,m(c) (1− FY,m(c))− F ′Y,m(c) (1− FX,m(c))

F ′X,m(c)
.

To simplify the relation in (F.2), we observe the following interesting lemma about PLLRs.
Lemma F.2. Let X1, X2, . . . , Xm and Y1, Y2, . . . , Ym and FX,m, FY,m be defined as in Lemma F.1.
Let fX,m, fY,m be the PDFs of

∑m
i=1Xi and

∑m
i=1 Yi. Then we have for any c ∈ R,

c = log
fY,m(c)

fX,m(c)
. (F.3)

Proof of Lemma F.2. We use induction on m, the number of compositions, to prove this Lemma.

Base Case: m = 1. When m = 1, we write out the forms of X and Y explicitly as

X = log
Q1(w1)

P1(w1)
where w1 ∼ P1,

Y = log
Q1(w1)

P1(w1)
where w1 ∼ Q1.

As a result, for any measurable function g : R→ R, we have

EY [g(Y )] = Ew1∼Q1

[
g

(
log

Q1(w1)

P1(w1)

)]
= Ew1∼P1

[
g

(
log

Q1(w1)

P1(w1)

)
Q1(w1)

P1(w1)

]
= Ew1∼P1

[
g

(
log

Q1(w1)

P1(w1)

)
eX
]

= EX [g(X)eX ].

Since the above equality holds for all g, we must have that their exists a version of both PDFs such
that fY,1(t) = fX,1(t)et. This shows that for m = 1,

c = log
fY,1(c)

fX,1(c)
.

Induction Step: Suppose the result is true for m, we now show that it is also true for m + 1
compositions. We now claim the following Lemma.

Lemma F.3. Let A1, A2, B1, B2 be four random variables. Denote the PDFs of A1, A2, B1, B2 by
fA1

, fA2
, fB1

, fB2
respectively. Suppose further that
fB1

(t) = g(t)fA1
(t), fB2

(t) = g(t)fA2
(t) for all t,

for some function g satisfying g(x+ y) = g(x)g(y). Let fA,2, fB,2 denote the density function for
A1 +A2, B1 +B2. Then

fB,2(t) = g(t)fA,2(t) for all t.
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Proof of Lemma F.3 will be given at the end of the proof. Applying Lemma F.3 on random variables
A1 =

∑m
i=1Xi, A2 = Xm+1 and B1 =

∑m
i=1 Yi, B2 = Ym+1, we will show that we get the desired

relationship for m+ 1 compositions. By induction hypothesis we know that fB1
(t) = g(t)fA1

(t) for
g(t) = et. Since fYm+1

(t) = g(t)fXm+1
(t) by the base case in induction, and g(x+ y) = g(x)g(y),

we have fY,m+1(t) = g(t)fX,m+1(t) for all t. This indicates that we have

c = log
fY,m+1(c)

fX,m+1(c)

for any c. Hence we have completed the induction step and concluded the proof.

Proof of Lemma F.3. We use the convolution formula on B1, B2 and obtain

fB,2(t) =

∫ ∞
−∞

fB1
(t− u)fB2

(u)du

=

∫ ∞
−∞

g(t− u)g(u)fA1(t− u)fA2(u)du

=

∫ ∞
−∞

g(t)fA1
(t− u)fA2

(u)du

= g(t)fA,2(t)

by convolution formula on A1, A2.

Proof of Lemma 3.3. Define

h(x) =

(
inf
α∈I

f (α)

)∗
(x),

which is convex and lower semi-continuous by definition of convex conjugate. By Fenchel–Moreau
theorem, we have h∗∗ = h. Denote (ε, δ(ε)) to be the equivalent dual relationship to f =
infα{f (α)}∗∗-DP. From Dong et al. (2022) we know that

δ(ε) = 1 +

(
inf
α∈I

f (α)

)∗∗∗
(−eε) = 1 + h∗∗(−eε) = 1 + h(−eε).

By order reversing property of convex conjugate, we have
δ(ε) = 1 + h(−eε)

= 1 +

(
inf
α∈I

f (α)

)∗
(−eε)

= 1 + sup
α∈I

f (α)∗(−eε)

= sup
α∈I

(
1 + f (α)∗(−eε)

)
= sup
α∈I

δ(α)(ε)

where we used dual relationship for each α ∈ I again in the last step. And the other direction
follows directly from the duality of f -DP and (ε, δ(ε))-DP, meaning that if the mechanism satisfies
(ε, supα∈I δ

(α))-DP, then it also satisfies f =
(
infα{f (α)}

)∗∗
-DP.

G PROOFS IN SECTION 4

G.1 PROOF OF THEOREM 1

Proof of Theorem 1. We first briefly introduce the idea of the proof. The main idea is to construct a
random variable X̃i by choosing an a ≥ 0, such that it stochastically dominates Xi (that is, Xi ≤ X̃i
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a.s.), and satisfies E(X̃i) < 0. We then choose η(a) = −E(X̃i) which is a positive number. In
what follows, we will explicitly construct X̃i so that X̃i can be decomposed into the sum of two
sub-Gaussian random variables with parameters σ2

A, σ
2
B . Then since Xi ≤ X̃i a.s., we deduce that

P

(
m∑
i=1

Xi ≥ ε

)
≤ P

(
m∑
i=1

X̃i ≥ ε

)
= P

(
m∑
i=1

X̃i −
m∑
i=1

E(X̃i) ≥ ε+mη

)
,

The final conclusion, which will be proved at the end, follows from the sub-Gaussian bounds.

For notation-wise convenience, we first define a quantity depending on the value of ξi, where

∆(ξi) := Xi − (ξiµ−
1

2
µ2) = log

(
p+

1− p

eµξi−
µ2

2

)
.

It is obvious that ∆(ξi) is a strictly decreasing function of the value of ξi. Now, we construct the
random variable X̃i as follows. Define

X̃i = Ai +Bi

where

Ai =

{
Xi if ξi < a,
a+µ− 1

2µ
2 + ∆(a) if ξi ≥ a.

(G.1)

and

Bi =

{
0 if ξi < a,
ξiµ− a+µ if ξi ≥ a.

(G.2)

Here, we define a+ = φ(a)
1−Φ(a) . Note that a+ > a for any a > 0 by bounds on Mills ratio. To shed

light on this decomposition, we first show that X̃i stochastically dominates Xi. Since ∆(ξi) is a
decreasing function in ξi, hence when ξi ≥ a, we have ∆(ξi) ≤ ∆(a). As a result, when ξi > a,

X̃i = ξiµ−
1

2
µ2 + ∆(a) ≥ ξiµ−

1

2
µ2 + ∆(ξi) = Xi.

This guarantees that X̃i ≥ Xi a.s.. Another good property of this decomposition, we observe that
Ai is sub-Gaussian due to Lemma G.1, and Bi is a mean-zero sub-Gaussian random variable from
Lemma G.2. Proof of the two Lemmas is postponed to the next section.

Note that the above construction is valid for any a. Now we show that there exists some a > 0 such
that E(X̃i) = −η(a) < 0 where η(a) only depends on a. Note that

E(X̃i)− E(Xi) =

∫ ∞
a

(∆(a)−∆(ξ))φ(ξ)dξ,

where φ(x) is the density for standard Normal random variable. Also recall that E(Xi) < 0. Then

E(X̃i) = E(Xi) +

∫ ∞
a

(∆(a)−∆(ξ))φ(ξ)dξ

= E(Xi) + e(a),

where e(a) satisfies that lima→∞ e(a) = 0. This is because by construction
∫∞
a

(∆(a) −
∆(ξ))φ(ξ)dξ ≥ 0 and that

e(a) =

∫ ∞
a

∆(a)φ(ξ)dξ −
∫ ∞
a

∆(ξ)φ(ξ)dξ.

The second term vanishes as ξ → ∞ since ∆(ξ) is integrable. For the first term, if ∆(a) < 0
the integral is already negative. If ∆(a) > 0 we have

∫∞
a

∆(a)φ(ξ)dξ <
∫∞
a

∆(0)φ(ξ)dξ which
also vanishes. As a result, we have shown that lima→∞ e(a) ≤ 0. Combined with what we have
above, we deduce that lima→∞ e(a) = 0 as required. Then we can pick a large enough such that
e(a) = − 1

2E(Xi) and we have E(X̃i) = 1
2E(Xi) < 0.
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Now we can combine the previous results and prove the tail bound of
∑m
i=1Xi. Recall we have

constructed random variable X̃i = Ai + Bi such that X̃i ≥ Xi a.s. with E(X̃i) = −η(a) < 0.
Moreover, Ai, Bi are both sub-Gaussian with parameters σ2

A and σ2
B . Then we have

P

(
m∑
i=1

Xi ≥ ε

)
≤ P

(
m∑
i=1

X̃i ≥ ε

)
= P

(
m∑
i=1

X̃i −
m∑
i=1

E(X̃i) ≥ ε+mη

)

≤ P

(
m∑
i=1

Ai −
m∑
i=1

E(Ai) +

m∑
i=1

Bi −
m∑
i=1

E(Bi) ≥ ε+mη

)

≤ P

(
m∑
i=1

Ai −
m∑
i=1

E(Ai) ≥
ε+mη

2

)
+ P

(
m∑
i=1

Bi −
m∑
i=1

E(Bi) ≥
ε+mη

2

)
,

where the last inequality follows from the union bound. Finally, since Ai, Bi are both sub-Gaussian,
we know that their sum

∑m
i=1Ai,

∑m
i=1Bi are still sub-Gaussian. Hence

P

(
m∑
i=1

Ai −
m∑
i=1

E(Ai) ≥
ε+mη

2

)
≤ exp

(
− (ε+mη)2

8mσ2
A

)
,

P

(
m∑
i=1

Bi −
m∑
i=1

E(Bi) ≥
ε+mη

2

)
≤ exp

(
− (ε+mη)2

8mσ2
B

)
.

As a result,

P

(
m∑
i=1

Xi ≥ ε

)
≤ exp

(
− (ε+mη)2

8mσ2
A

)
+ exp

(
− (ε+mη)2

8mσ2
B

)
≤ 2 exp

(
− (ε+mη)2

8mτ2

)
,

where

τ2 = max{σ2
A, σ

2
B}

= max

{
(log(1− p+ peµa−

1
2µ

2

) + µ(a+ − a)− log(1− p))2

4
, µ2,

(a+ − a)2µ2

2 log(Φ(a+)− Φ(a))

}
.

G.2 TECHNICAL LEMMAS

Lemma G.1. The random variable Ai, defined in (G.1) is sub-Gaussian random variable with

parameter σ2
A where σ2

A =
(log(1− p+ peµa−

1
2µ

2

) + µ(a+ − a)− log(1− p))2

4
.

Proof of Lemma G.1. The proof of Lemma G.1 is straightforward, we show that Ai is bounded
and thus sub-Gaussian by Hoeffding’s inequality. Note that when ξi < a, we have Ai = Xi =

log(1 − p + peµξi−
1
2µ

2

) < log(1 − p + peµa−
1
2µ

2

). Moreover, since Xi is bounded below by
log(1− p), we deduce that when ξi < a, we have

log(1− p) < Ai < log(1− p+ peµa−
1
2µ

2

),

which is bounded as desired.

On the other hand, when ξi > a, by definition of ∆(ξi),

Ai = a+µ− 1

2
µ2 + log

(
p+

1− p

eµa−
µ2

2

)
= log(1− p+ peµa−

1
2µ

2

) + µ(a+ − a),

which is a constant. Since a+ > a, in this case the above constant is greater than log(1 − p +

peµa−
1
2µ

2

). Combine the above two settings, we deduce that Ai ∈ (log(1 − p), log(1 − p +

peµa−
1
2µ

2

)+µ(a+−a)) is a bounded random variable. By Hoeffding’s inequality, it is sub-Gaussian
with parameter defined in the Lemma.
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Figure 5: The value of (a+−a)2

2 log(Φ(a+)−Φ(a))
when a > 0.

Lemma G.2. The random variable Bi defined in Equation (G.2) is a mean-zero sub-Gaussian
random variable with parameter σ2

B = µ2 max
{

1, (a+−a)2

2 log(Φ(a+)−Φ(a))

}
.

Remark G.3. We note that as a function of a, (a+−a)2

2 log(Φ(a+)−Φ(a)) is in fact a decreasing function, and
is always less than 1 as a > 0. Its plot can be found in Figure 5. Therefore, by truncating normal at a,
we essentially loss nothing, since Bi is still a sub-Gaussian random variable with parameter µ.

Proof of Lemma G.2. Recall the definition in Equation (G.2), we can re-writeBi as a mixture random
variable

Bi =

{
0 w.p. P(ξi < a),
ξ̃iµ− a+µ w.p. P(ξi ≥ a).

where ξ̃i = ξi
∣∣ξi > 0 is the normal N (0, 1) truncated at a > 0, whose probability density function is

given by

f(t) =
φ(t)

1− Φ(a)
, for t > a.

From Lemma G.4, we know the expectation of Bi is

E[Bi] = 0 + (1− Φ(a))(E[ξ̃i]− a+)µ = 0.

Therefore, to prove that the mean-zero variable Bi is sub-Gaussian, we only need to bound the
probability of P(Bi > t) and P(Bi < −t) for any t > 0 with the form of exp(− t2

2σ2 ) for some
σ > 0.

We will first prove the part for P(Bi > t) Note that

P(Bi > t) = (1− Φ(a))P(ξ̃iµ− a+µ > t)

= (1− Φ(a))P(ξ̃iµ− a+µ > t)

= (1− Φ(a))P(ξ̃i > a+ + t/µ)

= (1− Φ(a))

(
1− (Φ(a+ + t/µ)− Φ(a))

(1− Φ(a))

)
= 1− Φ(a+ + t/µ)

≤ 1− Φ(t/µ) ≤ exp

(
− t2

2µ2

)
,

where the fourth equality is due to (2) in Lemma G.4, the first inequality is due to the fact that
a+ ≥ a > 0, and the last inequality is due to the fact that N (0, µ2) is sub-Gaussian with parameter
µ2.
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We now prove the other side. Observe that Bi > µ(a+ − a), so for t > µ(a+ − a) we have
P(Bi < −t) = 0. Therefore, we only need to bound P(Bi < −t) for 0 < t <= µ(a+ − a). Note
that in this range,

P(Bi < −t) ≤ P(Bi < 0) = (1− Φ(a))P(ξ̃iµ− a+µ < 0)

= (1− Φ(a))P(ξ̃i < a+)

= Φ(a+)− Φ(a),

where the last equality is again due to (2) of Lemma G.4. On the other hand, we have for any σ > 0,

exp

(
− t2

2σ2

)
≥ exp

(
− (µ(a+ − a))2

2σ2

)
, for any 0 < t ≤ µ(a+ − a).

And with the choice of σ2 = µ2 (a+−a)2

2 log(Φ(a+)−Φ(a)) , we have

exp

(
− t2

2σ2

)
≥ exp

(
− (µ(a+ − a))2

2σ2

)
= Φ(a+)− Φ(a) ≥ P(Bi < −t)

holds for all 0 < t ≤ µ(a+ − a).

Therefore, combining the two sides, we know that Bi is sub-Gaussian with parameter max{µ2,
µ2 (a+−a)2

2 log(Φ(a+)−Φ(a))}, which concludes the proof.

Lemma G.4. For a truncated normal distribution ξ̃i with density f(t) = φ(t)
1−Φ(a) , for t > a we have

1. E(ξ̃i) = φ(a)
1−Φ(a) .

2. P(ξ̃i ≤ t) = Φ(t)−Φ(a)
1−Φ(a) .

Proof of Lemma G.4. This is based on several well-known truncated normal properties, and is easy
to prove from the density function. Therefore we omit the proof here.

H DETAILS OF EDGEWORTH APPROXIMATION ERROR

The following discussion is largely adapted from Derumigny et al. (2021) to be self-contained. For a
distribution P , let fP denote its characteristic function; similarly, for a random variable X , we denote
by fX its characteristic function. We recall that fN (0,1)(t) = e−t

2/2. Some constants are used in the
definition.

• Denote by χ1 the constant χ1 := supx>0 x
−3
∣∣cos(x)− 1 + x2/2

∣∣ ≈ 0.099162 (Shevtsova,
2010),

• Denote by θ∗1 the unique root in (0, 2π) of the equation θ2 + 2θ sin(θ) + 6(cos(θ)− 1) = 0,
• Denote by t∗1 := θ∗1/(2π) ≈ 0.635967 (Shevtsova, 2010).

H.1 DETAILS OF FIRST-ORDER EDGEWORTH EXPANSION

We now provide details on the first-order Edgeworth expansion in Lemma 4.3. The main narrative is
adapted from Derumigny et al. (2021).

We first define the reminder term r1,m. To this end, we define

Ψ(t) :=
1

2

(
1− |t|+ i

[
(1− |t|) cot(πt) +

sign(t)

π

])
1{|t| ≤ 1}

where i is the imaginary number. Note that from Prawitz (1975) we have the following bound for
function Ψ:

|Ψ(t)| ≤ 1.0253

2π|t|
and

∣∣∣∣Ψ(t)− i

2πt

∣∣∣∣ ≤ 1

2

(
1− |t|+ π2

18
t2
)
.
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We further define

I3,1(T ) : =
2

T

∫ √2ε(m/K4,m)1/4

0

|Ψ(u/T )|
∣∣∣∣fSm(u)− e−u

2/2

(
1− iu3λ3,m

6
√
m

)∣∣∣∣ du
I3,2(T ) : =

2

T

∫ t0T

√
2ε(m/K4,m)1/4

|Ψ(u/T )|
∣∣∣fSm(u)− e−u

2/2
∣∣∣ du

I3,3(T ) : =
2

T

|λ3,m|
6
√
m

∫ t0T

√
2ε(m/K4,m)1/4

|Ψ(u/T )|e−u
2/2|u|3du,

and r1,m is defined to be

r1,m :=
(14.1961 + 67.0415)K̃4

3,m

16π4m2
+
|λ3,m| exp

(
−2m2/K̃4

3,m

)
3π
√
m

+ I3,2(T ) + I3,3(T )

+
1.0253

π

∫ √2ε(n/K4,m)1/4

0

ue−u
2/2R1,m(u, ε)du. (H.1)

For ε ∈ (0, 1/3) and t ≥ 0, we further define

R1,m(t, ε) : =
U1,1,m(t) + U1,2,m(t)

2(1− 3ε)2
+ e1(ε)

(
t8K2

4,m

2m2

(
1

24
+

P1,m(ε)

2(1− 3ε)2

)2

+
|t|7 |λ3,m|K4,m

6m3/2

(
1

24
+

P1,m(ε)

2(1− 3ε)2

))
,

P1,m(ε) : =
144 + 48ε+ 4ε2 +

{
96
√

2ε+ 32ε+ 16
√

2ε3/2
}
1
{
∃i ∈ {1, . . . ,m} : E

[
(Xi − µi)3

]
6= 0
}

576
,

e1(ε) : = exp

(
ε2

(
1

6
+

2P1,m(ε)

(1− 3ε)2

))
,

U1,1,m(t) : =
t6

24

(
K4,m

m

)3/2

+
t8

242

(
K4,m

m

)2

,

U1,2,m(t) : =

(
|t|5

6

(
K4,m

m

)5/4

+
t6

36

(
K4,m

m

)3/2

+
|t|7

72

(
K4,m

m

)7/4
)
1
{
∃i ∈ {1, . . . ,m} : E

[
(Xi − µi)3

]
6= 0
}
.

Observe the bound from Lemma 4.3 is a bound of leading order O(1/
√
m), which is due to the

fact that the variables in the sequence may not be identical since we may encounter non-identical
compositions, and we do not require any continuous property of the densities (and their existence as
well). When we have i.i.d. distribution of absolute continuous density, we can guarantee to have an
O(1/m) explicit bound of the difference as

∆m,1 ≤
0.195K4,m + 0.038λ2

3,m

m
+

1.0253

π

∫ bm

am

|fSm(t)|
t

dt+ r2,m,

where am := 2t∗1π
√
m/K̃3,m, bn := 16π4m2/K̃4

3,m, and r2,m is a remainder term that depends
only on K3,m,K4,m and λ3,m. Specifically, the term r2,m is defined by

r2,m :=
1.2533K̃4

3,m

16π4m2
+

0.3334 |λ3,m| K̃4
3,m

16π4m5/2
+

14.1961K̃16
3,m

164π16m8
+
|λ3,m| exp

(
−128π6m4/K̃8

3,m

)
3π
√
m

+ I5,2(T ) + I5,3(T ) + I5,4(T ) + J3(T ) + J5(T )

+
1.0253

π

∫ √2ε(m/K4,m)1/4

0

ue−u
2/2R1,m(u, ε)du.
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Here,

I5,2(T ) := E1,m
|λ3,m|
3T
√
m

∫ T 1/4/π

√
2ε(m/K4,m)1/4

|Ψ(u/T )|u3e−u
2/2du,

I5,3(T ) := E1,m
2

T

∫ T 1/4

√
2ε(m/K4,m)1/4

|Ψ(u/T )|
∣∣∣fSm(u)− e−u

2/2
∣∣∣ du,

I5,4(T ) := E2,m
|λ3,m|
3T
√
m

∫ T/π

T 1/4/π

|Ψ(u/T )||u|3e−u
2/2du,

where E1,m := 1{√2ε (m/K4,m)1/4<T 1/4/π} and E2,m := 1{T 1/4<T}. Further, T = 16π4m2/K̃4
3,m.

Note that if T 1/4 > T or
√

2ε (m/K4,m)
1/4

> T 1/4/π, our bounds are still valid and can even
be improved in the sense that the corresponding integrals can be removed. Further, we have the
following bound for the terms I5,2, I5,3 and I5,4:

I5,2(T ) ≤ |λ3,m|
3
√
m

∫ T 1/4/π

√
2ε(m/K4,m)1/4

1.0253

2π
u2e−u

2/2du

=
1.0253 |λ3,m|

3π
√

2
√
m

(
Γ
(

3/2, ε (m/K4,m)
1/2
)
− Γ

(
3/2, T 1/2/2π2

))
,

I5,3(T ) ≤ 2

T

∫ T 1/4/π

√
2ε(m/K4,m)1/4

|Ψ(u/T )|K3,m

6
√
m
|t|3 exp

(
− t

2

2
+
χ1|t|3K̃3,m√

m
+
t2
√
K4,m

2
√
m

)
du

=
K3,m

3
√
m
J2

(
3,
√

2ε/ (mK4,m)
1/4

, T 1/4/π, K̃3,m,K4,m, T,m
)

and

I5,4(T ) =
1.0253 |λ3,m|

3π
√

2
√
m

(
Γ
(

3/2, T 1/2/2π2
)
− Γ

(
3/2, T 2/2π2

))
,

and all the terms converge exponentially fast to zero. Here Γ(a, x) is the incomplete Gamma function
and can be numerically evaluated.

For the other terms, we have

J3(T ) :=
2

T

∫ t∗1T
1/4

T 1/4/π

|Ψ(u/T )| |fSm(u)| du =
2

T 3/4

∫ t∗1

1/π

∣∣∣Ψ(v/T 3/4
)∣∣∣ ∣∣∣fSm (T 1/4v

)∣∣∣ dv,
J4(T ) := 1{t∗1T 1/4<T/π}

2

T

∫ T/π

t∗0T
1/4

|Ψ(u/T )| |fSm(u)| du,

J5(T ) :=
2

T

∫ T/π

T 1/4/π

|Ψ(u/T )|e−u
2/2du.

Obviously, now all the above bounds are real integrations, and can be calculated numerically.

H.2 EXTENSION TO HIGHER-ORDER EDGEWORTH EXPANSION

We now briefly state that how we can extend the current first-order Edgeworth bound to higher-orders.
We essentially need to upper bound the approximation error by a careful decomposition. For example,
when extending to the second-order Edgeworth expansion, we have the following new smoothing
Lemma.

Lemma H.1. For every t0 ∈ (0, 1] and every T > 0, we have

∆m,2 ≤ Ω1 (t0, T ) + Ω2 (t0, T ) + Ω3 (t0, T ) ,
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where

Ω1 (t0, T ) :=2

∫ t0

0

∣∣∣∣Ψ(t)− i

2πt

∣∣∣∣ e−(Tt)2/2

(∣∣∣∣∣1+
|λ4,m||Tt|4

24m
−
λ2

3,m|Tt|6

72m

∣∣∣∣∣+
|λ3,m||Tt|3

6
√
m

)
dt

+
1

π

∫ +∞

t0

e−(Tt)2/2

t

(∣∣∣∣∣1+
|λ4,m||Tt|4

24m
−
λ2

3,m|Tt|6

72m

∣∣∣∣∣+
|λ3,m||Tt|3

6
√
m

)
dt,

Ω2 (t0, T ) :=2

∫ 1

t0

|Ψ(t)| |fSm(Tt)| dt,

Ω3 (t0, T ) :=2

∫ t0

0

|Ψ(t)|

∣∣∣∣∣fSm(Tt)− e−(Tt)2/2

(
1− λ3,mi(Tt)

3

6
√
m

+
λ4,m(Tt)4

24m
−
λ2

3,m(Tt)6

72m

)∣∣∣∣∣ dt.
Using such bound we can numerically compute Ω1 (t0, T ) ,Ω2 (t0, T ) ,Ω3 (t0, T ) for suitably chosen
t0, T and get the uniform bound on Edgeworth expansion of different orders. It is expected that the
order of approximation error decays as we increase the order of Edgeworth expansion. In practice
however, we notice that first-order Edgeworth expansion already yields accurate results.
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